Metamath Proof Explorer


Theorem pntpbnd1

Description: Lemma for pntpbnd . (Contributed by Mario Carneiro, 11-Apr-2016)

Ref Expression
Hypotheses pntpbnd.r R=a+ψaa
pntpbnd1.e φE01
pntpbnd1.x X=e2E
pntpbnd1.y φYX+∞
pntpbnd1.1 φA+
pntpbnd1.2 φijy=ijRyyy+1A
pntpbnd1.c C=A+2
pntpbnd1.k φKeCE+∞
pntpbnd1.3 φ¬yY<yyKYRyyE
Assertion pntpbnd1 φn=Y+1KYRnnn+1A

Proof

Step Hyp Ref Expression
1 pntpbnd.r R=a+ψaa
2 pntpbnd1.e φE01
3 pntpbnd1.x X=e2E
4 pntpbnd1.y φYX+∞
5 pntpbnd1.1 φA+
6 pntpbnd1.2 φijy=ijRyyy+1A
7 pntpbnd1.c C=A+2
8 pntpbnd1.k φKeCE+∞
9 pntpbnd1.3 φ¬yY<yyKYRyyE
10 fzfid φiY+1KY0RiY+1KYFin
11 ioossre X+∞
12 11 4 sselid φY
13 0red φ0
14 2re 2
15 ioossre 01
16 15 2 sselid φE
17 eliooord E010<EE<1
18 2 17 syl φ0<EE<1
19 18 simpld φ0<E
20 16 19 elrpd φE+
21 rerpdivcl 2E+2E
22 14 20 21 sylancr φ2E
23 22 reefcld φe2E
24 3 23 eqeltrid φX
25 efgt0 2E0<e2E
26 22 25 syl φ0<e2E
27 26 3 breqtrrdi φ0<X
28 eliooord YX+∞X<YY<+∞
29 4 28 syl φX<YY<+∞
30 29 simpld φX<Y
31 13 24 12 27 30 lttrd φ0<Y
32 13 12 31 ltled φ0Y
33 flge0nn0 Y0YY0
34 12 32 33 syl2anc φY0
35 nn0p1nn Y0Y+1
36 34 35 syl φY+1
37 elfzuz nY+1KYnY+1
38 eluznn Y+1nY+1n
39 36 37 38 syl2an φnY+1KYn
40 39 nnrpd φnY+1KYn+
41 1 pntrf R:+
42 41 ffvelcdmi n+Rn
43 40 42 syl φnY+1KYRn
44 39 peano2nnd φnY+1KYn+1
45 39 44 nnmulcld φnY+1KYnn+1
46 43 45 nndivred φnY+1KYRnnn+1
47 46 adantlr φiY+1KY0RinY+1KYRnnn+1
48 10 47 fsumrecl φiY+1KY0Rin=Y+1KYRnnn+1
49 43 adantlr φiY+1KY0RinY+1KYRn
50 fveq2 i=nRi=Rn
51 50 breq2d i=n0Ri0Rn
52 51 rspccva iY+1KY0RinY+1KY0Rn
53 52 adantll φiY+1KY0RinY+1KY0Rn
54 45 adantlr φiY+1KY0RinY+1KYnn+1
55 54 nnred φiY+1KY0RinY+1KYnn+1
56 54 nngt0d φiY+1KY0RinY+1KY0<nn+1
57 divge0 Rn0Rnnn+10<nn+10Rnnn+1
58 49 53 55 56 57 syl22anc φiY+1KY0RinY+1KY0Rnnn+1
59 10 47 58 fsumge0 φiY+1KY0Ri0n=Y+1KYRnnn+1
60 48 59 absidd φiY+1KY0Rin=Y+1KYRnnn+1=n=Y+1KYRnnn+1
61 47 58 absidd φiY+1KY0RinY+1KYRnnn+1=Rnnn+1
