Metamath Proof Explorer


Theorem prmreclem5

Description: Lemma for prmrec . Here we show the inequality N / 2 < # M by decomposing the set ( 1 ... N ) into the disjoint union of the set M of those numbers that are not divisible by any "large" primes (above K ) and the indexed union over K < k of the numbers Wk that divide the prime k . By prmreclem4 the second of these has size less than N times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part M must be at least N / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses prmrec.1 F=nifn1n0
prmrec.2 φK
prmrec.3 φN
prmrec.4 M=n1N|p1K¬pn
prmrec.5 φseq1+Fdom
prmrec.6 φkK+1ifk1k0<12
prmrec.7 W=pn1N|ppn
Assertion prmreclem5 φN2<2KN

Proof

Step Hyp Ref Expression
1 prmrec.1 F=nifn1n0
2 prmrec.2 φK
3 prmrec.3 φN
4 prmrec.4 M=n1N|p1K¬pn
5 prmrec.5 φseq1+Fdom
6 prmrec.6 φkK+1ifk1k0<12
7 prmrec.7 W=pn1N|ppn
8 3 nnred φN
9 8 rehalfcld φN2
10 fzfi 1NFin
11 4 ssrab3 M1N
12 ssfi 1NFinM1NMFin
13 10 11 12 mp2an MFin
14 hashcl MFinM0
15 13 14 ax-mp M0
16 15 nn0rei M
17 16 a1i φM
18 2nn 2
19 2 nnnn0d φK0
20 nnexpcl 2K02K
21 18 19 20 sylancr φ2K
22 21 nnred φ2K
23 3 nnrpd φN+
24 23 rpsqrtcld φN+
25 24 rpred φN
26 22 25 remulcld φ2KN
27 8 recnd φN
28 27 2halvesd φN2+N2=N
29 11 a1i φM1N
30 2 peano2nnd φK+1
31 elfzuz kK+1NkK+1
32 eluznn K+1kK+1k
33 30 31 32 syl2an φkK+1Nk
34 eleq1w p=kpk
35 breq1 p=kpnkn
36 34 35 anbi12d p=kppnkkn
37 36 rabbidv p=kn1N|ppn=n1N|kkn
38 ovex 1NV
39 38 rabex n1N|kknV
40 37 7 39 fvmpt kWk=n1N|kkn
41 40 adantl φkWk=n1N|kkn
42 ssrab2 n1N|kkn1N
43 41 42 eqsstrdi φkWk1N
44 33 43 syldan φkK+1NWk1N
45 44 ralrimiva φkK+1NWk1N
46 iunss k=K+1NWk1NkK+1NWk1N
47 45 46 sylibr φk=K+1NWk1N
48 29 47 unssd φMk=K+1NWk1N
49 breq1 p=qpnqn
50 49 notbid p=q¬pn¬qn
51 50 cbvralvw p1K¬pnq1K¬qn
52 breq2 n=xqnqx
53 52 notbid n=x¬qn¬qx
54 53 ralbidv n=xq1K¬qnq1K¬qx
55 51 54 bitrid n=xp1K¬pnq1K¬qx
56 55 4 elrab2 xMx1Nq1K¬qx
57 elun1 xMxMk=K+1NWk
58 56 57 sylbir x1Nq1K¬qxxMk=K+1NWk
59 58 ex x1Nq1K¬qxxMk=K+1NWk
60 59 adantl φx1Nq1K¬qxxMk=K+1NWk
61 dfrex2 q1Kqx¬q1K¬qx
62 2 nnzd φK
63 62 peano2zd φK+1
64 63 ad2antrr φx1Nq1KqxK+1
65 3 nnzd φN
66 65 ad2antrr φx1Nq1KqxN
67 eldifi q1Kq
68 67 ad2antrl φx1Nq1Kqxq
69 prmz qq
70 68 69 syl φx1Nq1Kqxq
71 eldifn q1K¬q1K
72 71 ad2antrl φx1Nq1Kqx¬q1K
73 prmnn qq
74 68 73 syl φx1Nq1Kqxq
75 nnuz =1
76 74 75 eleqtrdi φx1Nq1Kqxq1
77 62 ad2antrr φx1Nq1KqxK
78 elfz5 q1Kq1KqK
79 76 77 78 syl2anc φx1Nq1Kqxq1KqK
80 72 79 mtbid φx1Nq1Kqx¬qK
81 2 nnred φK
82 81 ad2antrr φx1Nq1KqxK
83 74 nnred φx1Nq1Kqxq
84 82 83 ltnled φx1Nq1KqxK<q¬qK
85 80 84 mpbird φx1Nq1KqxK<q
86 zltp1le KqK<qK+1q
87 77 70 86 syl2anc φx1Nq1KqxK<qK+1q
88 85 87 mpbid φx1Nq1KqxK+1q
