Metamath Proof Explorer


Theorem locfinreflem

Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf , it is expressed by exposing a function f from the original cover U , which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020)

Ref Expression
Hypotheses locfinref.x X=J
locfinref.1 φUJ
locfinref.2 φX=U
locfinref.3 φVJ
locfinref.4 φVRefU
locfinref.5 φVLocFinJ
Assertion locfinreflem φfFunfdomfUranfJranfRefUranfLocFinJ

Proof

Step Hyp Ref Expression
1 locfinref.x X=J
2 locfinref.1 φUJ
3 locfinref.2 φX=U
4 locfinref.3 φVJ
5 locfinref.4 φVRefU
6 locfinref.5 φVLocFinJ
7 reff VLocFinJVRefUUVgg:VUvVvgv
8 6 7 syl φVRefUUVgg:VUvVvgv
9 5 8 mpbid φUVgg:VUvVvgv
10 9 simprd φgg:VUvVvgv
11 funmpt Funurangg-1u
12 11 a1i φg:VUvVvgvFunurangg-1u
13 eqid urangg-1u=urangg-1u
14 13 dmmptss domurangg-1urang
15 frn g:VUrangU
16 15 ad2antlr φg:VUvVvgvrangU
17 14 16 sstrid φg:VUvVvgvdomurangg-1uU
18 locfintop VLocFinJJTop
19 6 18 syl φJTop
20 19 ad3antrrr φg:VUvVvgvurangJTop
21 cnvimass g-1udomg
22 fdm g:VUdomg=V
23 22 ad3antlr φg:VUvVvgvurangdomg=V
24 21 23 sseqtrid φg:VUvVvgvurangg-1uV
25 4 ad3antrrr φg:VUvVvgvurangVJ
26 24 25 sstrd φg:VUvVvgvurangg-1uJ
27 uniopn JTopg-1uJg-1uJ
28 20 26 27 syl2anc φg:VUvVvgvurangg-1uJ
29 28 ralrimiva φg:VUvVvgvurangg-1uJ
30 13 rnmptss urangg-1uJranurangg-1uJ
31 29 30 syl φg:VUvVvgvranurangg-1uJ
32 eqid V=V
33 eqid U=U
34 32 33 refbas VRefUU=V
35 5 34 syl φU=V
36 35 ad2antrr φg:VUvVvgvU=V
37 nfv vφg:VU
38 nfra1 vvVvgv
39 37 38 nfan vφg:VUvVvgv
40 nfre1 vvVxv
41 39 40 nfan vφg:VUvVvgvvVxv
42 ffn g:VUgFnV
43 42 ad4antlr φg:VUvVvgvvVxvgFnV
44 simplr φg:VUvVvgvvVxvvV
45 fnfvelrn gFnVvVgvrang
46 43 44 45 syl2anc φg:VUvVvgvvVxvgvrang
47 ssid vv
48 42 ad3antlr φg:VUvVvgvvVgFnV
49 eqid gv=gv
50 fniniseg gFnVvg-1gvvVgv=gv
51 50 biimpar gFnVvVgv=gvvg-1gv
52 49 51 mpanr2 gFnVvVvg-1gv
53 48 52 sylancom φg:VUvVvgvvVvg-1gv
54 ssuni vvvg-1gvvg-1gv
55 47 53 54 sylancr φg:VUvVvgvvVvg-1gv
56 55 sselda φg:VUvVvgvvVxvxg-1gv
57 sneq u=gvu=gv
58 57 imaeq2d u=gvg-1u=g-1gv
59 58 unieqd u=gvg-1u=g-1gv
60 59 eleq2d u=gvxg-1uxg-1gv
61 60 rspcev gvrangxg-1gvurangxg-1u
62 46 56 61 syl2anc φg:VUvVvgvvVxvurangxg-1u
63 62 adantllr φg:VUvVvgvvVxvvVxvurangxg-1u
64 simpr φg:VUvVvgvvVxvvVxv
65 41 63 64 r19.29af φg:VUvVvgvvVxvurangxg-1u
66 nfv vurang
67 39 66 nfan vφg:VUvVvgvurang
68 nfv vxg-1u
69 67 68 nfan vφg:VUvVvgvurangxg-1u
70 24 ad3antrrr φg:VUvVvgvurangxg-1uvg-1uxvg-1uV
71 simplr φg:VUvVvgvurangxg-1uvg-1uxvvg-1u
72 70 71 sseldd φg:VUvVvgvurangxg-1uvg-1uxvvV
73 simpr φg:VUvVvgvurangxg-1uvg-1uxvxv
74 simpr φg:VUvVvgvurangxg-1uxg-1u
75 eluni2 xg-1uvg-1uxv
76 74 75 sylib φg:VUvVvgvurangxg-1uvg-1uxv
77 69 72 73 76 reximd2a φg:VUvVvgvurangxg-1uvVxv
