Metamath Proof Explorer


Theorem poimirlem2

Description: Lemma for poimir - consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem2.1 φF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
poimirlem2.2 φT:1N
poimirlem2.3 φU:1N1-1 onto1N
poimirlem2.4 φV1N1
poimirlem2.5 φM0NV
Assertion poimirlem2 φ*n1NFV1nFVn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem2.1 φF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
3 poimirlem2.2 φT:1N
4 poimirlem2.3 φU:1N1-1 onto1N
5 poimirlem2.4 φV1N1
6 poimirlem2.5 φM0NV
7 dff1o3 U:1N1-1 onto1NU:1Nonto1NFunU-1
8 7 simprbi U:1N1-1 onto1NFunU-1
9 4 8 syl φFunU-1
10 imadif FunU-1U1NV+1=U1NUV+1
11 9 10 syl φU1NV+1=U1NUV+1
12 fzp1elp1 V1N1V+11N-1+1
13 5 12 syl φV+11N-1+1
14 1 nncnd φN
15 npcan1 NN-1+1=N
16 14 15 syl φN-1+1=N
17 16 oveq2d φ1N-1+1=1N
18 13 17 eleqtrd φV+11N
19 fzsplit V+11N1N=1V+1V+1+1N
20 18 19 syl φ1N=1V+1V+1+1N
21 20 difeq1d φ1NV+1=1V+1V+1+1NV+1
22 difundir 1V+1V+1+1NV+1=1V+1V+1V+1+1NV+1
23 elfzuz V1N1V1
24 5 23 syl φV1
25 fzsuc V11V+1=1VV+1
26 24 25 syl φ1V+1=1VV+1
27 26 difeq1d φ1V+1V+1=1VV+1V+1
28 difun2 1VV+1V+1=1VV+1
29 5 elfzelzd φV
30 29 zred φV
31 30 ltp1d φV<V+1
32 29 peano2zd φV+1
33 32 zred φV+1
34 30 33 ltnled φV<V+1¬V+1V
35 31 34 mpbid φ¬V+1V
36 elfzle2 V+11VV+1V
37 35 36 nsyl φ¬V+11V
38 difsn ¬V+11V1VV+1=1V
39 37 38 syl φ1VV+1=1V
40 28 39 eqtrid φ1VV+1V+1=1V
41 27 40 eqtrd φ1V+1V+1=1V
42 33 ltp1d φV+1<V+1+1
43 peano2re V+1V+1+1
44 33 43 syl φV+1+1
45 33 44 ltnled φV+1<V+1+1¬V+1+1V+1
46 42 45 mpbid φ¬V+1+1V+1
47 elfzle1 V+1V+1+1NV+1+1V+1
48 46 47 nsyl φ¬V+1V+1+1N
49 difsn ¬V+1V+1+1NV+1+1NV+1=V+1+1N
50 48 49 syl φV+1+1NV+1=V+1+1N
51 41 50 uneq12d φ1V+1V+1V+1+1NV+1=1VV+1+1N
52 22 51 eqtrid φ1V+1V+1+1NV+1=1VV+1+1N
53 21 52 eqtrd φ1NV+1=1VV+1+1N
54 53 imaeq2d φU1NV+1=U1VV+1+1N
55 11 54 eqtr3d φU1NUV+1=U1VV+1+1N
56 imaundi U1VV+1+1N=U1VUV+1+1N
57 55 56 eqtrdi φU1NUV+1=U1VUV+1+1N
58 57 eleq2d φnU1NUV+1nU1VUV+1+1N
59 eldif nU1NUV+1nU1N¬nUV+1
60 elun nU1VUV+1+1NnU1VnUV+1+1N
61 58 59 60 3bitr3g φnU1N¬nUV+1nU1VnUV+1+1N
62 61 adantr φM<VnU1N¬nUV+1nU1VnUV+1+1N
63 imassrn U1VranU
64 f1of U:1N1-1 onto1NU:1N1N
65 4 64 syl φU:1N1N
66 65 frnd φranU1N
67 63 66 sstrid φU1V1N
68 67 sselda φnU1Vn1N
69 3 ffnd φTFn1N
70 69 adantr φnU1VTFn1N
71 1ex 1V
