Metamath Proof Explorer


Theorem axdc3lem2

Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence h , we can construct the sequence g that we are after. (Contributed by Mario Carneiro, 30-Jan-2013)

Ref Expression
Hypotheses axdc3lem2.1 AV
axdc3lem2.2 S=s|nωs:sucnAs=CknssuckFsk
axdc3lem2.3 G=xSyS|domy=sucdomxydomx=x
Assertion axdc3lem2 hh:ωSkωhsuckGhkgg:ωAg=CkωgsuckFgk

Proof

Step Hyp Ref Expression
1 axdc3lem2.1 AV
2 axdc3lem2.2 S=s|nωs:sucnAs=CknssuckFsk
3 axdc3lem2.3 G=xSyS|domy=sucdomxydomx=x
4 id m=m=
5 fveq2 m=hm=h
6 5 dmeqd m=domhm=domh
7 4 6 eleq12d m=mdomhmdomh
8 eleq2 m=jmj
9 5 sseq2d m=hjhmhjh
10 8 9 imbi12d m=jmhjhmjhjh
11 7 10 anbi12d m=mdomhmjmhjhmdomhjhjh
12 id m=im=i
13 fveq2 m=ihm=hi
14 13 dmeqd m=idomhm=domhi
15 12 14 eleq12d m=imdomhmidomhi
16 elequ2 m=ijmji
17 13 sseq2d m=ihjhmhjhi
18 16 17 imbi12d m=ijmhjhmjihjhi
19 15 18 anbi12d m=imdomhmjmhjhmidomhijihjhi
20 id m=sucim=suci
21 fveq2 m=sucihm=hsuci
22 21 dmeqd m=sucidomhm=domhsuci
23 20 22 eleq12d m=sucimdomhmsucidomhsuci
24 eleq2 m=sucijmjsuci
25 21 sseq2d m=sucihjhmhjhsuci
26 24 25 imbi12d m=sucijmhjhmjsucihjhsuci
27 23 26 anbi12d m=sucimdomhmjmhjhmsucidomhsucijsucihjhsuci
28 peano1 ω
29 ffvelcdm h:ωSωhS
30 28 29 mpan2 h:ωShS
31 fdm s:sucnAdoms=sucn
32 nnord nωOrdn
33 0elsuc Ordnsucn
34 32 33 syl nωsucn
35 peano2 nωsucnω
36 eleq2 doms=sucndomssucn
37 eleq1 doms=sucndomsωsucnω
38 36 37 anbi12d doms=sucndomsdomsωsucnsucnω
39 38 biimprcd sucnsucnωdoms=sucndomsdomsω
40 34 35 39 syl2anc nωdoms=sucndomsdomsω
41 31 40 syl5com s:sucnAnωdomsdomsω
42 41 3ad2ant1 s:sucnAs=CknssuckFsknωdomsdomsω
43 42 impcom nωs:sucnAs=CknssuckFskdomsdomsω
44 43 rexlimiva nωs:sucnAs=CknssuckFskdomsdomsω
45 44 ss2abi s|nωs:sucnAs=CknssuckFsks|domsdomsω
46 2 45 eqsstri Ss|domsdomsω
47 46 sseli hShs|domsdomsω
48 fvex hV
49 dmeq s=hdoms=domh
50 49 eleq2d s=hdomsdomh
51 49 eleq1d s=hdomsωdomhω
52 50 51 anbi12d s=hdomsdomsωdomhdomhω
53 48 52 elab hs|domsdomsωdomhdomhω
54 47 53 sylib hSdomhdomhω
55 54 simpld hSdomh
56 30 55 syl h:ωSdomh
57 noel ¬j
58 57 pm2.21i jhjh
59 56 58 jctir h:ωSdomhjhjh
60 59 adantr h:ωSkωhsuckGhkdomhjhjh
61 ffvelcdm h:ωSiωhiS
62 61 ancoms iωh:ωShiS
63 62 adantrr iωh:ωSkωhsuckGhkhiS
64 suceq k=isuck=suci
65 64 fveq2d k=ihsuck=hsuci
66 2fveq3 k=iGhk=Ghi
67 65 66 eleq12d k=ihsuckGhkhsuciGhi
68 67 rspcva iωkωhsuckGhkhsuciGhi
69 68 adantrl iωh:ωSkωhsuckGhkhsuciGhi
70 46 sseli hiShis|domsdomsω
71 fvex hiV
72 dmeq s=hidoms=domhi
73 72 eleq2d s=hidomsdomhi