78 77 r19.29an φg:VUvVvgvurangxg-1uvVxv
79 65 78 impbida φg:VUvVvgvvVxvurangxg-1u
80 eluni2 xVvVxv
81 eliun xurangg-1uurangxg-1u
82 79 80 81 3bitr4g φg:VUvVvgvxVxurangg-1u
83 82 eqrdv φg:VUvVvgvV=urangg-1u
84 dfiun3g urangg-1uJurangg-1u=ranurangg-1u
85 29 84 syl φg:VUvVvgvurangg-1u=ranurangg-1u
86 36 83 85 3eqtrd φg:VUvVvgvU=ranurangg-1u
87 15 ad3antlr φg:VUvVvgvwranurangg-1urangU
88 vex wV
89 13 elrnmpt wVwranurangg-1uurangw=g-1u
90 88 89 mp1i φg:VUvVvgvwranurangg-1uurangw=g-1u
91 90 biimpa φg:VUvVvgvwranurangg-1uurangw=g-1u
92 ssrexv rangUurangw=g-1uuUw=g-1u
93 87 91 92 sylc φg:VUvVvgvwranurangg-1uuUw=g-1u
94 nfv uφg:VUvVvgv
95 nfmpt1 _uurangg-1u
96 95 nfrn _uranurangg-1u
97 96 nfcri uwranurangg-1u
98 94 97 nfan uφg:VUvVvgvwranurangg-1u
99 simpr φg:VUvVvgvwranurangg-1uuUw=g-1uw=g-1u
100 nfv vwranurangg-1u
101 39 100 nfan vφg:VUvVvgvwranurangg-1u
102 nfv vuU
103 101 102 nfan vφg:VUvVvgvwranurangg-1uuU
104 nfv vw=g-1u
105 103 104 nfan vφg:VUvVvgvwranurangg-1uuUw=g-1u
106 simp-5r φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvVvgv
107 42 ad5antlr φg:VUvVvgvwranurangg-1uuUw=g-1ugFnV
108 fniniseg gFnVvg-1uvVgv=u
109 107 108 syl φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvVgv=u
110 109 biimpa φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvVgv=u
111 110 simpld φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvV
112 rspa vVvgvvVvgv
113 106 111 112 syl2anc φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvgv
114 110 simprd φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1ugv=u
115 113 114 sseqtrd φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvu
116 115 ex φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvu
117 105 116 ralrimi φg:VUvVvgvwranurangg-1uuUw=g-1uvg-1uvu
118 unissb g-1uuvg-1uvu
119 117 118 sylibr φg:VUvVvgvwranurangg-1uuUw=g-1ug-1uu
120 99 119 eqsstrd φg:VUvVvgvwranurangg-1uuUw=g-1uwu
121 120 exp31 φg:VUvVvgvwranurangg-1uuUw=g-1uwu
122 98 121 reximdai φg:VUvVvgvwranurangg-1uuUw=g-1uuUwu
123 93 122 mpd φg:VUvVvgvwranurangg-1uuUwu
124 123 ralrimiva φg:VUvVvgvwranurangg-1uuUwu
125 vex gV
126 125 rnex rangV
127 126 mptex urangg-1uV
128 rnexg urangg-1uVranurangg-1uV
129 127 128 mp1i φg:VUvVvgvranurangg-1uV
130 eqid ranurangg-1u=ranurangg-1u
131 130 33 isref ranurangg-1uVranurangg-1uRefUU=ranurangg-1uwranurangg-1uuUwu
132 129 131 syl φg:VUvVvgvranurangg-1uRefUU=ranurangg-1uwranurangg-1uuUwu
133 86 124 132 mpbir2and φg:VUvVvgvranurangg-1uRefU
134 19 ad2antrr φg:VUvVvgvJTop
135 3 ad2antrr φg:VUvVvgvX=U
136 135 86 eqtrd φg:VUvVvgvX=ranurangg-1u
137 nfv vxX
138 39 137 nfan vφg:VUvVvgvxX
139 simplr φg:VUvVvgvxXvJxvjV|jvFinvJ
140 ffun g:VUFung