72 fnconstg 1VU1V×1FnU1V
73 71 72 ax-mp U1V×1FnU1V
74 c0ex 0V
75 fnconstg 0VUV+1N×0FnUV+1N
76 74 75 ax-mp UV+1N×0FnUV+1N
77 73 76 pm3.2i U1V×1FnU1VUV+1N×0FnUV+1N
78 imain FunU-1U1VV+1N=U1VUV+1N
79 9 78 syl φU1VV+1N=U1VUV+1N
80 fzdisj V<V+11VV+1N=
81 31 80 syl φ1VV+1N=
82 81 imaeq2d φU1VV+1N=U
83 ima0 U=
84 82 83 eqtrdi φU1VV+1N=
85 79 84 eqtr3d φU1VUV+1N=
86 fnun U1V×1FnU1VUV+1N×0FnUV+1NU1VUV+1N=U1V×1UV+1N×0FnU1VUV+1N
87 77 85 86 sylancr φU1V×1UV+1N×0FnU1VUV+1N
88 imaundi U1VV+1N=U1VUV+1N
89 1 nnzd φN
90 peano2zm NN1
91 89 90 syl φN1
92 uzid N1N1N1
93 91 92 syl φN1N1
94 peano2uz N1N1N-1+1N1
95 93 94 syl φN-1+1N1
96 16 95 eqeltrrd φNN1
97 fzss2 NN11N11N
98 96 97 syl φ1N11N
99 98 5 sseldd φV1N
100 fzsplit V1N1N=1VV+1N
101 99 100 syl φ1N=1VV+1N
102 101 imaeq2d φU1N=U1VV+1N
103 f1ofo U:1N1-1 onto1NU:1Nonto1N
104 4 103 syl φU:1Nonto1N
105 foima U:1Nonto1NU1N=1N
106 104 105 syl φU1N=1N
107 102 106 eqtr3d φU1VV+1N=1N
108 88 107 eqtr3id φU1VUV+1N=1N
109 108 fneq2d φU1V×1UV+1N×0FnU1VUV+1NU1V×1UV+1N×0Fn1N
110 87 109 mpbid φU1V×1UV+1N×0Fn1N
111 110 adantr φnU1VU1V×1UV+1N×0Fn1N
112 fzfid φnU1V1NFin
113 inidm 1N1N=1N
114 eqidd φnU1Vn1NTn=Tn
115 fvun1 U1V×1FnU1VUV+1N×0FnUV+1NU1VUV+1N=nU1VU1V×1UV+1N×0n=U1V×1n
116 73 76 115 mp3an12 U1VUV+1N=nU1VU1V×1UV+1N×0n=U1V×1n
117 85 116 sylan φnU1VU1V×1UV+1N×0n=U1V×1n
118 71 fvconst2 nU1VU1V×1n=1
119 118 adantl φnU1VU1V×1n=1
120 117 119 eqtrd φnU1VU1V×1UV+1N×0n=1
121 120 adantr φnU1Vn1NU1V×1UV+1N×0n=1
122 70 111 112 112 113 114 121 ofval φnU1Vn1NT+fU1V×1UV+1N×0n=Tn+1
123 fnconstg 1VU1V+1×1FnU1V+1
124 71 123 ax-mp U1V+1×1FnU1V+1
125 fnconstg 0VUV+1+1N×0FnUV+1+1N
126 74 125 ax-mp UV+1+1N×0FnUV+1+1N
127 124 126 pm3.2i U1V+1×1FnU1V+1UV+1+1N×0FnUV+1+1N
128 imain FunU-1U1V+1V+1+1N=U1V+1UV+1+1N
129 9 128 syl φU1V+1V+1+1N=U1V+1UV+1+1N
130 fzdisj V+1<V+1+11V+1V+1+1N=
131 42 130 syl φ1V+1V+1+1N=
132 131 imaeq2d φU1V+1V+1+1N=U
133 132 83 eqtrdi φU1V+1V+1+1N=
134 129 133 eqtr3d φU1V+1UV+1+1N=
135 fnun U1V+1×1FnU1V+1UV+1+1N×0FnUV+1+1NU1V+1UV+1+1N=U1V+1×1UV+1+1N×0FnU1V+1UV+1+1N
136 127 134 135 sylancr φU1V+1×1UV+1+1N×0FnU1V+1UV+1+1N
137 imaundi U1V+1V+1+1N=U1V+1UV+1+1N
138 20 imaeq2d φU1N=U1V+1V+1+1N
139 138 106 eqtr3d φU1V+1V+1+1N=1N
140 137 139 eqtr3id φU1V+1UV+1+1N=1N
