Metamath Proof Explorer


Theorem pntibndlem2

Description: Lemma for pntibnd . The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R=a+ψaa
pntibndlem1.1 φA+
pntibndlem1.l L=14A+3
pntibndlem3.2 φx+RxxA
pntibndlem3.3 φB+
pntibndlem3.k K=eBE2
pntibndlem3.c C=2B+log2
pntibndlem3.4 φE01
pntibndlem3.6 φZ+
pntibndlem2.10 φN
pntibndlem2.5 φT+
pntibndlem2.6 φx1+∞yx2xψyψx2yx+Txlogx
pntibndlem2.7 X=eTE4+Z
pntibndlem2.8 φMeCE+∞
pntibndlem2.9 φYX+∞
pntibndlem2.11 φY<NNM2YRNNE2
Assertion pntibndlem2 φz+Y<z1+LEz<MYuz1+LEzRuuE

Proof

Step Hyp Ref Expression
1 pntibnd.r R=a+ψaa
2 pntibndlem1.1 φA+
3 pntibndlem1.l L=14A+3
4 pntibndlem3.2 φx+RxxA
5 pntibndlem3.3 φB+
6 pntibndlem3.k K=eBE2
7 pntibndlem3.c C=2B+log2
8 pntibndlem3.4 φE01
9 pntibndlem3.6 φZ+
10 pntibndlem2.10 φN
11 pntibndlem2.5 φT+
12 pntibndlem2.6 φx1+∞yx2xψyψx2yx+Txlogx
13 pntibndlem2.7 X=eTE4+Z
14 pntibndlem2.8 φMeCE+∞
15 pntibndlem2.9 φYX+∞
16 pntibndlem2.11 φY<NNM2YRNNE2
17 10 nnrpd φN+
18 16 simpld φY<NNM2Y
19 18 simpld φY<N
20 1red φ1
21 ioossre 01
22 1 2 3 pntibndlem1 φL01
23 21 22 sselid φL
24 21 8 sselid φE
25 23 24 remulcld φLE
26 20 25 readdcld φ1+LE
27 10 nnred φN
28 26 27 remulcld φ1+LE N
29 2re 2
30 remulcl 2N2 N
31 29 27 30 sylancr φ2 N
32 5 rpred φB
33 remulcl 2B2B
34 29 32 33 sylancr φ2B
35 2rp 2+
36 35 a1i φ2+
37 36 relogcld φlog2
38 34 37 readdcld φ2B+log2
39 7 38 eqeltrid φC
40 eliooord E010<EE<1
41 8 40 syl φ0<EE<1
42 41 simpld φ0<E
43 24 42 elrpd φE+
44 39 43 rerpdivcld φCE
45 44 reefcld φeCE
46 pnfxr +∞*
47 icossre eCE+∞*eCE+∞
48 45 46 47 sylancl φeCE+∞
49 48 14 sseldd φM
50 ioossre X+∞
51 50 15 sselid φY
52 49 51 remulcld φMY
53 29 a1i φ2
54 eliooord L010<LL<1
55 22 54 syl φ0<LL<1
56 55 simpld φ0<L
57 23 56 elrpd φL+
58 57 rpge0d φ0L
59 55 simprd φL<1
60 43 rpge0d φ0E
61 41 simprd φE<1
62 23 20 24 20 58 59 60 61 ltmul12ad φLE<11
63 1t1e1 11=1
64 62 63 breqtrdi φLE<1
65 25 20 20 64 ltadd2dd φ1+LE<1+1
66 df-2 2=1+1
67 65 66 breqtrrdi φ1+LE<2
68 26 53 17 67 ltmul1dd φ1+LE N<2 N
69 18 simprd φNM2Y
70 49 recnd φM
71 51 recnd φY
72 rpcnne0 2+220
73 35 72 mp1i φ220
74 div23 MY220MY2=M2Y
75 70 71 73 74 syl3anc φMY2=M2Y
