Metamath Proof Explorer


Theorem mplvrpmrhm

Description: The action of permuting variables in a multivariate polynomial is a ring homomorphism. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses mplvrpmga.1 S = SymGrp I
mplvrpmga.2 P = Base S
mplvrpmga.3 M = Base I mPoly R
mplvrpmga.4 A = d P , f M x h 0 I | finSupp 0 h f x d
mplvrpmga.5 φ I V
mplvrpmmhm.f F = f M D A f
mplvrpmmhm.w W = I mPoly R
mplvrpmmhm.1 φ R Ring
mplvrpmmhm.2 φ D P
Assertion mplvrpmrhm φ F W RingHom W

Proof

Step Hyp Ref Expression
1 mplvrpmga.1 S = SymGrp I
2 mplvrpmga.2 P = Base S
3 mplvrpmga.3 M = Base I mPoly R
4 mplvrpmga.4 A = d P , f M x h 0 I | finSupp 0 h f x d
5 mplvrpmga.5 φ I V
6 mplvrpmmhm.f F = f M D A f
7 mplvrpmmhm.w W = I mPoly R
8 mplvrpmmhm.1 φ R Ring
9 mplvrpmmhm.2 φ D P
10 7 fveq2i Base W = Base I mPoly R
11 3 10 eqtr4i M = Base W
12 eqid 1 W = 1 W
13 eqid W = W
14 7 5 8 mplringd φ W Ring
15 oveq2 f = 1 W D A f = D A 1 W
16 4 a1i φ A = d P , f M x h 0 I | finSupp 0 h f x d
17 simpr d = D f = 1 W f = 1 W
18 simpl d = D f = 1 W d = D
19 18 coeq2d d = D f = 1 W x d = x D
20 17 19 fveq12d d = D f = 1 W f x d = 1 W x D
21 20 ad2antlr φ d = D f = 1 W x h 0 I | finSupp 0 h f x d = 1 W x D
22 eqid h 0 I | finSupp 0 h = h 0 I | finSupp 0 h
23 22 psrbasfsupp h 0 I | finSupp 0 h = h 0 I | h -1 Fin
24 eqid 0 R = 0 R
25 eqid 1 R = 1 R
26 7 23 24 25 12 5 8 mpl1 φ 1 W = y h 0 I | finSupp 0 h if y = I × 0 1 R 0 R
27 26 adantr φ x h 0 I | finSupp 0 h 1 W = y h 0 I | finSupp 0 h if y = I × 0 1 R 0 R
28 eqeq1 y = x D y = I × 0 x D = I × 0
29 9 adantr φ x h 0 I | finSupp 0 h D P
30 1 2 symgbasf1o D P D : I 1-1 onto I
31 f1ococnv2 D : I 1-1 onto I D D -1 = I I
32 29 30 31 3syl φ x h 0 I | finSupp 0 h D D -1 = I I
33 32 adantr φ x h 0 I | finSupp 0 h x D = I × 0 D D -1 = I I
34 33 coeq2d φ x h 0 I | finSupp 0 h x D = I × 0 x D D -1 = x I I
35 simpr φ x h 0 I | finSupp 0 h x D = I × 0 x D = I × 0
36 35 coeq1d φ x h 0 I | finSupp 0 h x D = I × 0 x D D -1 = I × 0 D -1
37 coass x D D -1 = x D D -1
38 37 a1i φ x h 0 I | finSupp 0 h x D = I × 0 x D D -1 = x D D -1
39 9 30 syl φ D : I 1-1 onto I
40 f1ocnv D : I 1-1 onto I D -1 : I 1-1 onto I
41 f1of D -1 : I 1-1 onto I D -1 : I I
42 39 40 41 3syl φ D -1 : I I
43 0nn0 0 0
44 43 a1i φ 0 0
45 42 44 constcof φ I × 0 D -1 = I × 0
46 45 ad2antrr φ x h 0 I | finSupp 0 h x D = I × 0 I × 0 D -1 = I × 0
47 36 38 46 3eqtr3d φ x h 0 I | finSupp 0 h x D = I × 0 x D D -1 = I × 0
48 5 adantr φ x h 0 I | finSupp 0 h I V
49 nn0ex 0 V
50 49 a1i φ x h 0 I | finSupp 0 h 0 V
51 ssrab2 h 0 I | finSupp 0 h 0 I
52 simpr φ x h 0 I | finSupp 0 h x h 0 I | finSupp 0 h
53 51 52 sselid φ x h 0 I | finSupp 0 h x 0 I
54 48 50 53 elmaprd φ x h 0 I | finSupp 0 h x : I 0
55 fcoi1 x : I 0 x I I = x
56 54 55 syl φ x h 0 I | finSupp 0 h x I I = x
57 56 adantr φ x h 0 I | finSupp 0 h x D = I × 0 x I I = x
58 34 47 57 3eqtr3rd φ x h 0 I | finSupp 0 h x D = I × 0 x = I × 0
59 simpr φ x h 0 I | finSupp 0 h x = I × 0 x = I × 0
60 59 coeq1d φ x h 0 I | finSupp 0 h x = I × 0 x D = I × 0 D
61 f1of D : I 1-1 onto I D : I I
62 9 30 61 3syl φ D : I I
63 62 44 constcof φ I × 0 D = I × 0
64 63 ad2antrr φ x h 0 I | finSupp 0 h x = I × 0 I × 0 D = I × 0
65 60 64 eqtrd φ x h 0 I | finSupp 0 h x = I × 0 x D = I × 0
66 58 65 impbida φ x h 0 I | finSupp 0 h x D = I × 0 x = I × 0
67 28 66 sylan9bbr φ x h 0 I | finSupp 0 h y = x D y = I × 0 x = I × 0
68 67 ifbid φ x h 0 I | finSupp 0 h y = x D if y = I × 0 1 R 0 R = if x = I × 0 1 R 0 R
69 1 2 48 29 52 mplvrpmlem φ x h 0 I | finSupp 0 h x D h 0 I | finSupp 0 h
70 fvexd φ x h 0 I | finSupp 0 h 1 R V
71 fvexd φ x h 0 I | finSupp 0 h 0 R V
72 70 71 ifcld φ x h 0 I | finSupp 0 h if x = I × 0 1 R 0 R V