141 140 fneq2d φU1V+1×1UV+1+1N×0FnU1V+1UV+1+1NU1V+1×1UV+1+1N×0Fn1N
142 136 141 mpbid φU1V+1×1UV+1+1N×0Fn1N
143 142 adantr φnU1VU1V+1×1UV+1+1N×0Fn1N
144 uzid VVV
145 29 144 syl φVV
146 peano2uz VVV+1V
147 145 146 syl φV+1V
148 fzss2 V+1V1V1V+1
149 147 148 syl φ1V1V+1
150 imass2 1V1V+1U1VU1V+1
151 149 150 syl φU1VU1V+1
152 151 sselda φnU1VnU1V+1
153 fvun1 U1V+1×1FnU1V+1UV+1+1N×0FnUV+1+1NU1V+1UV+1+1N=nU1V+1U1V+1×1UV+1+1N×0n=U1V+1×1n
154 124 126 153 mp3an12 U1V+1UV+1+1N=nU1V+1U1V+1×1UV+1+1N×0n=U1V+1×1n
155 134 154 sylan φnU1V+1U1V+1×1UV+1+1N×0n=U1V+1×1n
156 71 fvconst2 nU1V+1U1V+1×1n=1
157 156 adantl φnU1V+1U1V+1×1n=1
158 155 157 eqtrd φnU1V+1U1V+1×1UV+1+1N×0n=1
159 152 158 syldan φnU1VU1V+1×1UV+1+1N×0n=1
160 159 adantr φnU1Vn1NU1V+1×1UV+1+1N×0n=1
161 70 143 112 112 113 114 160 ofval φnU1Vn1NT+fU1V+1×1UV+1+1N×0n=Tn+1
162 122 161 eqtr4d φnU1Vn1NT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
163 68 162 mpdan φnU1VT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
164 imassrn UV+1+1NranU
165 164 66 sstrid φUV+1+1N1N
166 165 sselda φnUV+1+1Nn1N
167 69 adantr φnUV+1+1NTFn1N
168 110 adantr φnUV+1+1NU1V×1UV+1N×0Fn1N
169 fzfid φnUV+1+1N1NFin
170 eqidd φnUV+1+1Nn1NTn=Tn
171 uzid V+1V+1V+1
172 32 171 syl φV+1V+1
173 peano2uz V+1V+1V+1+1V+1
174 172 173 syl φV+1+1V+1
175 fzss1 V+1+1V+1V+1+1NV+1N
176 174 175 syl φV+1+1NV+1N
177 imass2 V+1+1NV+1NUV+1+1NUV+1N
178 176 177 syl φUV+1+1NUV+1N
179 178 sselda φnUV+1+1NnUV+1N
180 fvun2 U1V×1FnU1VUV+1N×0FnUV+1NU1VUV+1N=nUV+1NU1V×1UV+1N×0n=UV+1N×0n
181 73 76 180 mp3an12 U1VUV+1N=nUV+1NU1V×1UV+1N×0n=UV+1N×0n
182 85 181 sylan φnUV+1NU1V×1UV+1N×0n=UV+1N×0n
183 74 fvconst2 nUV+1NUV+1N×0n=0
184 183 adantl φnUV+1NUV+1N×0n=0
185 182 184 eqtrd φnUV+1NU1V×1UV+1N×0n=0
186 179 185 syldan φnUV+1+1NU1V×1UV+1N×0n=0
187 186 adantr φnUV+1+1Nn1NU1V×1UV+1N×0n=0
188 167 168 169 169 113 170 187 ofval φnUV+1+1Nn1NT+fU1V×1UV+1N×0n=Tn+0
189 142 adantr φnUV+1+1NU1V+1×1UV+1+1N×0Fn1N
190 fvun2 U1V+1×1FnU1V+1UV+1+1N×0FnUV+1+1NU1V+1UV+1+1N=nUV+1+1NU1V+1×1UV+1+1N×0n=UV+1+1N×0n
191 124 126 190 mp3an12 U1V+1UV+1+1N=nUV+1+1NU1V+1×1UV+1+1N×0n=UV+1+1N×0n
192 134 191 sylan φnUV+1+1NU1V+1×1UV+1+1N×0n=UV+1+1N×0n
193 74 fvconst2 nUV+1+1NUV+1+1N×0n=0
194 193 adantl φnUV+1+1NUV+1+1N×0n=0
195 192 194 eqtrd φnUV+1+1NU1V+1×1UV+1+1N×0n=0