76 69 75 breqtrrd φNMY2
77 27 52 36 lemuldiv2d φ2 NMYNMY2
78 76 77 mpbird φ2 NMY
79 28 31 52 68 78 ltletrd φ1+LE N<MY
80 1 2 3 4 5 6 7 8 2 10 pntibndlem2a φuN1+LE NuNuu1+LE N
81 80 simp1d φuN1+LE Nu
82 17 adantr φuN1+LE NN+
83 80 simp2d φuN1+LE NNu
84 81 82 83 rpgecld φuN1+LE Nu+
85 1 pntrf R:+
86 85 ffvelcdmi u+Ru
87 84 86 syl φuN1+LE NRu
88 87 84 rerpdivcld φuN1+LE NRuu
89 88 recnd φuN1+LE NRuu
90 89 abscld φuN1+LE NRuu
91 85 ffvelcdmi N+RN
92 17 91 syl φRN
93 92 10 nndivred φRNN
94 93 adantr φuN1+LE NRNN
95 94 recnd φuN1+LE NRNN
96 89 95 subcld φuN1+LE NRuuRNN
97 96 abscld φuN1+LE NRuuRNN
98 95 abscld φuN1+LE NRNN
99 97 98 readdcld φuN1+LE NRuuRNN+RNN
100 24 adantr φuN1+LE NE
101 89 95 abs2difd φuN1+LE NRuuRNNRuuRNN
102 90 98 97 lesubaddd φuN1+LE NRuuRNNRuuRNNRuuRuuRNN+RNN
103 101 102 mpbid φuN1+LE NRuuRuuRNN+RNN
104 100 rehalfcld φuN1+LE NE2
105 27 adantr φuN1+LE NN
106 81 105 resubcld φuN1+LE NuN
107 106 82 rerpdivcld φuN1+LE NuNN
108 3re 3
109 108 a1i φuN1+LE N3
110 90 109 readdcld φuN1+LE NRuu+3
111 107 110 remulcld φuN1+LE NuNNRuu+3
112 11 rpred φT
113 112 adantr φuN1+LE NT
114 1red φuN1+LE N1
115 4nn 4
116 nnrp 44+
117 115 116 mp1i φ4+
118 43 117 rpdivcld φE4+
119 11 118 rpdivcld φTE4+
120 119 rpred φTE4
121 120 reefcld φeTE4
122 121 adantr φuN1+LE NeTE4
123 efgt1 TE4+1<eTE4
124 119 123 syl φ1<eTE4
125 124 adantr φuN1+LE N1<eTE4
126 9 rpred φZ
127 121 126 readdcld φeTE4+Z
128 13 127 eqeltrid φX
129 121 9 ltaddrpd φeTE4<eTE4+Z
130 129 13 breqtrrdi φeTE4<X
131 eliooord YX+∞X<YY<+∞
132 15 131 syl φX<YY<+∞
133 132 simpld φX<Y
134 121 128 51 130 133 lttrd φeTE4<Y
135 121 51 27 134 19 lttrd φeTE4<N
136 135 adantr φuN1+LE NeTE4<N
137 114 122 105 125 136 lttrd φuN1+LE N1<N
138 105 137 rplogcld φuN1+LE NlogN+
139 113 138 rerpdivcld φuN1+LE NTlogN
140 111 139 readdcld φuN1+LE NuNNRuu+3+TlogN
141 peano2re RuuRuu+1
142 90 141 syl φuN1+LE NRuu+1
143 107 142 remulcld φuN1+LE NuNNRuu+1
144 chpcl uψu
145 81 144 syl φuN1+LE Nψu
146 chpcl NψN
147 105 146 syl φuN1+LE NψN
148 145 147 resubcld φuN1+LE NψuψN
149 148 82 rerpdivcld φuN1+LE NψuψNN
150 143 149 readdcld φuN1+LE NuNNRuu+1+ψuψNN
151 107 90 remulcld φuN1+LE NuNNRuu