62 61 sumeq2dv φiY+1KY0Rin=Y+1KYRnnn+1=n=Y+1KYRnnn+1
63 60 62 eqtr4d φiY+1KY0Rin=Y+1KYRnnn+1=n=Y+1KYRnnn+1
64 fzfid φiY+1KYRi0Y+1KYFin
65 46 adantlr φiY+1KYRi0nY+1KYRnnn+1
66 65 recnd φiY+1KYRi0nY+1KYRnnn+1
67 64 66 fsumneg φiY+1KYRi0n=Y+1KYRnnn+1=n=Y+1KYRnnn+1
68 43 adantlr φiY+1KYRi0nY+1KYRn
69 68 renegcld φiY+1KYRi0nY+1KYRn
70 50 breq1d i=nRi0Rn0
71 70 rspccva iY+1KYRi0nY+1KYRn0
72 71 adantll φiY+1KYRi0nY+1KYRn0
73 68 le0neg1d φiY+1KYRi0nY+1KYRn00Rn
74 72 73 mpbid φiY+1KYRi0nY+1KY0Rn
75 45 adantlr φiY+1KYRi0nY+1KYnn+1
76 75 nnred φiY+1KYRi0nY+1KYnn+1
77 75 nngt0d φiY+1KYRi0nY+1KY0<nn+1
78 divge0 Rn0Rnnn+10<nn+10Rnnn+1
79 69 74 76 77 78 syl22anc φiY+1KYRi0nY+1KY0Rnnn+1
80 43 recnd φnY+1KYRn
81 45 nncnd φnY+1KYnn+1
82 45 nnne0d φnY+1KYnn+10
83 80 81 82 divnegd φnY+1KYRnnn+1=Rnnn+1
84 83 adantlr φiY+1KYRi0nY+1KYRnnn+1=Rnnn+1
85 79 84 breqtrrd φiY+1KYRi0nY+1KY0Rnnn+1
86 65 le0neg1d φiY+1KYRi0nY+1KYRnnn+100Rnnn+1
87 85 86 mpbird φiY+1KYRi0nY+1KYRnnn+10
88 65 87 absnidd φiY+1KYRi0nY+1KYRnnn+1=Rnnn+1
89 88 sumeq2dv φiY+1KYRi0n=Y+1KYRnnn+1=n=Y+1KYRnnn+1
90 64 65 fsumrecl φiY+1KYRi0n=Y+1KYRnnn+1
91 65 renegcld φiY+1KYRi0nY+1KYRnnn+1
92 64 91 85 fsumge0 φiY+1KYRi00n=Y+1KYRnnn+1
93 92 67 breqtrd φiY+1KYRi00n=Y+1KYRnnn+1
94 90 le0neg1d φiY+1KYRi0n=Y+1KYRnnn+100n=Y+1KYRnnn+1
95 93 94 mpbird φiY+1KYRi0n=Y+1KYRnnn+10
96 90 95 absnidd φiY+1KYRi0n=Y+1KYRnnn+1=n=Y+1KYRnnn+1
97 67 89 96 3eqtr4rd φiY+1KYRi0n=Y+1KYRnnn+1=n=Y+1KYRnnn+1
98 2rp 2+
99 rpaddcl A+2+A+2+
100 5 98 99 sylancl φA+2+
101 7 100 eqeltrid φC+
102 101 20 rpdivcld φCE+
103 102 rpred φCE
104 103 reefcld φeCE
105 pnfxr +∞*
106 icossre eCE+∞*eCE+∞
107 104 105 106 sylancl φeCE+∞
108 107 8 sseldd φK
109 108 12 remulcld φKY
110 12 recnd φY
111 110 mullidd φ1Y=Y
112 1red φ1
113 efgt1 CE+1<eCE
114 102 113 syl φ1<eCE
115 elicopnf eCEKeCE+∞KeCEK
116 104 115 syl φKeCE+∞KeCEK
117 116 simplbda φKeCE+∞eCEK
118 8 117 mpdan φeCEK
119 112 104 108 114 118 ltletrd φ1<K