74 72 eleq1d s=hidomsωdomhiω
75 73 74 anbi12d s=hidomsdomsωdomhidomhiω
76 71 75 elab his|domsdomsωdomhidomhiω
77 70 76 sylib hiSdomhidomhiω
78 77 simprd hiSdomhiω
79 nnord domhiωOrddomhi
80 ordsucelsuc Orddomhiidomhisucisucdomhi
81 78 79 80 3syl hiSidomhisucisucdomhi
82 81 adantr hiShsuciGhiidomhisucisucdomhi
83 dmeq x=hidomx=domhi
84 suceq domx=domhisucdomx=sucdomhi
85 83 84 syl x=hisucdomx=sucdomhi
86 85 eqeq2d x=hidomy=sucdomxdomy=sucdomhi
87 83 reseq2d x=hiydomx=ydomhi
88 id x=hix=hi
89 87 88 eqeq12d x=hiydomx=xydomhi=hi
90 86 89 anbi12d x=hidomy=sucdomxydomx=xdomy=sucdomhiydomhi=hi
91 90 rabbidv x=hiyS|domy=sucdomxydomx=x=yS|domy=sucdomhiydomhi=hi
92 1 2 axdc3lem SV
93 92 rabex yS|domy=sucdomhiydomhi=hiV
94 91 3 93 fvmpt hiSGhi=yS|domy=sucdomhiydomhi=hi
95 94 eleq2d hiShsuciGhihsuciyS|domy=sucdomhiydomhi=hi
96 dmeq y=hsucidomy=domhsuci
97 96 eqeq1d y=hsucidomy=sucdomhidomhsuci=sucdomhi
98 reseq1 y=hsuciydomhi=hsucidomhi
99 98 eqeq1d y=hsuciydomhi=hihsucidomhi=hi
100 97 99 anbi12d y=hsucidomy=sucdomhiydomhi=hidomhsuci=sucdomhihsucidomhi=hi
101 100 elrab hsuciyS|domy=sucdomhiydomhi=hihsuciSdomhsuci=sucdomhihsucidomhi=hi
102 95 101 bitrdi hiShsuciGhihsuciSdomhsuci=sucdomhihsucidomhi=hi
103 102 simplbda hiShsuciGhidomhsuci=sucdomhihsucidomhi=hi
104 103 simpld hiShsuciGhidomhsuci=sucdomhi
105 104 eleq2d hiShsuciGhisucidomhsucisucisucdomhi
106 82 105 bitr4d hiShsuciGhiidomhisucidomhsuci
107 106 biimpd hiShsuciGhiidomhisucidomhsuci
108 103 simprd hiShsuciGhihsucidomhi=hi
109 resss hsucidomhihsuci
110 sseq1 hsucidomhi=hihsucidomhihsucihihsuci
111 109 110 mpbii hsucidomhi=hihihsuci
112 elsuci jsucijij=i
113 pm2.27 jijihjhihjhi
114 sstr2 hjhihihsucihjhsuci
115 113 114 syl6 jijihjhihihsucihjhsuci
116 fveq2 j=ihj=hi
117 116 sseq1d j=ihjhsucihihsuci
118 117 biimprd j=ihihsucihjhsuci
119 118 a1d j=ijihjhihihsucihjhsuci
120 115 119 jaoi jij=ijihjhihihsucihjhsuci
121 112 120 syl jsucijihjhihihsucihjhsuci
122 121 com13 hihsucijihjhijsucihjhsuci
123 108 111 122 3syl hiShsuciGhijihjhijsucihjhsuci
124 107 123 anim12d hiShsuciGhiidomhijihjhisucidomhsucijsucihjhsuci
125 63 69 124 syl2anc iωh:ωSkωhsuckGhkidomhijihjhisucidomhsucijsucihjhsuci
126 125 ex iωh:ωSkωhsuckGhkidomhijihjhisucidomhsucijsucihjhsuci
127 11 19 27 60 126 finds2 mωh:ωSkωhsuckGhkmdomhmjmhjhm
128 127 imp mωh:ωSkωhsuckGhkmdomhmjmhjhm
129 128 simprd mωh:ωSkωhsuckGhkjmhjhm
130 129 expcom h:ωSkωhsuckGhkmωjmhjhm
131 130 ralrimdv h:ωSkωhsuckGhkmωjmhjhm
132 131 ralrimiv h:ωSkωhsuckGhkmωjmhjhm