152 92 adantr φuN1+LE NRN
153 87 152 resubcld φuN1+LE NRuRN
154 153 recnd φuN1+LE NRuRN
155 154 abscld φuN1+LE NRuRN
156 155 82 rerpdivcld φuN1+LE NRuRNN
157 151 156 readdcld φuN1+LE NuNNRuu+RuRNN
158 107 88 remulcld φuN1+LE NuNNRuu
159 158 renegcld φuN1+LE NuNNRuu
160 159 recnd φuN1+LE NuNNRuu
161 153 82 rerpdivcld φuN1+LE NRuRNN
162 161 recnd φuN1+LE NRuRNN
163 160 162 abstrid φuN1+LE N-uNNRuu+RuRNNuNNRuu+RuRNN
164 81 recnd φuN1+LE Nu
165 105 recnd φuN1+LE NN
166 82 rpne0d φuN1+LE NN0
167 164 165 165 166 divsubdird φuN1+LE NuNN=uNNN
168 165 166 dividd φuN1+LE NNN=1
169 168 oveq2d φuN1+LE NuNNN=uN1
170 167 169 eqtrd φuN1+LE NuNN=uN1
171 170 oveq1d φuN1+LE NuNNRuu=uN1Ruu
172 81 82 rerpdivcld φuN1+LE NuN
173 172 recnd φuN1+LE NuN
174 1cnd φuN1+LE N1
175 173 174 89 subdird φuN1+LE NuN1Ruu=uNRuu1Ruu
176 84 rpcnne0d φuN1+LE Nuu0
177 82 rpcnne0d φuN1+LE NNN0
178 87 recnd φuN1+LE NRu
179 dmdcan uu0NN0RuuNRuu=RuN
180 176 177 178 179 syl3anc φuN1+LE NuNRuu=RuN
181 89 mullidd φuN1+LE N1Ruu=Ruu
182 180 181 oveq12d φuN1+LE NuNRuu1Ruu=RuNRuu
183 171 175 182 3eqtrd φuN1+LE NuNNRuu=RuNRuu
184 183 negeqd φuN1+LE NuNNRuu=RuNRuu
185 87 82 rerpdivcld φuN1+LE NRuN
186 185 recnd φuN1+LE NRuN
187 186 89 negsubdi2d φuN1+LE NRuNRuu=RuuRuN
188 184 187 eqtrd φuN1+LE NuNNRuu=RuuRuN
189 152 recnd φuN1+LE NRN
190 178 189 165 166 divsubdird φuN1+LE NRuRNN=RuNRNN
191 188 190 oveq12d φuN1+LE N-uNNRuu+RuRNN=RuuRuN+RuN-RNN
192 89 186 95 npncand φuN1+LE NRuuRuN+RuN-RNN=RuuRNN
193 191 192 eqtrd φuN1+LE N-uNNRuu+RuRNN=RuuRNN
194 193 fveq2d φuN1+LE N-uNNRuu+RuRNN=RuuRNN
195 158 recnd φuN1+LE NuNNRuu
196 195 absnegd φuN1+LE NuNNRuu=uNNRuu
197 107 recnd φuN1+LE NuNN
198 197 89 absmuld φuN1+LE NuNNRuu=uNNRuu
199 81 105 subge0d φuN1+LE N0uNNu
200 83 199 mpbird φuN1+LE N0uN
201 106 82 200 divge0d φuN1+LE N0uNN
202 107 201 absidd φuN1+LE NuNN=uNN
203 202 oveq1d φuN1+LE NuNNRuu=uNNRuu
204 196 198 203 3eqtrd φuN1+LE NuNNRuu=uNNRuu
205 154 165 166 absdivd φuN1+LE NRuRNN=RuRNN
206 82 rprege0d φuN1+LE NN0N
207 absid N0NN=N
208 206 207 syl φuN1+LE NN=N
209 208 oveq2d φuN1+LE NRuRNN=RuRNN
210 205 209 eqtrd φuN1+LE NRuRNN=RuRNN