120 ltmul1 1KY0<Y1<K1Y<KY
121 112 108 12 31 120 syl112anc φ1<K1Y<KY
122 119 121 mpbid φ1Y<KY
123 111 122 eqbrtrrd φY<KY
124 12 109 123 ltled φYKY
125 flword2 YKYYKYKYY
126 12 109 124 125 syl3anc φKYY
127 109 flcld φKY
128 uzid KYKYKY
129 127 128 syl φKYKY
130 elfzuzb KYYKYKYYKYKY
131 126 129 130 sylanbrc φKYYKY
132 oveq2 x=YY+1x=Y+1Y
133 132 raleqdv x=YiY+1x0RiiY+1Y0Ri
134 132 raleqdv x=YiY+1xRi0iY+1YRi0
135 133 134 orbi12d x=YiY+1x0RiiY+1xRi0iY+1Y0RiiY+1YRi0
136 135 imbi2d x=YφiY+1x0RiiY+1xRi0φiY+1Y0RiiY+1YRi0
137 oveq2 x=mY+1x=Y+1m
138 137 raleqdv x=miY+1x0RiiY+1m0Ri
139 137 raleqdv x=miY+1xRi0iY+1mRi0
140 138 139 orbi12d x=miY+1x0RiiY+1xRi0iY+1m0RiiY+1mRi0
141 140 imbi2d x=mφiY+1x0RiiY+1xRi0φiY+1m0RiiY+1mRi0
142 oveq2 x=m+1Y+1x=Y+1m+1
143 142 raleqdv x=m+1iY+1x0RiiY+1m+10Ri
144 142 raleqdv x=m+1iY+1xRi0iY+1m+1Ri0
145 143 144 orbi12d x=m+1iY+1x0RiiY+1xRi0iY+1m+10RiiY+1m+1Ri0
146 145 imbi2d x=m+1φiY+1x0RiiY+1xRi0φiY+1m+10RiiY+1m+1Ri0
147 oveq2 x=KYY+1x=Y+1KY
148 147 raleqdv x=KYiY+1x0RiiY+1KY0Ri
149 147 raleqdv x=KYiY+1xRi0iY+1KYRi0
150 148 149 orbi12d x=KYiY+1x0RiiY+1xRi0iY+1KY0RiiY+1KYRi0
151 150 imbi2d x=KYφiY+1x0RiiY+1xRi0φiY+1KY0RiiY+1KYRi0
152 elfzle3 iY+1YY+1Y
153 elfzel2 iY+1YY
154 153 zred iY+1YY
155 154 ltp1d iY+1YY<Y+1
156 peano2re YY+1
157 154 156 syl iY+1YY+1
158 154 157 ltnled iY+1YY<Y+1¬Y+1Y
159 155 158 mpbid iY+1Y¬Y+1Y
160 152 159 pm2.21dd iY+1YRi0
161 160 rgen iY+1YRi0
162 161 olci iY+1Y0RiiY+1YRi0
163 162 2a1i KYYφiY+1Y0RiiY+1YRi0
164 elfzofz mY..^KYmYKY
165 elfzp12 KYYmYKYm=YmY+1KY
166 126 165 syl φmYKYm=YmY+1KY
167 164 166 imbitrid φmY..^KYm=YmY+1KY
168 167 imp φmY..^KYm=YmY+1KY
169 36 nnrpd φY+1+
170 41 ffvelcdmi Y+1+RY+1
171 169 170 syl φRY+1
172 13 171 letrid φ0RY+1RY+10
173 172 adantr φm=Y0RY+1RY+10
174 oveq1 m=Ym+1=Y+1
175 174 oveq2d m=YY+1m+1=Y+1Y+1
176 12 flcld φY
177 176 peano2zd φY+1
178 fzsn Y+1Y+1Y+1=Y+1
179 177 178 syl φY+1Y+1=Y+1