196 195 adantr φnUV+1+1Nn1NU1V+1×1UV+1+1N×0n=0
197 167 189 169 169 113 170 196 ofval φnUV+1+1Nn1NT+fU1V+1×1UV+1+1N×0n=Tn+0
198 188 197 eqtr4d φnUV+1+1Nn1NT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
199 166 198 mpdan φnUV+1+1NT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
200 163 199 jaodan φnU1VnUV+1+1NT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
201 200 adantlr φM<VnU1VnUV+1+1NT+fU1V×1UV+1N×0n=T+fU1V+1×1UV+1+1N×0n
202 2 adantr φM<VF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
203 vex yV
204 ovex y+1V
205 203 204 ifex ify<Myy+1V
206 205 a1i φM<Vy=V1ify<Myy+1V
207 breq1 y=V1y<MV1<M
208 207 adantl φy=V1y<MV1<M
209 simpr φy=V1y=V1
210 oveq1 y=V1y+1=V-1+1
211 29 zcnd φV
212 npcan1 VV-1+1=V
213 211 212 syl φV-1+1=V
214 210 213 sylan9eqr φy=V1y+1=V
215 208 209 214 ifbieq12d φy=V1ify<Myy+1=ifV1<MV1V
216 215 adantlr φM<Vy=V1ify<Myy+1=ifV1<MV1V
217 6 eldifad φM0N
218 217 elfzelzd φM
219 zltlem1 MVM<VMV1
220 218 29 219 syl2anc φM<VMV1
221 218 zred φM
222 peano2zm VV1
223 29 222 syl φV1
224 223 zred φV1
225 221 224 lenltd φMV1¬V1<M
226 220 225 bitrd φM<V¬V1<M
227 226 biimpa φM<V¬V1<M
228 227 iffalsed φM<VifV1<MV1V=V
229 228 adantr φM<Vy=V1ifV1<MV1V=V
230 216 229 eqtrd φM<Vy=V1ify<Myy+1=V
231 230 eqeq2d φM<Vy=V1j=ify<Myy+1j=V
232 231 biimpa φM<Vy=V1j=ify<Myy+1j=V
233 oveq2 j=V1j=1V
234 233 imaeq2d j=VU1j=U1V
235 234 xpeq1d j=VU1j×1=U1V×1
236 oveq1 j=Vj+1=V+1
237 236 oveq1d j=Vj+1N=V+1N
238 237 imaeq2d j=VUj+1N=UV+1N
239 238 xpeq1d j=VUj+1N×0=UV+1N×0
240 235 239 uneq12d j=VU1j×1Uj+1N×0=U1V×1UV+1N×0
241 240 oveq2d j=VT+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
242 232 241 syl φM<Vy=V1j=ify<Myy+1T+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
243 206 242 csbied φM<Vy=V1ify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
244 elfzm1b VNV1NV10N1
245 29 89 244 syl2anc φV1NV10N1
246 99 245 mpbid φV10N1
247 246 adantr φM<VV10N1
248 ovexd φM<VT+fU1V×1UV+1N×0V
249 202 243 247 248 fvmptd φM<VFV1=T+fU1V×1UV+1N×0
250 249 fveq1d φM<VFV1n=T+fU1V×1UV+1N×0n
251 250 adantr φM<VnU1VnUV+1+1NFV1n=T+fU1V×1UV+1N×0n
252 205 a1i φM<Vy=Vify<Myy+1V
253 breq1 y=Vy<MV<M
254 id y=Vy=V
255 oveq1 y=Vy+1=V+1
256 253 254 255 ifbieq12d y=Vify<Myy+1=ifV<MVV+1
257 ltnsym MVM<V¬V<M