211 204 210 oveq12d φuN1+LE NuNNRuu+RuRNN=uNNRuu+RuRNN
212 163 194 211 3brtr3d φuN1+LE NRuuRNNuNNRuu+RuRNN
213 106 148 readdcld φuN1+LE NuN+ψu-ψN
214 213 82 rerpdivcld φuN1+LE NuN+ψu-ψNN
215 148 recnd φuN1+LE NψuψN
216 165 164 subcld φuN1+LE NNu
217 215 216 abstrid φuN1+LE NψuψN+N-uψuψN+Nu
218 1 pntrval u+Ru=ψuu
219 84 218 syl φuN1+LE NRu=ψuu
220 1 pntrval N+RN=ψNN
221 82 220 syl φuN1+LE NRN=ψNN
222 219 221 oveq12d φuN1+LE NRuRN=ψu-u-ψNN
223 145 recnd φuN1+LE Nψu
224 147 recnd φuN1+LE NψN
225 subadd4 ψuψNuNψu-ψN-uN=ψu+N-ψN+u
226 sub4 ψuψNuNψu-ψN-uN=ψu-u-ψNN
227 addsub4 ψuNψNuψu+N-ψN+u=ψuψN+N-u
228 227 an42s ψuψNuNψu+N-ψN+u=ψuψN+N-u
229 225 226 228 3eqtr3d ψuψNuNψu-u-ψNN=ψuψN+N-u
230 223 224 164 165 229 syl22anc φuN1+LE Nψu-u-ψNN=ψuψN+N-u
231 222 230 eqtr2d φuN1+LE NψuψN+N-u=RuRN
232 231 fveq2d φuN1+LE NψuψN+N-u=RuRN
233 106 recnd φuN1+LE NuN
234 chpwordi NuNuψNψu
235 105 81 83 234 syl3anc φuN1+LE NψNψu
236 147 145 235 abssubge0d φuN1+LE NψuψN=ψuψN
237 105 81 83 abssuble0d φuN1+LE NNu=uN
238 236 237 oveq12d φuN1+LE NψuψN+Nu=ψuψN+u-N
239 215 233 238 comraddd φuN1+LE NψuψN+Nu=uN+ψu-ψN
240 217 232 239 3brtr3d φuN1+LE NRuRNuN+ψu-ψN
241 155 213 82 240 lediv1dd φuN1+LE NRuRNNuN+ψu-ψNN
242 156 214 151 241 leadd2dd φuN1+LE NuNNRuu+RuRNNuNNRuu+uN+ψu-ψNN
243 151 recnd φuN1+LE NuNNRuu
244 149 recnd φuN1+LE NψuψNN
245 243 197 244 addassd φuN1+LE NuNNRuu+uNN+ψuψNN=uNNRuu+uNN+ψuψNN
246 90 recnd φuN1+LE NRuu
247 197 246 174 adddid φuN1+LE NuNNRuu+1=uNNRuu+uNN1
248 197 mulridd φuN1+LE NuNN1=uNN
249 248 oveq2d φuN1+LE NuNNRuu+uNN1=uNNRuu+uNN
250 247 249 eqtrd φuN1+LE NuNNRuu+1=uNNRuu+uNN
251 250 oveq1d φuN1+LE NuNNRuu+1+ψuψNN=uNNRuu+uNN+ψuψNN
252 233 215 165 166 divdird φuN1+LE NuN+ψu-ψNN=uNN+ψuψNN
253 252 oveq2d φuN1+LE NuNNRuu+uN+ψu-ψNN=uNNRuu+uNN+ψuψNN
254 245 251 253 3eqtr4d φuN1+LE NuNNRuu+1+ψuψNN=uNNRuu+uN+ψu-ψNN
255 242 254 breqtrrd φuN1+LE NuNNRuu+RuRNNuNNRuu+1+ψuψNN
256 97 157 150 212 255 letrd φuN1+LE NRuuRNNuNNRuu+1+ψuψNN
257 remulcl 2uNN2uNN
258 29 107 257 sylancr φuN1+LE N2uNN
259 258 139 readdcld φuN1+LE N2uNN+TlogN
260 remulcl 2uN2uN
261 29 106 260 sylancr φuN1+LE N2uN
262 105 138 rerpdivcld φuN1+LE NNlogN