180 175 179 sylan9eqr φm=YY+1m+1=Y+1
181 180 raleqdv φm=YiY+1m+10RiiY+10Ri
182 ovex Y+1V
183 fveq2 i=Y+1Ri=RY+1
184 183 breq2d i=Y+10Ri0RY+1
185 182 184 ralsn iY+10Ri0RY+1
186 181 185 bitrdi φm=YiY+1m+10Ri0RY+1
187 180 raleqdv φm=YiY+1m+1Ri0iY+1Ri0
188 183 breq1d i=Y+1Ri0RY+10
189 182 188 ralsn iY+1Ri0RY+10
190 187 189 bitrdi φm=YiY+1m+1Ri0RY+10
191 186 190 orbi12d φm=YiY+1m+10RiiY+1m+1Ri00RY+1RY+10
192 173 191 mpbird φm=YiY+1m+10RiiY+1m+1Ri0
193 192 a1d φm=YiY+1m0RiiY+1mRi0iY+1m+10RiiY+1m+1Ri0
194 elfzuz mY+1KYmY+1
195 194 adantl φmY+1KYmY+1
196 eluzfz2 mY+1mY+1m
197 195 196 syl φmY+1KYmY+1m
198 fveq2 i=mRi=Rm
199 198 breq2d i=m0Ri0Rm
200 199 rspcv mY+1miY+1m0Ri0Rm
201 197 200 syl φmY+1KYiY+1m0Ri0Rm
202 9 adantr φmY+1KY¬yY<yyKYRyyE
203 eluznn Y+1mY+1m
204 36 194 203 syl2an φmY+1KYm
205 204 adantr φmY+1KYRmRm+1Rmm
206 elfzle1 mY+1KYY+1m
207 206 adantl φmY+1KYY+1m
208 elfzelz mY+1KYm
209 zltp1le YmY<mY+1m
210 176 208 209 syl2an φmY+1KYY<mY+1m
211 207 210 mpbird φmY+1KYY<m
212 fllt YmY<mY<m
213 12 208 212 syl2an φmY+1KYY<mY<m
214 211 213 mpbird φmY+1KYY<m
215 elfzle2 mY+1KYmKY
216 215 adantl φmY+1KYmKY
217 flge KYmmKYmKY
218 109 208 217 syl2an φmY+1KYmKYmKY
219 216 218 mpbird φmY+1KYmKY
220 214 219 jca φmY+1KYY<mmKY
221 220 adantr φmY+1KYRmRm+1RmY<mmKY
222 2 ad2antrr φmY+1KYRmRm+1RmE01
223 4 ad2antrr φmY+1KYRmRm+1RmYX+∞
224 simpr φmY+1KYRmRm+1RmRmRm+1Rm
225 1 222 3 223 205 221 224 pntpbnd1a φmY+1KYRmRm+1RmRmmE
226 breq2 y=mY<yY<m
227 breq1 y=myKYmKY
228 226 227 anbi12d y=mY<yyKYY<mmKY
229 fveq2 y=mRy=Rm
230 id y=my=m
231 229 230 oveq12d y=mRyy=Rmm
232 231 fveq2d y=mRyy=Rmm
233 232 breq1d y=mRyyERmmE
234 228 233 anbi12d y=mY<yyKYRyyEY<mmKYRmmE
235 234 rspcev mY<mmKYRmmEyY<yyKYRyyE
236 205 221 225 235 syl12anc φmY+1KYRmRm+1RmyY<yyKYRyyE
237 202 236 mtand φmY+1KY¬RmRm+1Rm
238 237 adantr φmY+1KY0Rm¬RmRm+1Rm
239 204 nnrpd φmY+1KYm+
240 41 ffvelcdmi m+Rm
241 239 240 syl φmY+1KYRm