141 140 ad6antlr φg:VUvVvgvxXvJxvjV|jvFinFung
142 imafi FungjV|jvFingjV|jvFin
143 141 142 sylancom φg:VUvVvgvxXvJxvjV|jvFingjV|jvFin
144 simp3 φg:VUvVvgvxXvJxvjV|jvFinkrangw=urangg-1ukw=urangg-1uk
145 sneq u=ku=k
146 145 imaeq2d u=kg-1u=g-1k
147 146 unieqd u=kg-1u=g-1k
148 125 cnvex g-1V
149 imaexg g-1Vg-1kV
150 148 149 ax-mp g-1kV
151 150 uniex g-1kV
152 147 13 151 fvmpt krangurangg-1uk=g-1k
153 152 3ad2ant2 φg:VUvVvgvxXvJxvjV|jvFinkrangw=urangg-1ukurangg-1uk=g-1k
154 144 153 eqtrd φg:VUvVvgvxXvJxvjV|jvFinkrangw=urangg-1ukw=g-1k
155 154 ineq1d φg:VUvVvgvxXvJxvjV|jvFinkrangw=urangg-1ukwv=g-1kv
156 155 neeq1d φg:VUvVvgvxXvJxvjV|jvFinkrangw=urangg-1ukwvg-1kv
157 126 a1i φg:VUvVvgvxXvJxvjV|jvFinrangV
158 imaexg g-1Vg-1uV
159 148 158 ax-mp g-1uV
160 159 uniex g-1uV
161 160 13 fnmpti urangg-1uFnrang
162 dffn4 urangg-1uFnrangurangg-1u:rangontoranurangg-1u
163 161 162 mpbi urangg-1u:rangontoranurangg-1u
164 163 a1i φg:VUvVvgvxXvJxvjV|jvFinurangg-1u:rangontoranurangg-1u
165 156 157 164 rabfodom φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvkrang|g-1kv
166 sneq k=uk=u
167 166 imaeq2d k=ug-1k=g-1u
168 167 unieqd k=ug-1k=g-1u
169 168 ineq1d k=ug-1kv=g-1uv
170 169 neeq1d k=ug-1kvg-1uv
171 170 cbvrabv krang|g-1kv=urang|g-1uv
172 165 171 breqtrdi φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvurang|g-1uv
173 126 rabex urang|kjV|jvgk=uV
174 nfv jφg:VUvVvgvxXvJxv
175 nfrab1 _jjV|jv
176 175 nfel1 jjV|jvFin
177 174 176 nfan jφg:VUvVvgvxXvJxvjV|jvFin
178 nfv jurang
179 177 178 nfan jφg:VUvVvgvxXvJxvjV|jvFinurang
180 nfv jg-1uv
181 179 180 nfan jφg:VUvVvgvxXvJxvjV|jvFinurangg-1uv
182 nfv jgk=u
183 175 182 nfrexw jkjV|jvgk=u
184 42 ad5antlr φg:VUvVvgvxXvJxvgFnV
185 184 ad5antr φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvgFnV
186 simplr φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvjg-1u
187 fniniseg gFnVjg-1ujVgj=u
188 187 biimpa gFnVjg-1ujVgj=u
189 185 186 188 syl2anc φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvjVgj=u
190 189 simpld φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvjV
191 simpr φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvjv
192 rabid jjV|jvjVjv
193 190 191 192 sylanbrc φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvjjV|jv
194 189 simprd φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvgj=u
195 fveqeq2 k=jgk=ugj=u
196 195 rspcev jjV|jvgj=ukjV|jvgk=u
197 193 194 196 syl2anc φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujvkjV|jvgk=u
198 uniinn0 g-1uvjg-1ujv
199 198 biimpi g-1uvjg-1ujv
200 199 adantl φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvjg-1ujv
201 181 183 197 200 r19.29af2 φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvkjV|jvgk=u