263 113 262 remulcld φuN1+LE NTNlogN
264 261 263 readdcld φuN1+LE N2uN+TNlogN
265 fveq2 y=uψy=ψu
266 265 oveq1d y=uψyψN=ψuψN
267 oveq1 y=uyN=uN
268 267 oveq2d y=u2yN=2uN
269 268 oveq1d y=u2yN+TNlogN=2uN+TNlogN
270 266 269 breq12d y=uψyψN2yN+TNlogNψuψN2uN+TNlogN
271 id x=Nx=N
272 oveq2 x=N2x=2 N
273 271 272 oveq12d x=Nx2x=N2 N
274 fveq2 x=Nψx=ψN
275 274 oveq2d x=Nψyψx=ψyψN
276 oveq2 x=Nyx=yN
277 276 oveq2d x=N2yx=2yN
278 fveq2 x=Nlogx=logN
279 271 278 oveq12d x=Nxlogx=NlogN
280 279 oveq2d x=NTxlogx=TNlogN
281 277 280 oveq12d x=N2yx+Txlogx=2yN+TNlogN
282 275 281 breq12d x=Nψyψx2yx+TxlogxψyψN2yN+TNlogN
283 273 282 raleqbidv x=Nyx2xψyψx2yx+TxlogxyN2 NψyψN2yN+TNlogN
284 12 adantr φuN1+LE Nx1+∞yx2xψyψx2yx+Txlogx
285 1xr 1*
286 elioopnf 1*N1+∞N1<N
287 285 286 ax-mp N1+∞N1<N
288 105 137 287 sylanbrc φuN1+LE NN1+∞
289 283 284 288 rspcdva φuN1+LE NyN2 NψyψN2yN+TNlogN
290 28 adantr φuN1+LE N1+LE N
291 31 adantr φuN1+LE N2 N
292 80 simp3d φuN1+LE Nu1+LE N
293 ltle 1+LE21+LE<21+LE2
294 26 29 293 sylancl φ1+LE<21+LE2
295 67 294 mpd φ1+LE2
296 295 adantr φuN1+LE N1+LE2
297 26 adantr φuN1+LE N1+LE
298 29 a1i φuN1+LE N2
299 297 298 82 lemul1d φuN1+LE N1+LE21+LE N2 N
300 296 299 mpbid φuN1+LE N1+LE N2 N
301 81 290 291 292 300 letrd φuN1+LE Nu2 N
302 elicc2 N2 NuN2 NuNuu2 N
303 105 291 302 syl2anc φuN1+LE NuN2 NuNuu2 N
304 81 83 301 303 mpbir3and φuN1+LE NuN2 N
305 270 289 304 rspcdva φuN1+LE NψuψN2uN+TNlogN
306 148 264 82 305 lediv1dd φuN1+LE NψuψNN2uN+TNlogNN
307 261 recnd φuN1+LE N2uN
308 11 adantr φuN1+LE NT+
309 308 rpred φuN1+LE NT
310 309 262 remulcld φuN1+LE NTNlogN
311 310 recnd φuN1+LE NTNlogN
312 divdir 2uNTNlogNNN02uN+TNlogNN=2uNN+TNlogNN
313 307 311 177 312 syl3anc φuN1+LE N2uN+TNlogNN=2uNN+TNlogNN
314 2cnd φuN1+LE N2
315 314 233 165 166 divassd φuN1+LE N2uNN=2uNN
316 113 recnd φuN1+LE NT
317 138 rpcnne0d φuN1+LE NlogNlogN0
318 div12 TNlogNlogN0TNlogN=NTlogN
319 316 165 317 318 syl3anc φuN1+LE NTNlogN=NTlogN
320 319 oveq1d φuN1+LE NTNlogNN=NTlogNN
321 308 138 rpdivcld φuN1+LE NTlogN+
322 321 rpcnd φuN1+LE NTlogN
323 322 165 166 divcan3d φuN1+LE NNTlogNN=TlogN
324 320 323 eqtrd φuN1+LE NTNlogNN=TlogN