258 221 30 257 syl2anc φM<V¬V<M
259 258 imp φM<V¬V<M
260 259 iffalsed φM<VifV<MVV+1=V+1
261 256 260 sylan9eqr φM<Vy=Vify<Myy+1=V+1
262 261 eqeq2d φM<Vy=Vj=ify<Myy+1j=V+1
263 262 biimpa φM<Vy=Vj=ify<Myy+1j=V+1
264 oveq2 j=V+11j=1V+1
265 264 imaeq2d j=V+1U1j=U1V+1
266 265 xpeq1d j=V+1U1j×1=U1V+1×1
267 oveq1 j=V+1j+1=V+1+1
268 267 oveq1d j=V+1j+1N=V+1+1N
269 268 imaeq2d j=V+1Uj+1N=UV+1+1N
270 269 xpeq1d j=V+1Uj+1N×0=UV+1+1N×0
271 266 270 uneq12d j=V+1U1j×1Uj+1N×0=U1V+1×1UV+1+1N×0
272 271 oveq2d j=V+1T+fU1j×1Uj+1N×0=T+fU1V+1×1UV+1+1N×0
273 263 272 syl φM<Vy=Vj=ify<Myy+1T+fU1j×1Uj+1N×0=T+fU1V+1×1UV+1+1N×0
274 252 273 csbied φM<Vy=Vify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1V+1×1UV+1+1N×0
275 fz1ssfz0 1N10N1
276 275 5 sselid φV0N1
277 276 adantr φM<VV0N1
278 ovexd φM<VT+fU1V+1×1UV+1+1N×0V
279 202 274 277 278 fvmptd φM<VFV=T+fU1V+1×1UV+1+1N×0
280 279 fveq1d φM<VFVn=T+fU1V+1×1UV+1+1N×0n
281 280 adantr φM<VnU1VnUV+1+1NFVn=T+fU1V+1×1UV+1+1N×0n
282 201 251 281 3eqtr4d φM<VnU1VnUV+1+1NFV1n=FVn
283 282 ex φM<VnU1VnUV+1+1NFV1n=FVn
284 62 283 sylbid φM<VnU1N¬nUV+1FV1n=FVn
285 284 expdimp φM<VnU1N¬nUV+1FV1n=FVn
286 285 necon1ad φM<VnU1NFV1nFVnnUV+1
287 elimasni nUV+1V+1Un
288 eqcom n=UV+1UV+1=n
289 f1ofn U:1N1-1 onto1NUFn1N
290 4 289 syl φUFn1N
291 fnbrfvb UFn1NV+11NUV+1=nV+1Un
292 290 18 291 syl2anc φUV+1=nV+1Un
293 288 292 bitrid φn=UV+1V+1Un
294 287 293 imbitrrid φnUV+1n=UV+1
295 294 ad2antrr φM<VnU1NnUV+1n=UV+1
296 286 295 syld φM<VnU1NFV1nFVnn=UV+1
297 296 ralrimiva φM<VnU1NFV1nFVnn=UV+1
298 fvex UV+1V
299 eqeq2 m=UV+1n=mn=UV+1
300 299 imbi2d m=UV+1FV1nFVnn=mFV1nFVnn=UV+1
301 300 ralbidv m=UV+1nU1NFV1nFVnn=mnU1NFV1nFVnn=UV+1
302 298 301 spcev nU1NFV1nFVnn=UV+1mnU1NFV1nFVnn=m
303 297 302 syl φM<VmnU1NFV1nFVnn=m
304 imadif FunU-1U1NV=U1NUV
305 9 304 syl φU1NV=U1NUV
306 101 difeq1d φ1NV=1VV+1NV
307 difundir 1VV+1NV=1VVV+1NV
308 213 24 eqeltrd φV-1+11
309 uzid V1V1V1
310 223 309 syl φV1V1
311 peano2uz V1V1V-1+1V1
312 310 311 syl φV-1+1V1
313 213 312 eqeltrrd φVV1
314 fzsplit2 V-1+11VV11V=1V1V-1+1V
315 308 313 314 syl2anc φ1V=1V1V-1+1V
316 213 oveq1d φV-1+1V=VV
317 fzsn VVV=V
318 29 317 syl φVV=V
319 316 318 eqtrd φV-1+1V=V
320 319 uneq2d φ1V1V-1+1V=1V1V
321 315 320 eqtrd φ1V=1V1V
322 321 difeq1d φ1VV=1V1VV