202 201 ex φg:VUvVvgvxXvJxvjV|jvFinurangg-1uvkjV|jvgk=u
203 202 ss2rabdv φg:VUvVvgvxXvJxvjV|jvFinurang|g-1uvurang|kjV|jvgk=u
204 ssdomg urang|kjV|jvgk=uVurang|g-1uvurang|kjV|jvgk=uurang|g-1uvurang|kjV|jvgk=u
205 173 203 204 mpsyl φg:VUvVvgvxXvJxvjV|jvFinurang|g-1uvurang|kjV|jvgk=u
206 domtr wranurangg-1u|wvurang|g-1uvurang|g-1uvurang|kjV|jvgk=uwranurangg-1u|wvurang|kjV|jvgk=u
207 172 205 206 syl2anc φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvurang|kjV|jvgk=u
208 184 adantr φg:VUvVvgvxXvJxvjV|jvFingFnV
209 dffn3 gFnVg:Vrang
210 209 biimpi gFnVg:Vrang
211 ssrab2 jV|jvV
212 fimarab g:VrangjV|jvVgjV|jv=urang|kjV|jvgk=u
213 211 212 mpan2 g:VranggjV|jv=urang|kjV|jvgk=u
214 208 210 213 3syl φg:VUvVvgvxXvJxvjV|jvFingjV|jv=urang|kjV|jvgk=u
215 207 214 breqtrrd φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvgjV|jv
216 domfi gjV|jvFinwranurangg-1u|wvgjV|jvwranurangg-1u|wvFin
217 143 215 216 syl2anc φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvFin
218 217 ex φg:VUvVvgvxXvJxvjV|jvFinwranurangg-1u|wvFin
219 218 imdistanda φg:VUvVvgvxXvJxvjV|jvFinxvwranurangg-1u|wvFin
220 219 imp φg:VUvVvgvxXvJxvjV|jvFinxvwranurangg-1u|wvFin
221 simplll φg:VUvVvgvxXφ
222 1 32 islocfin VLocFinJJTopX=VxXvJxvjV|jvFin
223 6 222 sylib φJTopX=VxXvJxvjV|jvFin
224 223 simp3d φxXvJxvjV|jvFin
225 224 r19.21bi φxXvJxvjV|jvFin
226 221 225 sylancom φg:VUvVvgvxXvJxvjV|jvFin
227 138 139 220 226 reximd2a φg:VUvVvgvxXvJxvwranurangg-1u|wvFin
228 227 ralrimiva φg:VUvVvgvxXvJxvwranurangg-1u|wvFin
229 1 130 islocfin ranurangg-1uLocFinJJTopX=ranurangg-1uxXvJxvwranurangg-1u|wvFin
230 134 136 228 229 syl3anbrc φg:VUvVvgvranurangg-1uLocFinJ
231 funeq f=urangg-1uFunfFunurangg-1u
232 dmeq f=urangg-1udomf=domurangg-1u
233 232 sseq1d f=urangg-1udomfUdomurangg-1uU
234 rneq f=urangg-1uranf=ranurangg-1u
235 234 sseq1d f=urangg-1uranfJranurangg-1uJ
236 231 233 235 3anbi123d f=urangg-1uFunfdomfUranfJFunurangg-1udomurangg-1uUranurangg-1uJ
237 234 breq1d f=urangg-1uranfRefUranurangg-1uRefU
238 234 eleq1d f=urangg-1uranfLocFinJranurangg-1uLocFinJ
239 237 238 anbi12d f=urangg-1uranfRefUranfLocFinJranurangg-1uRefUranurangg-1uLocFinJ
240 236 239 anbi12d f=urangg-1uFunfdomfUranfJranfRefUranfLocFinJFunurangg-1udomurangg-1uUranurangg-1uJranurangg-1uRefUranurangg-1uLocFinJ
241 127 240 spcev Funurangg-1udomurangg-1uUranurangg-1uJranurangg-1uRefUranurangg-1uLocFinJfFunfdomfUranfJranfRefUranfLocFinJ
242 12 17 31 133 230 241 syl32anc φg:VUvVvgvfFunfdomfUranfJranfRefUranfLocFinJ
243 242 expl φg:VUvVvgvfFunfdomfUranfJranfRefUranfLocFinJ
244 243 exlimdv φgg:VUvVvgvfFunfdomfUranfJranfRefUranfLocFinJ
245 10 244 mpd φfFunfdomfUranfJranfRefUranfLocFinJ