89 elfznn x1Nx
90 89 ad2antlr φx1Nq1Kqxx
91 90 nnred φx1Nq1Kqxx
92 8 ad2antrr φx1Nq1KqxN
93 simprr φx1Nq1Kqxqx
94 dvdsle qxqxqx
95 70 90 94 syl2anc φx1Nq1Kqxqxqx
96 93 95 mpd φx1Nq1Kqxqx
97 elfzle2 x1NxN
98 97 ad2antlr φx1Nq1KqxxN
99 83 91 92 96 98 letrd φx1Nq1KqxqN
100 64 66 70 88 99 elfzd φx1Nq1KqxqK+1N
101 52 anbi2d n=xqqnqqx
102 simplr φx1Nq1Kqxx1N
103 68 93 jca φx1Nq1Kqxqqx
104 101 102 103 elrabd φx1Nq1Kqxxn1N|qqn
105 eleq1w p=qpq
106 105 49 anbi12d p=qppnqqn
107 106 rabbidv p=qn1N|ppn=n1N|qqn
108 38 rabex n1N|qqnV
109 107 7 108 fvmpt qWq=n1N|qqn
110 74 109 syl φx1Nq1KqxWq=n1N|qqn
111 104 110 eleqtrrd φx1Nq1KqxxWq
112 fveq2 k=qWk=Wq
113 112 eliuni qK+1NxWqxk=K+1NWk
114 100 111 113 syl2anc φx1Nq1Kqxxk=K+1NWk
115 elun2 xk=K+1NWkxMk=K+1NWk
116 114 115 syl φx1Nq1KqxxMk=K+1NWk
117 116 rexlimdvaa φx1Nq1KqxxMk=K+1NWk
118 61 117 biimtrrid φx1N¬q1K¬qxxMk=K+1NWk
119 60 118 pm2.61d φx1NxMk=K+1NWk
120 48 119 eqelssd φMk=K+1NWk=1N
121 120 fveq2d φMk=K+1NWk=1N
122 3 nnnn0d φN0
123 hashfz1 N01N=N
124 122 123 syl φ1N=N
125 121 124 eqtr2d φN=Mk=K+1NWk
126 13 a1i φMFin
127 ssfi 1NFink=K+1NWk1Nk=K+1NWkFin
128 10 47 127 sylancr φk=K+1NWkFin
129 breq1 p=kpxkx
130 129 notbid p=k¬px¬kx
131 breq2 n=xpnpx
132 131 notbid n=x¬pn¬px
133 132 ralbidv n=xp1K¬pnp1K¬px
134 133 4 elrab2 xMx1Np1K¬px
135 134 simprbi xMp1K¬px
136 135 ad2antlr φxMkK+1Nkp1K¬px
137 simprr φxMkK+1Nkk
138 noel ¬k
139 simprl φxMkK+1NkkK+1N
140 139 biantrud φxMkK+1Nkk1Kk1KkK+1N
141 elin k1KK+1Nk1KkK+1N
142 140 141 bitr4di φxMkK+1Nkk1Kk1KK+1N
143 81 ltp1d φK<K+1
144 fzdisj K<K+11KK+1N=
145 143 144 syl φ1KK+1N=
146 145 ad2antrr φxMkK+1Nk1KK+1N=
147 146 eleq2d φxMkK+1Nkk1KK+1Nk
148 142 147 bitrd φxMkK+1Nkk1Kk
149 138 148 mtbiri φxMkK+1Nk¬k1K
150 137 149 eldifd φxMkK+1Nkk1K
151 130 136 150 rspcdva φxMkK+1Nk¬kx
152 151 expr φxMkK+1Nk¬kx
153 imnan k¬kx¬kkx
154 152 153 sylib φxMkK+1N¬kkx
155 33 adantlr φxMkK+1Nk
156 155 40 syl φxMkK+1NWk=n1N|kkn
157 156 eleq2d φxMkK+1NxWkxn1N|kkn
158 breq2 n=xknkx
159 158 anbi2d n=xkknkkx
160 159 elrab xn1N|kknx1Nkkx
161 160 simprbi xn1N|kknkkx
162 157 161 syl6bi φxMkK+1NxWkkkx
163 154 162 mtod φxMkK+1N¬xWk
164 163 nrexdv φxM¬kK+1NxWk
165 eliun xk=K+1NWkkK+1NxWk
166 164 165 sylnibr φxM¬xk=K+1NWk
167 166 ex φxM¬xk=K+1NWk
168 imnan xM¬xk=K+1NWk¬xMxk=K+1NWk
169 167 168 sylib φ¬xMxk=K+1NWk
170 elin xMk=K+1NWkxMxk=K+1NWk
171 169 170 sylnibr φ¬xMk=K+1NWk
172 171 eq0rdv φMk=K+1NWk=
173 hashun MFink=K+1NWkFinMk=K+1NWk=Mk=K+1NWk=M+k=K+1NWk
174 126 128 172 173 syl3anc φMk=K+1NWk=M+k=K+1NWk
175 28 125 174 3eqtrd φN2+N2=M+k=K+1NWk
176 hashcl k=K+1NWkFink=K+1NWk0
177 128 176 syl φk=K+1NWk0
178 177 nn0red φk=K+1NWk