323 difun2 1V1VV=1V1V
324 30 ltm1d φV1<V
325 224 30 ltnled φV1<V¬VV1
326 324 325 mpbid φ¬VV1
327 elfzle2 V1V1VV1
328 326 327 nsyl φ¬V1V1
329 difsn ¬V1V11V1V=1V1
330 328 329 syl φ1V1V=1V1
331 323 330 eqtrid φ1V1VV=1V1
332 322 331 eqtrd φ1VV=1V1
333 elfzle1 VV+1NV+1V
334 35 333 nsyl φ¬VV+1N
335 difsn ¬VV+1NV+1NV=V+1N
336 334 335 syl φV+1NV=V+1N
337 332 336 uneq12d φ1VVV+1NV=1V1V+1N
338 307 337 eqtrid φ1VV+1NV=1V1V+1N
339 306 338 eqtrd φ1NV=1V1V+1N
340 339 imaeq2d φU1NV=U1V1V+1N
341 305 340 eqtr3d φU1NUV=U1V1V+1N
342 imaundi U1V1V+1N=U1V1UV+1N
343 341 342 eqtrdi φU1NUV=U1V1UV+1N
344 343 eleq2d φnU1NUVnU1V1UV+1N
345 eldif nU1NUVnU1N¬nUV
346 elun nU1V1UV+1NnU1V1nUV+1N
347 344 345 346 3bitr3g φnU1N¬nUVnU1V1nUV+1N
348 347 adantr φV<MnU1N¬nUVnU1V1nUV+1N
349 imassrn U1V1ranU
350 349 66 sstrid φU1V11N
351 350 sselda φnU1V1n1N
352 69 adantr φnU1V1TFn1N
353 fnconstg 1VU1V1×1FnU1V1
354 71 353 ax-mp U1V1×1FnU1V1
355 fnconstg 0VUVN×0FnUVN
356 74 355 ax-mp UVN×0FnUVN
357 354 356 pm3.2i U1V1×1FnU1V1UVN×0FnUVN
358 imain FunU-1U1V1VN=U1V1UVN
359 9 358 syl φU1V1VN=U1V1UVN
360 fzdisj V1<V1V1VN=
361 324 360 syl φ1V1VN=
362 361 imaeq2d φU1V1VN=U
363 362 83 eqtrdi φU1V1VN=
364 359 363 eqtr3d φU1V1UVN=
365 fnun U1V1×1FnU1V1UVN×0FnUVNU1V1UVN=U1V1×1UVN×0FnU1V1UVN
366 357 364 365 sylancr φU1V1×1UVN×0FnU1V1UVN
367 imaundi U1V1VN=U1V1UVN
368 uzss VV1VV1
369 313 368 syl φVV1
370 elfzuz3 V1N1N1V
371 5 370 syl φN1V
372 369 371 sseldd φN1V1
373 peano2uz N1V1N-1+1V1
374 372 373 syl φN-1+1V1
375 16 374 eqeltrrd φNV1
376 fzsplit2 V-1+11NV11N=1V1V-1+1N
377 308 375 376 syl2anc φ1N=1V1V-1+1N
378 213 oveq1d φV-1+1N=VN
379 378 uneq2d φ1V1V-1+1N=1V1VN
380 377 379 eqtrd φ1N=1V1VN
381 380 imaeq2d φU1N=U1V1VN
382 381 106 eqtr3d φU1V1VN=1N
383 367 382 eqtr3id φU1V1UVN=1N
384 383 fneq2d φU1V1×1UVN×0FnU1V1UVNU1V1×1UVN×0Fn1N
385 366 384 mpbid φU1V1×1UVN×0Fn1N
386 385 adantr φnU1V1U1V1×1UVN×0Fn1N
387 fzfid φnU1V11NFin
388 eqidd φnU1V1n1NTn=Tn
389 fvun1 U1V1×1FnU1V1UVN×0FnUVNU1V1UVN=nU1V1U1V1×1UVN×0n=U1V1×1n
390 354 356 389 mp3an12 U1V1UVN=nU1V1U1V1×1UVN×0n=U1V1×1n
391 364 390 sylan φnU1V1U1V1×1UVN×0n=U1V1×1n
392 71 fvconst2 nU1V1U1V1×1n=1
393 392 adantl φnU1V1U1V1×1n=1
394 391 393 eqtrd φnU1V1U1V1×1UVN×0n=1
395 394 adantr φnU1V1n1NU1V1×1UVN×0n=1