325 315 324 oveq12d φuN1+LE N2uNN+TNlogNN=2uNN+TlogN
326 313 325 eqtrd φuN1+LE N2uN+TNlogNN=2uNN+TlogN
327 306 326 breqtrd φuN1+LE NψuψNN2uNN+TlogN
328 149 259 143 327 leadd2dd φuN1+LE NuNNRuu+1+ψuψNNuNNRuu+1+2uNN+TlogN
329 143 recnd φuN1+LE NuNNRuu+1
330 258 recnd φuN1+LE N2uNN
331 139 recnd φuN1+LE NTlogN
332 329 330 331 addassd φuN1+LE NuNNRuu+1+2uNN+TlogN=uNNRuu+1+2uNN+TlogN
333 2cn 2
334 mulcom 2uNN2uNN=uNN2
335 333 197 334 sylancr φuN1+LE N2uNN=uNN2
336 335 oveq2d φuN1+LE NuNNRuu+1+2uNN=uNNRuu+1+uNN2
337 142 recnd φuN1+LE NRuu+1
338 197 337 314 adddid φuN1+LE NuNNRuu+1+2=uNNRuu+1+uNN2
339 246 174 314 addassd φuN1+LE NRuu+1+2=Ruu+1+2
340 1p2e3 1+2=3
341 340 oveq2i Ruu+1+2=Ruu+3
342 339 341 eqtrdi φuN1+LE NRuu+1+2=Ruu+3
343 342 oveq2d φuN1+LE NuNNRuu+1+2=uNNRuu+3
344 336 338 343 3eqtr2d φuN1+LE NuNNRuu+1+2uNN=uNNRuu+3
345 344 oveq1d φuN1+LE NuNNRuu+1+2uNN+TlogN=uNNRuu+3+TlogN
346 332 345 eqtr3d φuN1+LE NuNNRuu+1+2uNN+TlogN=uNNRuu+3+TlogN
347 328 346 breqtrd φuN1+LE NuNNRuu+1+ψuψNNuNNRuu+3+TlogN
348 97 150 140 256 347 letrd φuN1+LE NRuuRNNuNNRuu+3+TlogN
349 104 rehalfcld φuN1+LE NE22
350 81 297 82 ledivmul2d φuN1+LE NuN1+LEu1+LE N
351 292 350 mpbird φuN1+LE NuN1+LE
352 ax-1cn 1
353 25 adantr φuN1+LE NLE
354 353 recnd φuN1+LE NLE
355 addcom 1LE1+LE=LE+1
356 352 354 355 sylancr φuN1+LE N1+LE=LE+1
357 351 356 breqtrd φuN1+LE NuNLE+1
358 172 114 353 lesubaddd φuN1+LE NuN1LEuNLE+1
359 357 358 mpbird φuN1+LE NuN1LE
360 170 359 eqbrtrd φuN1+LE NuNNLE
361 2 adantr φuN1+LE NA+
362 361 rpred φuN1+LE NA
363 fveq2 x=uRx=Ru
364 id x=ux=u
365 363 364 oveq12d x=uRxx=Ruu
366 365 fveq2d x=uRxx=Ruu
367 366 breq1d x=uRxxARuuA
368 4 adantr φuN1+LE Nx+RxxA
369 367 368 84 rspcdva φuN1+LE NRuuA
370 90 362 109 369 leadd1dd φuN1+LE NRuu+3A+3
371 107 201 jca φuN1+LE NuNN0uNN
372 3rp 3+
373 rpaddcl A+3+A+3+
374 361 372 373 sylancl φuN1+LE NA+3+
375 374 rprege0d φuN1+LE NA+30A+3
376 lemul12b uNN0uNNLERuu+3A+30A+3uNNLERuu+3A+3uNNRuu+3LEA+3
377 371 353 110 375 376 syl22anc φuN1+LE NuNNLERuu+3A+3uNNRuu+3LEA+3
378 360 370 377 mp2and φuN1+LE NuNNRuu+3LEA+3
379 43 adantr φuN1+LE NE+
380 115 116 mp1i φuN1+LE N4+