73 27 68 69 72 fvmptd φ x h 0 I | finSupp 0 h 1 W x D = if x = I × 0 1 R 0 R
74 73 adantlr φ d = D f = 1 W x h 0 I | finSupp 0 h 1 W x D = if x = I × 0 1 R 0 R
75 21 74 eqtrd φ d = D f = 1 W x h 0 I | finSupp 0 h f x d = if x = I × 0 1 R 0 R
76 75 mpteq2dva φ d = D f = 1 W x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h if x = I × 0 1 R 0 R
77 11 12 14 ringidcld φ 1 W M
78 ovex 0 I V
79 78 rabex h 0 I | finSupp 0 h V
80 79 a1i φ h 0 I | finSupp 0 h V
81 80 mptexd φ x h 0 I | finSupp 0 h if x = I × 0 1 R 0 R V
82 16 76 9 77 81 ovmpod φ D A 1 W = x h 0 I | finSupp 0 h if x = I × 0 1 R 0 R
83 eqid I mPwSer R = I mPwSer R
84 eqid 1 I mPwSer R = 1 I mPwSer R
85 83 5 8 23 24 25 84 psr1 φ 1 I mPwSer R = x h 0 I | finSupp 0 h if x = I × 0 1 R 0 R
86 83 7 11 5 8 mplsubrg φ M SubRing I mPwSer R
87 7 83 11 mplval2 W = I mPwSer R 𝑠 M
88 87 84 subrg1 M SubRing I mPwSer R 1 I mPwSer R = 1 W
89 86 88 syl φ 1 I mPwSer R = 1 W
90 82 85 89 3eqtr2d φ D A 1 W = 1 W
91 15 90 sylan9eqr φ f = 1 W D A f = 1 W
92 6 91 77 77 fvmptd2 φ F 1 W = 1 W
93 nfcv _ v i y D R j x D f y D
94 eqid Base R = Base R
95 fveq2 v = y D i v = i y D
96 oveq2 v = y D x D f v = x D f y D
97 96 fveq2d v = y D j x D f v = j x D f y D
98 95 97 oveq12d v = y D i v R j x D f v = i y D R j x D f y D
99 8 ringcmnd φ R CMnd
100 99 ad3antrrr φ i M j M x h 0 I | finSupp 0 h R CMnd
101 79 rabex w h 0 I | finSupp 0 h | w f x D V
102 101 a1i φ i M j M x h 0 I | finSupp 0 h w h 0 I | finSupp 0 h | w f x D V
103 eqid Base I mPwSer R = Base I mPwSer R
104 7 83 11 103 mplbasss M Base I mPwSer R
105 simplr φ i M j M i M
106 104 105 sselid φ i M j M i Base I mPwSer R
107 106 adantr φ i M j M x h 0 I | finSupp 0 h i Base I mPwSer R
108 83 94 23 103 107 psrelbas φ i M j M x h 0 I | finSupp 0 h i : h 0 I | finSupp 0 h Base R
109 108 feqmptd φ i M j M x h 0 I | finSupp 0 h i = v h 0 I | finSupp 0 h i v
110 105 adantr φ i M j M x h 0 I | finSupp 0 h i M
111 7 11 24 110 mplelsfi φ i M j M x h 0 I | finSupp 0 h finSupp 0 R i
112 109 111 eqbrtrrd φ i M j M x h 0 I | finSupp 0 h finSupp 0 R v h 0 I | finSupp 0 h i v
113 ssrab2 w h 0 I | finSupp 0 h | w f x D h 0 I | finSupp 0 h
114 113 a1i φ i M j M x h 0 I | finSupp 0 h w h 0 I | finSupp 0 h | w f x D h 0 I | finSupp 0 h
115 fvexd φ i M j M x h 0 I | finSupp 0 h 0 R V
116 112 114 115 fmptssfisupp φ i M j M x h 0 I | finSupp 0 h finSupp 0 R v w h 0 I | finSupp 0 h | w f x D i v
117 eqid R = R
118 8 ad4antr φ i M j M x h 0 I | finSupp 0 h n Base R R Ring
119 simpr φ i M j M x h 0 I | finSupp 0 h n Base R n Base R
120 94 117 24 118 119 ringlzd φ i M j M x h 0 I | finSupp 0 h n Base R 0 R R n = 0 R
121 108 adantr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D i : h 0 I | finSupp 0 h Base R
122 elrabi v w h 0 I | finSupp 0 h | w f x D v h 0 I | finSupp 0 h
123 122 adantl φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v h 0 I | finSupp 0 h
124 121 123 ffvelcdmd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D i v Base R
125 simpr φ i M j M j M
126 104 125 sselid φ i M j M j Base I mPwSer R
127 126 ad2antrr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D j Base I mPwSer R
128 83 94 23 103 127 psrelbas φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D j : h 0 I | finSupp 0 h Base R
129 69 ad5ant14 φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D h 0 I | finSupp 0 h
130 5 ad4antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D I V
131 49 a1i φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D 0 V
132 51 123 sselid φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v 0 I
133 130 131 132 elmaprd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v : I 0
134 breq1 w = v w f x D v f x D