396 352 386 387 387 113 388 395 ofval φnU1V1n1NT+fU1V1×1UVN×0n=Tn+1
397 110 adantr φnU1V1U1V×1UV+1N×0Fn1N
398 fzss2 VV11V11V
399 313 398 syl φ1V11V
400 imass2 1V11VU1V1U1V
401 399 400 syl φU1V1U1V
402 401 sselda φnU1V1nU1V
403 402 120 syldan φnU1V1U1V×1UV+1N×0n=1
404 403 adantr φnU1V1n1NU1V×1UV+1N×0n=1
405 352 397 387 387 113 388 404 ofval φnU1V1n1NT+fU1V×1UV+1N×0n=Tn+1
406 396 405 eqtr4d φnU1V1n1NT+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
407 351 406 mpdan φnU1V1T+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
408 imassrn UV+1NranU
409 408 66 sstrid φUV+1N1N
410 409 sselda φnUV+1Nn1N
411 69 adantr φnUV+1NTFn1N
412 385 adantr φnUV+1NU1V1×1UVN×0Fn1N
413 fzfid φnUV+1N1NFin
414 eqidd φnUV+1Nn1NTn=Tn
415 fzss1 V+1VV+1NVN
416 147 415 syl φV+1NVN
417 imass2 V+1NVNUV+1NUVN
418 416 417 syl φUV+1NUVN
419 418 sselda φnUV+1NnUVN
420 fvun2 U1V1×1FnU1V1UVN×0FnUVNU1V1UVN=nUVNU1V1×1UVN×0n=UVN×0n
421 354 356 420 mp3an12 U1V1UVN=nUVNU1V1×1UVN×0n=UVN×0n
422 364 421 sylan φnUVNU1V1×1UVN×0n=UVN×0n
423 74 fvconst2 nUVNUVN×0n=0
424 423 adantl φnUVNUVN×0n=0
425 422 424 eqtrd φnUVNU1V1×1UVN×0n=0
426 419 425 syldan φnUV+1NU1V1×1UVN×0n=0
427 426 adantr φnUV+1Nn1NU1V1×1UVN×0n=0
428 411 412 413 413 113 414 427 ofval φnUV+1Nn1NT+fU1V1×1UVN×0n=Tn+0
429 110 adantr φnUV+1NU1V×1UV+1N×0Fn1N
430 185 adantr φnUV+1Nn1NU1V×1UV+1N×0n=0
431 411 429 413 413 113 414 430 ofval φnUV+1Nn1NT+fU1V×1UV+1N×0n=Tn+0
432 428 431 eqtr4d φnUV+1Nn1NT+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
433 410 432 mpdan φnUV+1NT+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
434 407 433 jaodan φnU1V1nUV+1NT+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
435 434 adantlr φV<MnU1V1nUV+1NT+fU1V1×1UVN×0n=T+fU1V×1UV+1N×0n
436 2 adantr φV<MF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
437 205 a1i φV<My=V1ify<Myy+1V
438 215 adantlr φV<My=V1ify<Myy+1=ifV1<MV1V
439 lttr V1VMV1<VV<MV1<M
440 224 30 221 439 syl3anc φV1<VV<MV1<M
441 324 440 mpand φV<MV1<M
442 441 imp φV<MV1<M
443 442 iftrued φV<MifV1<MV1V=V1
444 443 adantr φV<My=V1ifV1<MV1V=V1
445 438 444 eqtrd φV<My=V1ify<Myy+1=V1
446 simpll φV<My=V1φ
447 oveq2 j=V11j=1V1
448 447 imaeq2d j=V1U1j=U1V1
449 448 xpeq1d j=V1U1j×1=U1V1×1
450 449 adantl φj=V1U1j×1=U1V1×1
451 oveq1 j=V1j+1=V-1+1