133 frn h:ωSranhS
134 ffun s:sucnAFuns
135 134 3ad2ant1 s:sucnAs=CknssuckFskFuns
136 135 rexlimivw nωs:sucnAs=CknssuckFskFuns
137 136 ss2abi s|nωs:sucnAs=CknssuckFsks|Funs
138 2 137 eqsstri Ss|Funs
139 133 138 sstrdi h:ωSranhs|Funs
140 139 sseld h:ωSuranhus|Funs
141 vex uV
142 funeq s=uFunsFunu
143 141 142 elab us|FunsFunu
144 140 143 imbitrdi h:ωSuranhFunu
145 144 adantr h:ωSmωjmhjhmuranhFunu
146 ffn h:ωShFnω
147 fvelrnb hFnωvranhbωhb=v
148 fvelrnb hFnωuranhaωha=u
149 nnord aωOrda
150 nnord bωOrdb
151 149 150 anim12i aωbωOrdaOrdb
152 ordtri3or OrdaOrdbaba=bba
153 fveq2 m=bhm=hb
154 153 sseq2d m=bhjhmhjhb
155 154 raleqbi1dv m=bjmhjhmjbhjhb
156 155 rspcv bωmωjmhjhmjbhjhb
157 fveq2 j=ahj=ha
158 157 sseq1d j=ahjhbhahb
159 158 rspccv jbhjhbabhahb
160 156 159 syl6 bωmωjmhjhmabhahb
161 160 adantl aωbωmωjmhjhmabhahb
162 161 3imp aωbωmωjmhjhmabhahb
163 162 orcd aωbωmωjmhjhmabhahbhbha
164 163 3exp aωbωmωjmhjhmabhahbhbha
165 164 com3r abaωbωmωjmhjhmhahbhbha
166 fveq2 a=bha=hb
167 eqimss ha=hbhahb
168 167 orcd ha=hbhahbhbha
169 166 168 syl a=bhahbhbha
170 169 2a1d a=baωbωmωjmhjhmhahbhbha
171 fveq2 m=ahm=ha
172 171 sseq2d m=ahjhmhjha
173 172 raleqbi1dv m=ajmhjhmjahjha
174 173 rspcv aωmωjmhjhmjahjha
175 fveq2 j=bhj=hb
176 175 sseq1d j=bhjhahbha
177 176 rspccv jahjhabahbha
178 174 177 syl6 aωmωjmhjhmbahbha
179 178 adantr aωbωmωjmhjhmbahbha
180 179 3imp aωbωmωjmhjhmbahbha
181 180 olcd aωbωmωjmhjhmbahahbhbha
182 181 3exp aωbωmωjmhjhmbahahbhbha
183 182 com3r baaωbωmωjmhjhmhahbhbha
184 165 170 183 3jaoi aba=bbaaωbωmωjmhjhmhahbhbha
185 152 184 syl OrdaOrdbaωbωmωjmhjhmhahbhbha
186 151 185 mpcom aωbωmωjmhjhmhahbhbha
187 sseq12 ha=uhb=vhahbuv
188 sseq12 hb=vha=uhbhavu
189 188 ancoms ha=uhb=vhbhavu
190 187 189 orbi12d ha=uhb=vhahbhbhauvvu
191 190 biimpcd hahbhbhaha=uhb=vuvvu
192 186 191 syl6 aωbωmωjmhjhmha=uhb=vuvvu
193 192 com23 aωbωha=uhb=vmωjmhjhmuvvu
194 193 exp4b aωbωha=uhb=vmωjmhjhmuvvu
195 194 com23 aωha=ubωhb=vmωjmhjhmuvvu
196 195 rexlimiv aωha=ubωhb=vmωjmhjhmuvvu
197 196 rexlimdv aωha=ubωhb=vmωjmhjhmuvvu
198 148 197 syl6bi hFnωuranhbωhb=vmωjmhjhmuvvu
199 198 com23 hFnωbωhb=vuranhmωjmhjhmuvvu
200 147 199 sylbid hFnωvranhuranhmωjmhjhmuvvu
201 200 com24 hFnωmωjmhjhmuranhvranhuvvu
202 201 imp hFnωmωjmhjhmuranhvranhuvvu
203 202 ralrimdv hFnωmωjmhjhmuranhvranhuvvu
204 146 203 sylan h:ωSmωjmhjhmuranhvranhuvvu
205 145 204 jcad h:ωSmωjmhjhmuranhFunuvranhuvvu
206 205 ralrimiv h:ωSmωjmhjhmuranhFunuvranhuvvu
207 fununi uranhFunuvranhuvvuFunranh