135 simpr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v w h 0 I | finSupp 0 h | w f x D
136 134 135 elrabrd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v f x D
137 23 psrbagcon x D h 0 I | finSupp 0 h v : I 0 v f x D x D f v h 0 I | finSupp 0 h x D f v f x D
138 129 133 136 137 syl3anc φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D f v h 0 I | finSupp 0 h x D f v f x D
139 138 simpld φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D f v h 0 I | finSupp 0 h
140 128 139 ffvelcdmd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D j x D f v Base R
141 116 120 124 140 115 fsuppssov1 φ i M j M x h 0 I | finSupp 0 h finSupp 0 R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
142 ssidd φ i M j M x h 0 I | finSupp 0 h Base R Base R
143 8 ad4antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D R Ring
144 94 117 143 124 140 ringcld φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D i v R j x D f v Base R
145 breq1 w = y D w f x D y D f x D
146 5 ad4antr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x I V
147 9 ad2antrr φ i M j M D P
148 147 ad2antrr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x D P
149 ssrab2 z h 0 I | finSupp 0 h | z f x h 0 I | finSupp 0 h
150 simpr φ i M j M y z h 0 I | finSupp 0 h | z f x y z h 0 I | finSupp 0 h | z f x
151 149 150 sselid φ i M j M y z h 0 I | finSupp 0 h | z f x y h 0 I | finSupp 0 h
152 151 adantlr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y h 0 I | finSupp 0 h
153 1 2 146 148 152 mplvrpmlem φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y D h 0 I | finSupp 0 h
154 49 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x 0 V
155 51 a1i φ i M j M x h 0 I | finSupp 0 h h 0 I | finSupp 0 h 0 I
156 149 155 sstrid φ i M j M x h 0 I | finSupp 0 h z h 0 I | finSupp 0 h | z f x 0 I
157 156 sselda φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y 0 I
158 146 154 157 elmaprd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y : I 0
159 158 ffnd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y Fn I
160 54 ad4ant14 φ i M j M x h 0 I | finSupp 0 h x : I 0
161 160 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x : I 0
162 161 ffnd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x Fn I
163 62 ad4antr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x D : I I
164 breq1 z = y z f x y f x
165 simpr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y z h 0 I | finSupp 0 h | z f x
166 164 165 elrabrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y f x
167 159 162 163 146 146 166 ofrco φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y D f x D
168 145 153 167 elrabd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x y D w h 0 I | finSupp 0 h | w f x D
169 breq1 z = v D -1 z f x v D -1 f x
170 breq1 h = v D -1 finSupp 0 h finSupp 0 v D -1
171 42 ad4antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D D -1 : I I
172 133 171 fcod φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 : I 0
173 131 130 172 elmapdd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 0 I
174 breq1 h = v finSupp 0 h finSupp 0 v
175 174 123 elrabrd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D finSupp 0 v
176 39 ad4antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D D : I 1-1 onto I
177 f1of1 D -1 : I 1-1 onto I D -1 : I 1-1 I
178 176 40 177 3syl φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D D -1 : I 1-1 I
179 43 a1i φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D 0 0
180 175 178 179 123 fsuppco φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D finSupp 0 v D -1
181 170 173 180 elrabd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 h 0 I | finSupp 0 h
182 133 ffnd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v Fn I