452 451 213 sylan9eqr φj=V1j+1=V
453 452 oveq1d φj=V1j+1N=VN
454 453 imaeq2d φj=V1Uj+1N=UVN
455 454 xpeq1d φj=V1Uj+1N×0=UVN×0
456 450 455 uneq12d φj=V1U1j×1Uj+1N×0=U1V1×1UVN×0
457 456 oveq2d φj=V1T+fU1j×1Uj+1N×0=T+fU1V1×1UVN×0
458 446 457 sylan φV<My=V1j=V1T+fU1j×1Uj+1N×0=T+fU1V1×1UVN×0
459 437 445 458 csbied2 φV<My=V1ify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1V1×1UVN×0
460 246 adantr φV<MV10N1
461 ovexd φV<MT+fU1V1×1UVN×0V
462 436 459 460 461 fvmptd φV<MFV1=T+fU1V1×1UVN×0
463 462 fveq1d φV<MFV1n=T+fU1V1×1UVN×0n
464 463 adantr φV<MnU1V1nUV+1NFV1n=T+fU1V1×1UVN×0n
465 205 a1i V<My=Vify<Myy+1V
466 iftrue V<MifV<MVV+1=V
467 256 466 sylan9eqr V<My=Vify<Myy+1=V
468 467 eqeq2d V<My=Vj=ify<Myy+1j=V
469 468 biimpa V<My=Vj=ify<Myy+1j=V
470 469 241 syl V<My=Vj=ify<Myy+1T+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
471 465 470 csbied V<My=Vify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
472 471 adantll φV<My=Vify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1V×1UV+1N×0
473 276 adantr φV<MV0N1
474 ovexd φV<MT+fU1V×1UV+1N×0V
475 436 472 473 474 fvmptd φV<MFV=T+fU1V×1UV+1N×0
476 475 fveq1d φV<MFVn=T+fU1V×1UV+1N×0n
477 476 adantr φV<MnU1V1nUV+1NFVn=T+fU1V×1UV+1N×0n
478 435 464 477 3eqtr4d φV<MnU1V1nUV+1NFV1n=FVn
479 478 ex φV<MnU1V1nUV+1NFV1n=FVn
480 348 479 sylbid φV<MnU1N¬nUVFV1n=FVn
481 480 expdimp φV<MnU1N¬nUVFV1n=FVn
482 481 necon1ad φV<MnU1NFV1nFVnnUV
483 elimasni nUVVUn
484 eqcom n=UVUV=n
485 fnbrfvb UFn1NV1NUV=nVUn
486 290 99 485 syl2anc φUV=nVUn
487 484 486 bitrid φn=UVVUn
488 483 487 imbitrrid φnUVn=UV
489 488 ad2antrr φV<MnU1NnUVn=UV
490 482 489 syld φV<MnU1NFV1nFVnn=UV
491 490 ralrimiva φV<MnU1NFV1nFVnn=UV
492 fvex UVV
493 eqeq2 m=UVn=mn=UV
494 493 imbi2d m=UVFV1nFVnn=mFV1nFVnn=UV
495 494 ralbidv m=UVnU1NFV1nFVnn=mnU1NFV1nFVnn=UV
496 492 495 spcev nU1NFV1nFVnn=UVmnU1NFV1nFVnn=m
497 491 496 syl φV<MmnU1NFV1nFVnn=m
498 eldifsni M0NVMV
499 6 498 syl φMV
500 221 30 lttri2d φMVM<VV<M
501 499 500 mpbid φM<VV<M
502 303 497 501 mpjaodan φmnU1NFV1nFVnn=m
503 nfv mFV1nFVn
504 503 rmo2 *nU1NFV1nFVnmnU1NFV1nFVnn=m
505 rmoeq1 U1N=1N*nU1NFV1nFVn*n1NFV1nFVn
506 106 505 syl φ*nU1NFV1nFVn*n1NFV1nFVn
507 504 506 bitr3id φmnU1NFV1nFVnn=m*n1NFV1nFVn
508 502 507 mpbid φ*n1NFV1nFVn