242 241 adantr φmY+1KY0Rm¬0Rm+1Rm
243 242 recnd φmY+1KY0Rm¬0Rm+1Rm
244 243 subid1d φmY+1KY0Rm¬0Rm+1Rm0=Rm
245 204 peano2nnd φmY+1KYm+1
246 245 nnrpd φmY+1KYm+1+
247 41 ffvelcdmi m+1+Rm+1
248 246 247 syl φmY+1KYRm+1
249 248 adantr φmY+1KY0Rm¬0Rm+1Rm+1
250 0red φmY+1KY0Rm¬0Rm+10
251 0re 0
252 letric 0Rm+10Rm+1Rm+10
253 251 248 252 sylancr φmY+1KY0Rm+1Rm+10
254 253 ord φmY+1KY¬0Rm+1Rm+10
255 254 imp φmY+1KY¬0Rm+1Rm+10
256 255 adantrl φmY+1KY0Rm¬0Rm+1Rm+10
257 249 250 242 256 lesub2dd φmY+1KY0Rm¬0Rm+1Rm0RmRm+1
258 244 257 eqbrtrrd φmY+1KY0Rm¬0Rm+1RmRmRm+1
259 simprl φmY+1KY0Rm¬0Rm+10Rm
260 242 259 absidd φmY+1KY0Rm¬0Rm+1Rm=Rm
261 249 250 242 256 259 letrd φmY+1KY0Rm¬0Rm+1Rm+1Rm
262 249 242 261 abssuble0d φmY+1KY0Rm¬0Rm+1Rm+1Rm=RmRm+1
263 258 260 262 3brtr4d φmY+1KY0Rm¬0Rm+1RmRm+1Rm
264 263 expr φmY+1KY0Rm¬0Rm+1RmRm+1Rm
265 238 264 mt3d φmY+1KY0Rm0Rm+1
266 265 ex φmY+1KY0Rm0Rm+1
267 201 266 syld φmY+1KYiY+1m0Ri0Rm+1
268 ovex m+1V
269 fveq2 i=m+1Ri=Rm+1
270 269 breq2d i=m+10Ri0Rm+1
271 268 270 ralsn im+10Ri0Rm+1
272 267 271 syl6ibr φmY+1KYiY+1m0Riim+10Ri
273 272 ancld φmY+1KYiY+1m0RiiY+1m0Riim+10Ri
274 fzsuc mY+1Y+1m+1=Y+1mm+1
275 195 274 syl φmY+1KYY+1m+1=Y+1mm+1
276 275 raleqdv φmY+1KYiY+1m+10RiiY+1mm+10Ri
277 ralunb iY+1mm+10RiiY+1m0Riim+10Ri
278 276 277 bitrdi φmY+1KYiY+1m+10RiiY+1m0Riim+10Ri
279 273 278 sylibrd φmY+1KYiY+1m0RiiY+1m+10Ri
280 198 breq1d i=mRi0Rm0
281 280 rspcv mY+1miY+1mRi0Rm0
282 197 281 syl φmY+1KYiY+1mRi0Rm0
283 237 adantr φmY+1KYRm0¬RmRm+1Rm
284 254 con1d φmY+1KY¬Rm+100Rm+1
285 284 imp φmY+1KY¬Rm+100Rm+1
286 285 adantrl φmY+1KYRm0¬Rm+100Rm+1
287 241 adantr φmY+1KYRm0¬Rm+10Rm
288 287 renegcld φmY+1KYRm0¬Rm+10Rm
289 248 adantr φmY+1KYRm0¬Rm+10Rm+1
290 288 289 addge02d φmY+1KYRm0¬Rm+100Rm+1RmRm+1+Rm
291 286 290 mpbid φmY+1KYRm0¬Rm+10RmRm+1+Rm
292 289 recnd φmY+1KYRm0¬Rm+10Rm+1
293 287 recnd φmY+1KYRm0¬Rm+10Rm
294 292 293 negsubd φmY+1KYRm0¬Rm+10Rm+1+Rm=Rm+1Rm