208 206 207 syl h:ωSmωjmhjhmFunranh
209 132 208 syldan h:ωSkωhsuckGhkFunranh
210 vex mV
211 210 eldm2 mdomranhumuranh
212 eluni2 muranhvranhmuv
213 210 141 opeldm muvmdomv
214 213 a1i h:ωSmuvmdomv
215 133 46 sstrdi h:ωSranhs|domsdomsω
216 ssel ranhs|domsdomsωvranhvs|domsdomsω
217 vex vV
218 dmeq s=vdoms=domv
219 218 eleq2d s=vdomsdomv
220 218 eleq1d s=vdomsωdomvω
221 219 220 anbi12d s=vdomsdomsωdomvdomvω
222 217 221 elab vs|domsdomsωdomvdomvω
223 222 simprbi vs|domsdomsωdomvω
224 216 223 syl6 ranhs|domsdomsωvranhdomvω
225 215 224 syl h:ωSvranhdomvω
226 214 225 anim12d h:ωSmuvvranhmdomvdomvω
227 elnn mdomvdomvωmω
228 226 227 syl6 h:ωSmuvvranhmω
229 228 expcomd h:ωSvranhmuvmω
230 229 rexlimdv h:ωSvranhmuvmω
231 212 230 biimtrid h:ωSmuranhmω
232 231 exlimdv h:ωSumuranhmω
233 211 232 biimtrid h:ωSmdomranhmω
234 233 adantr h:ωSkωhsuckGhkmdomranhmω
235 id mωmω
236 fnfvelrn hFnωmωhmranh
237 146 235 236 syl2anr mωh:ωShmranh
238 237 adantrr mωh:ωSkωhsuckGhkhmranh
239 128 simpld mωh:ωSkωhsuckGhkmdomhm
240 dmeq u=hmdomu=domhm
241 240 eliuni hmranhmdomhmmuranhdomu
242 238 239 241 syl2anc mωh:ωSkωhsuckGhkmuranhdomu
243 dmuni domranh=uranhdomu
244 242 243 eleqtrrdi mωh:ωSkωhsuckGhkmdomranh
245 244 expcom h:ωSkωhsuckGhkmωmdomranh
246 234 245 impbid h:ωSkωhsuckGhkmdomranhmω
247 246 eqrdv h:ωSkωhsuckGhkdomranh=ω
248 rnuni ranranh=sranhrans
249 frn s:sucnAransA
250 249 3ad2ant1 s:sucnAs=CknssuckFskransA
251 250 rexlimivw nωs:sucnAs=CknssuckFskransA
252 251 ss2abi s|nωs:sucnAs=CknssuckFsks|ransA
253 2 252 eqsstri Ss|ransA
254 133 253 sstrdi h:ωSranhs|ransA
255 ssel ranhs|ransAsranhss|ransA
256 abid ss|ransAransA
257 255 256 imbitrdi ranhs|ransAsranhransA
258 254 257 syl h:ωSsranhransA
259 258 ralrimiv h:ωSsranhransA
260 iunss sranhransAsranhransA
261 259 260 sylibr h:ωSsranhransA
262 248 261 eqsstrid h:ωSranranhA
263 262 adantr h:ωSkωhsuckGhkranranhA
264 df-fn ranhFnωFunranhdomranh=ω
265 df-f ranh:ωAranhFnωranranhA
266 265 biimpri ranhFnωranranhAranh:ωA
267 264 266 sylanbr Funranhdomranh=ωranranhAranh:ωA
268 209 247 263 267 syl21anc h:ωSkωhsuckGhkranh:ωA
269 fnfvelrn hFnωωhranh
270 146 28 269 sylancl h:ωShranh
271 270 adantr h:ωSkωhsuckGhkhranh
272 elssuni hranhhranh
273 271 272 syl h:ωSkωhsuckGhkhranh
274 56 adantr h:ωSkωhsuckGhkdomh
275 funssfv Funranhhranhdomhranh=h
276 209 273 274 275 syl3anc h:ωSkωhsuckGhkranh=h
277 simp2 s:sucnAs=CknssuckFsks=C
278 277 rexlimivw nωs:sucnAs=CknssuckFsks=C
279 278 ss2abi s|nωs:sucnAs=CknssuckFsks|s=C