183 160 adantr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x : I 0
184 183 ffnd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x Fn I
185 62 ad4antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D D : I I
186 fnfco x Fn I D : I I x D Fn I
187 184 185 186 syl2anc φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D Fn I
188 182 187 171 130 130 136 ofrco φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 f x D D -1
189 176 31 syl φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D D D -1 = I I
190 189 coeq2d φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D D -1 = x I I
191 183 55 syl φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x I I = x
192 190 191 eqtrd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D D -1 = x
193 37 192 eqtrid φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D x D D -1 = x
194 188 193 breqtrd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 f x
195 169 181 194 elrabd φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D v D -1 z h 0 I | finSupp 0 h | z f x
196 133 adantr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D y z h 0 I | finSupp 0 h | z f x v : I 0
197 158 adantlr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D y z h 0 I | finSupp 0 h | z f x y : I 0
198 39 ad5antr φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D y z h 0 I | finSupp 0 h | z f x D : I 1-1 onto I
199 196 197 198 cocnvf1o φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D y z h 0 I | finSupp 0 h | z f x v = y D y = v D -1
200 195 199 reu6dv φ i M j M x h 0 I | finSupp 0 h v w h 0 I | finSupp 0 h | w f x D ∃! y z h 0 I | finSupp 0 h | z f x v = y D
201 93 94 24 98 100 102 141 142 144 168 200 gsummptfsf1o φ i M j M x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v = R y z h 0 I | finSupp 0 h | z f x i y D R j x D f y D
202 coeq1 t = y t D = y D
203 202 fveq2d t = y i t D = i y D
204 oveq2 f = i D A f = D A i
205 105 adantr φ i M j M y z h 0 I | finSupp 0 h | z f x i M
206 ovexd φ i M j M y z h 0 I | finSupp 0 h | z f x D A i V
207 6 204 205 206 fvmptd3 φ i M j M y z h 0 I | finSupp 0 h | z f x F i = D A i
208 4 a1i φ i M j M y z h 0 I | finSupp 0 h | z f x A = d P , f M x h 0 I | finSupp 0 h f x d
209 simpr d = D f = i f = i
210 coeq2 d = D x d = x D
211 210 adantr d = D f = i x d = x D
212 209 211 fveq12d d = D f = i f x d = i x D
213 212 mpteq2dv d = D f = i x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h i x D
214 coeq1 x = t x D = t D
215 214 fveq2d x = t i x D = i t D
216 215 cbvmptv x h 0 I | finSupp 0 h i x D = t h 0 I | finSupp 0 h i t D
217 213 216 eqtrdi d = D f = i x h 0 I | finSupp 0 h f x d = t h 0 I | finSupp 0 h i t D
218 217 adantl φ i M j M y z h 0 I | finSupp 0 h | z f x d = D f = i x h 0 I | finSupp 0 h f x d = t h 0 I | finSupp 0 h i t D
219 147 adantr φ i M j M y z h 0 I | finSupp 0 h | z f x D P
220 79 a1i φ i M j M y z h 0 I | finSupp 0 h | z f x h 0 I | finSupp 0 h V
221 220 mptexd φ i M j M y z h 0 I | finSupp 0 h | z f x t h 0 I | finSupp 0 h i t D V
222 208 218 219 205 221 ovmpod φ i M j M y z h 0 I | finSupp 0 h | z f x D A i = t h 0 I | finSupp 0 h i t D
223 207 222 eqtrd φ i M j M y z h 0 I | finSupp 0 h | z f x F i = t h 0 I | finSupp 0 h i t D
224 fvexd φ i M j M y z h 0 I | finSupp 0 h | z f x i y D V
225 203 223 151 224 fvmptd4 φ i M j M y z h 0 I | finSupp 0 h | z f x F i y = i y D
226 225 adantlr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x F i y = i y D
227 oveq2 f = j D A f = D A j
228 simpr d = D f = j f = j
229 210 adantr d = D f = j x d = x D
230 228 229 fveq12d d = D f = j f x d = j x D
231 230 mpteq2dv d = D f = j x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h j x D