179 fzfid φK+1NFin
180 30 32 sylan φkK+1k
181 nnrecre k1k
182 0re 0
183 ifcl 1k0ifk1k0
184 181 182 183 sylancl kifk1k0
185 180 184 syl φkK+1ifk1k0
186 31 185 sylan2 φkK+1Nifk1k0
187 179 186 fsumrecl φk=K+1Nifk1k0
188 8 187 remulcld φNk=K+1Nifk1k0
189 1 2 3 4 5 6 7 prmreclem4 φNKk=K+1NWkNk=K+1Nifk1k0
190 eluz NKKNNK
191 65 62 190 syl2anc φKNNK
192 nnleltp1 NKNKN<K+1
193 3 2 192 syl2anc φNKN<K+1
194 fzn K+1NN<K+1K+1N=
195 63 65 194 syl2anc φN<K+1K+1N=
196 191 193 195 3bitrd φKNK+1N=
197 0le0 00
198 27 mul01d φ N0=0
199 197 198 breqtrrid φ0 N0
200 iuneq1 K+1N=k=K+1NWk=kWk
201 0iun kWk=
202 200 201 eqtrdi K+1N=k=K+1NWk=
203 202 fveq2d K+1N=k=K+1NWk=
204 hash0 =0
205 203 204 eqtrdi K+1N=k=K+1NWk=0
206 sumeq1 K+1N=k=K+1Nifk1k0=kifk1k0
207 sum0 kifk1k0=0
208 206 207 eqtrdi K+1N=k=K+1Nifk1k0=0
209 208 oveq2d K+1N=Nk=K+1Nifk1k0= N0
210 205 209 breq12d K+1N=k=K+1NWkNk=K+1Nifk1k00 N0
211 199 210 syl5ibrcom φK+1N=k=K+1NWkNk=K+1Nifk1k0
212 196 211 sylbid φKNk=K+1NWkNk=K+1Nifk1k0
213 uztric KNNKKN
214 62 65 213 syl2anc φNKKN
215 189 212 214 mpjaod φk=K+1NWkNk=K+1Nifk1k0
216 eqid K+1=K+1
217 eleq1w n=knk
218 oveq2 n=k1n=1k
219 217 218 ifbieq1d n=kifn1n0=ifk1k0
220 ovex 1kV
221 c0ex 0V
222 220 221 ifex ifk1k0V
223 219 1 222 fvmpt kFk=ifk1k0
224 180 223 syl φkK+1Fk=ifk1k0
225 184 recnd kifk1k0
226 223 225 eqeltrd kFk
227 226 adantl φkFk
228 75 30 227 iserex φseq1+FdomseqK+1+Fdom
229 5 228 mpbid φseqK+1+Fdom
230 216 63 224 185 229 isumrecl φkK+1ifk1k0
231 halfre 12
232 231 a1i φ12
233 fzssuz K+1NK+1
234 233 a1i φK+1NK+1
235 nnrp kk+
236 235 rpreccld k1k+
237 236 rpge0d k01k
238 breq2 1k=ifk1k001k0ifk1k0
239 breq2 0=ifk1k0000ifk1k0
240 238 239 ifboth 01k000ifk1k0
241 237 197 240 sylancl k0ifk1k0
242 180 241 syl φkK+10ifk1k0
243 216 63 179 234 224 185 242 229 isumless φk=K+1Nifk1k0kK+1ifk1k0
244 187 230 232 243 6 lelttrd φk=K+1Nifk1k0<12
245 3 nngt0d φ0<N
246 ltmul2 k=K+1Nifk1k012N0<Nk=K+1Nifk1k0<12Nk=K+1Nifk1k0<N12
247 187 232 8 245 246 syl112anc φk=K+1Nifk1k0<12Nk=K+1Nifk1k0<N12
248 244 247 mpbid φNk=K+1Nifk1k0<N12
249 2cn 2
250 2ne0 20
251 divrec N220N2=N12
252 249 250 251 mp3an23 NN2=N12
253 27 252 syl φN2=N12
254 248 253 breqtrrd φNk=K+1Nifk1k0<N2
255 178 188 9 215 254 lelttrd φk=K+1NWk<N2
256 178 9 17 255 ltadd2dd φM+k=K+1NWk<M+N2
257 175 256 eqbrtrd φN2+N2<M+N2
258 9 17 9 ltadd1d φN2<MN2+N2<M+N2
259 257 258 mpbird φN2<M
260 oveq1 k=rk2=r2
261 260 breq1d k=rk2xr2x
262 261 cbvrabv k|k2x=r|r2x
263 breq2 x=nr2xr2n
264 263 rabbidv x=nr|r2x=r|r2n
265 262 264 eqtrid x=nk|k2x=r|r2n
266 265 supeq1d x=nsupk|k2x<=supr|r2n<
267 266 cbvmptv xsupk|k2x<=nsupr|r2n<
268 1 2 3 4 267 prmreclem3 φM2KN
269 9 17 26 259 268 ltletrd φN2<2KN