295 291 294 breqtrd φmY+1KYRm0¬Rm+10RmRm+1Rm
296 simprl φmY+1KYRm0¬Rm+10Rm0
297 287 296 absnidd φmY+1KYRm0¬Rm+10Rm=Rm
298 0red φmY+1KYRm0¬Rm+100
299 287 298 289 296 286 letrd φmY+1KYRm0¬Rm+10RmRm+1
300 287 289 299 abssubge0d φmY+1KYRm0¬Rm+10Rm+1Rm=Rm+1Rm
301 295 297 300 3brtr4d φmY+1KYRm0¬Rm+10RmRm+1Rm
302 301 expr φmY+1KYRm0¬Rm+10RmRm+1Rm
303 283 302 mt3d φmY+1KYRm0Rm+10
304 303 ex φmY+1KYRm0Rm+10
305 282 304 syld φmY+1KYiY+1mRi0Rm+10
306 269 breq1d i=m+1Ri0Rm+10
307 268 306 ralsn im+1Ri0Rm+10
308 305 307 syl6ibr φmY+1KYiY+1mRi0im+1Ri0
309 308 ancld φmY+1KYiY+1mRi0iY+1mRi0im+1Ri0
310 275 raleqdv φmY+1KYiY+1m+1Ri0iY+1mm+1Ri0
311 ralunb iY+1mm+1Ri0iY+1mRi0im+1Ri0
312 310 311 bitrdi φmY+1KYiY+1m+1Ri0iY+1mRi0im+1Ri0
313 309 312 sylibrd φmY+1KYiY+1mRi0iY+1m+1Ri0
314 279 313 orim12d φmY+1KYiY+1m0RiiY+1mRi0iY+1m+10RiiY+1m+1Ri0
315 193 314 jaodan φm=YmY+1KYiY+1m0RiiY+1mRi0iY+1m+10RiiY+1m+1Ri0
316 168 315 syldan φmY..^KYiY+1m0RiiY+1mRi0iY+1m+10RiiY+1m+1Ri0
317 316 expcom mY..^KYφiY+1m0RiiY+1mRi0iY+1m+10RiiY+1m+1Ri0
318 317 a2d mY..^KYφiY+1m0RiiY+1mRi0φiY+1m+10RiiY+1m+1Ri0
319 136 141 146 151 163 318 fzind2 KYYKYφiY+1KY0RiiY+1KYRi0
320 131 319 mpcom φiY+1KY0RiiY+1KYRi0
321 63 97 320 mpjaodan φn=Y+1KYRnnn+1=n=Y+1KYRnnn+1
322 fveq2 y=nRy=Rn
323 id y=ny=n
324 oveq1 y=ny+1=n+1
325 323 324 oveq12d y=nyy+1=nn+1
326 322 325 oveq12d y=nRyyy+1=Rnnn+1
327 326 cbvsumv y=ijRyyy+1=n=ijRnnn+1
328 oveq1 i=Y+1ij=Y+1j
329 328 sumeq1d i=Y+1n=ijRnnn+1=n=Y+1jRnnn+1
330 327 329 eqtrid i=Y+1y=ijRyyy+1=n=Y+1jRnnn+1
331 330 fveq2d i=Y+1y=ijRyyy+1=n=Y+1jRnnn+1
332 331 breq1d i=Y+1y=ijRyyy+1An=Y+1jRnnn+1A
333 oveq2 j=KYY+1j=Y+1KY
334 333 sumeq1d j=KYn=Y+1jRnnn+1=n=Y+1KYRnnn+1
335 334 fveq2d j=KYn=Y+1jRnnn+1=n=Y+1KYRnnn+1
336 335 breq1d j=KYn=Y+1jRnnn+1An=Y+1KYRnnn+1A
337 332 336 rspc2va Y+1KYijy=ijRyyy+1An=Y+1KYRnnn+1A
338 36 127 6 337 syl21anc φn=Y+1KYRnnn+1A
339 321 338 eqbrtrrd φn=Y+1KYRnnn+1A