381 379 380 rpdivcld φuN1+LE NE4+
382 381 rpcnd φuN1+LE NE4
383 374 rpcnd φuN1+LE NA+3
384 374 rpne0d φuN1+LE NA+30
385 382 383 384 divcan1d φuN1+LE NE4A+3A+3=E4
386 24 recnd φE
387 386 adantr φuN1+LE NE
388 380 rpcnd φuN1+LE N4
389 380 rpne0d φuN1+LE N40
390 387 388 389 divrec2d φuN1+LE NE4=14E
391 390 oveq1d φuN1+LE NE4A+3=14EA+3
392 4cn 4
393 4ne0 40
394 392 393 reccli 14
395 394 a1i φuN1+LE N14
396 395 387 383 384 div23d φuN1+LE N14EA+3=14A+3E
397 3 oveq1i LE=14A+3E
398 396 397 eqtr4di φuN1+LE N14EA+3=LE
399 391 398 eqtr2d φuN1+LE NLE=E4A+3
400 399 oveq1d φuN1+LE NLEA+3=E4A+3A+3
401 2ne0 20
402 401 a1i φuN1+LE N20
403 387 314 314 402 402 divdiv1d φuN1+LE NE22=E22
404 2t2e4 22=4
405 404 oveq2i E22=E4
406 403 405 eqtrdi φuN1+LE NE22=E4
407 385 400 406 3eqtr4d φuN1+LE NLEA+3=E22
408 378 407 breqtrd φuN1+LE NuNNRuu+3E22
409 120 adantr φuN1+LE NTE4
410 138 rpred φuN1+LE NlogN
411 82 reeflogd φuN1+LE NelogN=N
412 136 411 breqtrrd φuN1+LE NeTE4<elogN
413 eflt TE4logNTE4<logNeTE4<elogN
414 409 410 413 syl2anc φuN1+LE NTE4<logNeTE4<elogN
415 412 414 mpbird φuN1+LE NTE4<logN
416 409 410 415 ltled φuN1+LE NTE4logN
417 113 381 138 416 lediv23d φuN1+LE NTlogNE4
418 417 406 breqtrrd φuN1+LE NTlogNE22
419 111 139 349 349 408 418 le2addd φuN1+LE NuNNRuu+3+TlogNE22+E22
420 104 recnd φuN1+LE NE2
421 420 2halvesd φuN1+LE NE22+E22=E2
422 419 421 breqtrd φuN1+LE NuNNRuu+3+TlogNE2
423 97 140 104 348 422 letrd φuN1+LE NRuuRNNE2
424 16 simprd φRNNE2
425 424 adantr φuN1+LE NRNNE2
426 97 98 104 104 423 425 le2addd φuN1+LE NRuuRNN+RNNE2+E2
427 387 2halvesd φuN1+LE NE2+E2=E
428 426 427 breqtrd φuN1+LE NRuuRNN+RNNE
429 90 99 100 103 428 letrd φuN1+LE NRuuE
430 429 ralrimiva φuN1+LE NRuuE
431 19 79 430 jca31 φY<N1+LE N<MYuN1+LE NRuuE
432 breq2 z=NY<zY<N
433 oveq2 z=N1+LEz=1+LE N
434 433 breq1d z=N1+LEz<MY1+LE N<MY
435 432 434 anbi12d z=NY<z1+LEz<MYY<N1+LE N<MY
436 id z=Nz=N
437 436 433 oveq12d z=Nz1+LEz=N1+LE N
438 437 raleqdv z=Nuz1+LEzRuuEuN1+LE NRuuE
439 435 438 anbi12d z=NY<z1+LEz<MYuz1+LEzRuuEY<N1+LE N<MYuN1+LE NRuuE
440 439 rspcev N+Y<N1+LE N<MYuN1+LE NRuuEz+Y<z1+LEz<MYuz1+LEzRuuE
441 17 431 440 syl2anc φz+Y<z1+LEz<MYuz1+LEzRuuE