232 214 fveq2d x = t j x D = j t D
233 232 cbvmptv x h 0 I | finSupp 0 h j x D = t h 0 I | finSupp 0 h j t D
234 231 233 eqtrdi d = D f = j x h 0 I | finSupp 0 h f x d = t h 0 I | finSupp 0 h j t D
235 234 adantl φ i M j M y z h 0 I | finSupp 0 h | z f x d = D f = j x h 0 I | finSupp 0 h f x d = t h 0 I | finSupp 0 h j t D
236 simplr φ i M j M y z h 0 I | finSupp 0 h | z f x j M
237 220 mptexd φ i M j M y z h 0 I | finSupp 0 h | z f x t h 0 I | finSupp 0 h j t D V
238 208 235 219 236 237 ovmpod φ i M j M y z h 0 I | finSupp 0 h | z f x D A j = t h 0 I | finSupp 0 h j t D
239 227 238 sylan9eqr φ i M j M y z h 0 I | finSupp 0 h | z f x f = j D A f = t h 0 I | finSupp 0 h j t D
240 239 adantllr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x f = j D A f = t h 0 I | finSupp 0 h j t D
241 125 ad2antrr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x j M
242 79 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x h 0 I | finSupp 0 h V
243 242 mptexd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t h 0 I | finSupp 0 h j t D V
244 6 240 241 243 fvmptd2 φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x F j = t h 0 I | finSupp 0 h j t D
245 coeq1 t = x f y t D = x f y D
246 245 fveq2d t = x f y j t D = j x f y D
247 246 adantl φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y j t D = j x f y D
248 160 ad2antrr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y x : I 0
249 248 ffnd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y x Fn I
250 5 ad5antr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y I V
251 49 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y 0 V
252 157 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y y 0 I
253 250 251 252 elmaprd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y y : I 0
254 253 ffnd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y y Fn I
255 62 ad5antr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y D : I I
256 inidm I I = I
257 249 254 255 250 250 250 256 ofco φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y x f y D = x D f y D
258 257 fveq2d φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y j x f y D = j x D f y D
259 247 258 eqtrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x t = x f y j t D = j x D f y D
260 breq1 h = x f y finSupp 0 h finSupp 0 x f y
261 162 159 146 146 256 offn φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y Fn I
262 162 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x Fn I
263 159 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I y Fn I
264 146 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I I V
265 simpr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I a I
266 fnfvof x Fn I y Fn I I V a I x f y a = x a y a
267 262 263 264 265 266 syl22anc φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x f y a = x a y a
268 158 ffvelcdmda φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I y a 0
269 161 ffvelcdmda φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x a 0
270 simplr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I y z h 0 I | finSupp 0 h | z f x
271 164 270 elrabrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I y f x
272 263 262 264 271 265 fnfvor φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I y a x a
273 nn0sub y a 0 x a 0 y a x a x a y a 0
274 273 biimpa y a 0 x a 0 y a x a x a y a 0
275 268 269 272 274 syl21anc φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x a y a 0
276 267 275 eqeltrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x f y a 0
277 276 ralrimiva φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I x f y a 0
278 ffnfv x f y : I 0 x f y Fn I a I x f y a 0
279 261 277 278 sylanbrc φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y : I 0
280 154 146 279 elmapdd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y 0 I
281 ovexd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y V
282 43 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x 0 0
283 162 159 146 146 offun φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x Fun x f y
284 23 psrbagfsupp x h 0 I | finSupp 0 h finSupp 0 x
285 284 ad2antlr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x finSupp 0 x
286 dffn2 x f y Fn I x f y : I V
287 261 286 sylib φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y : I V
288 162 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x x Fn I
289 159 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y Fn I
290 146 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x I V
291 simpr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x a I supp 0 x
292 291 eldifad φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x a I
293 288 289 290 292 266 syl22anc φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x x f y a = x a y a
294 43 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x 0 0
295 288 290 294 291 fvdifsupp φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x x a = 0
296 158 adantr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y : I 0
297 296 292 ffvelcdmd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y a 0
298 simplr φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y z h 0 I | finSupp 0 h | z f x
299 164 298 elrabrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y f x
300 289 288 290 299 292 fnfvor φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y a x a
301 300 295 breqtrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y a 0
302 nn0le0eq0 y a 0 y a 0 y a = 0
303 302 biimpa y a 0 y a 0 y a = 0
304 297 301 303 syl2anc φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x y a = 0
305 295 304 oveq12d φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x x a y a = 0 0
306 0m0e0 0 0 = 0
307 306 a1i φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x 0 0 = 0
308 293 305 307 3eqtrd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x a I supp 0 x x f y a = 0
309 287 308 suppss φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y supp 0 x supp 0
310 281 282 283 285 309 fsuppsssuppgd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x finSupp 0 x f y
311 260 280 310 elrabd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x x f y h 0 I | finSupp 0 h
312 fvexd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x j x D f y D V
313 244 259 311 312 fvmptd φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x F j x f y = j x D f y D
314 226 313 oveq12d φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x F i y R F j x f y = i y D R j x D f y D
315 314 mpteq2dva φ i M j M x h 0 I | finSupp 0 h y z h 0 I | finSupp 0 h | z f x F i y R F j x f y = y z h 0 I | finSupp 0 h | z f x i y D R j x D f y D
316 315 oveq2d φ i M j M x h 0 I | finSupp 0 h R y z h 0 I | finSupp 0 h | z f x F i y R F j x f y = R y z h 0 I | finSupp 0 h | z f x i y D R j x D f y D
317 201 316 eqtr4d φ i M j M x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v = R y z h 0 I | finSupp 0 h | z f x F i y R F j x f y
318 317 mpteq2dva φ i M j M x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v = x h 0 I | finSupp 0 h R y z h 0 I | finSupp 0 h | z f x F i y R F j x f y
319 oveq2 f = i W j D A f = D A i W j
320 4 a1i φ i M j M A = d P , f M x h 0 I | finSupp 0 h f x d
321 simprr φ i M j M d = D f = i W j f = i W j
322 7 11 117 13 23 105 125 mplmul φ i M j M i W j = u h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f u i v R j u f v
323 322 adantr φ i M j M d = D f = i W j i W j = u h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f u i v R j u f v
324 321 323 eqtrd φ i M j M d = D f = i W j f = u h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f u i v R j u f v
325 324 adantr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h f = u h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f u i v R j u f v
326 simpr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d u = x d
327 simplrl φ i M j M d = D f = i W j x h 0 I | finSupp 0 h d = D
328 327 adantr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d d = D
329 328 coeq2d φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d x d = x D
330 326 329 eqtrd φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d u = x D
331 330 breq2d φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d w f u w f x D
332 331 rabbidv φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d w h 0 I | finSupp 0 h | w f u = w h 0 I | finSupp 0 h | w f x D
333 330 fvoveq1d φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d j u f v = j x D f v
334 333 oveq2d φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d i v R j u f v = i v R j x D f v
335 332 334 mpteq12dv φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d v w h 0 I | finSupp 0 h | w f u i v R j u f v = v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
336 335 oveq2d φ i M j M d = D f = i W j x h 0 I | finSupp 0 h u = x d R v w h 0 I | finSupp 0 h | w f u i v R j u f v = R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
337 5 ad4antr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h I V
338 9 ad4antr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h D P
339 327 338 eqeltrd φ i M j M d = D f = i W j x h 0 I | finSupp 0 h d P
340 simpr φ i M j M d = D f = i W j x h 0 I | finSupp 0 h x h 0 I | finSupp 0 h
341 1 2 337 339 340 mplvrpmlem φ i M j M d = D f = i W j x h 0 I | finSupp 0 h x d h 0 I | finSupp 0 h
342 ovexd φ i M j M d = D f = i W j x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v V
343 325 336 341 342 fvmptd φ i M j M d = D f = i W j x h 0 I | finSupp 0 h f x d = R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
344 343 mpteq2dva φ i M j M d = D f = i W j x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
345 14 ad2antrr φ i M j M W Ring
346 11 13 345 105 125 ringcld φ i M j M i W j M
347 79 a1i φ i M j M h 0 I | finSupp 0 h V
348 347 mptexd φ i M j M x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v V
349 320 344 147 346 348 ovmpod φ i M j M D A i W j = x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
350 319 349 sylan9eqr φ i M j M f = i W j D A f = x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
351 6 350 346 348 fvmptd2 φ i M j M F i W j = x h 0 I | finSupp 0 h R v w h 0 I | finSupp 0 h | w f x D i v R j x D f v
352 1 2 3 4 5 mplvrpmga φ A S GrpAct M
353 2 gaf A S GrpAct M A : P × M M
354 352 353 syl φ A : P × M M
355 354 fovcld φ D P f M D A f M
356 355 3expa φ D P f M D A f M
357 356 an32s φ f M D P D A f M
358 9 357 mpidan φ f M D A f M
359 358 6 fmptd φ F : M M
360 359 ad2antrr φ i M j M F : M M
361 360 105 ffvelcdmd φ i M j M F i M
362 360 125 ffvelcdmd φ i M j M F j M
363 7 11 117 13 23 361 362 mplmul φ i M j M F i W F j = x h 0 I | finSupp 0 h R y z h 0 I | finSupp 0 h | z f x F i y R F j x f y
364 318 351 363 3eqtr4d φ i M j M F i W j = F i W F j
365 364 anasss φ i M j M F i W j = F i W F j
366 eqid + W = + W
367 1 2 3 4 5 6 7 8 9 mplvrpmmhm φ F W MndHom W
368 367 ad2antrr φ i M j M F W MndHom W
369 11 366 366 mhmlin F W MndHom W i M j M F i + W j = F i + W F j
370 368 105 125 369 syl3anc φ i M j M F i + W j = F i + W F j
371 370 anasss φ i M j M F i + W j = F i + W F j
372 11 12 12 13 13 14 14 92 365 11 366 366 359 371 isrhmd φ F W RingHom W