280 2 279 eqsstri Ss|s=C
281 133 280 sstrdi h:ωSranhs|s=C
282 ssel ranhs|s=Chranhhs|s=C
283 fveq1 s=hs=h
284 283 eqeq1d s=hs=Ch=C
285 48 284 elab hs|s=Ch=C
286 282 285 imbitrdi ranhs|s=Chranhh=C
287 281 286 syl h:ωShranhh=C
288 287 adantr h:ωSkωhsuckGhkhranhh=C
289 271 288 mpd h:ωSkωhsuckGhkh=C
290 276 289 eqtrd h:ωSkωhsuckGhkranh=C
291 nfv kh:ωS
292 nfra1 kkωhsuckGhk
293 291 292 nfan kh:ωSkωhsuckGhk
294 133 ad2antrr h:ωSkωhsuckGhkkωranhS
295 peano2 kωsuckω
296 fnfvelrn hFnωsuckωhsuckranh
297 146 295 296 syl2an h:ωSkωhsuckranh
298 297 adantlr h:ωSkωhsuckGhkkωhsuckranh
299 239 expcom h:ωSkωhsuckGhkmωmdomhm
300 299 ralrimiv h:ωSkωhsuckGhkmωmdomhm
301 id m=suckm=suck
302 fveq2 m=suckhm=hsuck
303 302 dmeqd m=suckdomhm=domhsuck
304 301 303 eleq12d m=suckmdomhmsuckdomhsuck
305 304 rspcv suckωmωmdomhmsuckdomhsuck
306 295 305 syl kωmωmdomhmsuckdomhsuck
307 300 306 mpan9 h:ωSkωhsuckGhkkωsuckdomhsuck
308 eleq2 doms=sucnsuckdomssucksucn
309 308 biimpa doms=sucnsuckdomssucksucn
310 31 309 sylan s:sucnAsuckdomssucksucn
311 ordsucelsuc Ordnknsucksucn
312 32 311 syl nωknsucksucn
313 312 biimprd nωsucksucnkn
314 rsp knssuckFskknssuckFsk
315 313 314 syl9r knssuckFsknωsucksucnssuckFsk
316 315 com13 sucksucnnωknssuckFskssuckFsk
317 310 316 syl s:sucnAsuckdomsnωknssuckFskssuckFsk
318 317 ex s:sucnAsuckdomsnωknssuckFskssuckFsk
319 318 com24 s:sucnAknssuckFsknωsuckdomsssuckFsk
320 319 imp s:sucnAknssuckFsknωsuckdomsssuckFsk
321 320 3adant2 s:sucnAs=CknssuckFsknωsuckdomsssuckFsk
322 321 impcom nωs:sucnAs=CknssuckFsksuckdomsssuckFsk
323 322 rexlimiva nωs:sucnAs=CknssuckFsksuckdomsssuckFsk
324 323 ss2abi s|nωs:sucnAs=CknssuckFsks|suckdomsssuckFsk
325 2 324 eqsstri Ss|suckdomsssuckFsk
326 sstr ranhSSs|suckdomsssuckFskranhs|suckdomsssuckFsk
327 325 326 mpan2 ranhSranhs|suckdomsssuckFsk
328 327 sseld ranhShsuckranhhsucks|suckdomsssuckFsk
329 fvex hsuckV
330 dmeq s=hsuckdoms=domhsuck
331 330 eleq2d s=hsucksuckdomssuckdomhsuck
332 fveq1 s=hsuckssuck=hsucksuck
333 fveq1 s=hsucksk=hsuckk
334 333 fveq2d s=hsuckFsk=Fhsuckk
335 332 334 eleq12d s=hsuckssuckFskhsucksuckFhsuckk
336 331 335 imbi12d s=hsucksuckdomsssuckFsksuckdomhsuckhsucksuckFhsuckk
337 329 336 elab hsucks|suckdomsssuckFsksuckdomhsuckhsucksuckFhsuckk
338 328 337 imbitrdi ranhShsuckranhsuckdomhsuckhsucksuckFhsuckk
339 294 298 307 338 syl3c h:ωSkωhsuckGhkkωhsucksuckFhsuckk
340 209 adantr h:ωSkωhsuckGhkkωFunranh
341 elssuni hsuckranhhsuckranh
342 297 341 syl h:ωSkωhsuckranh
343 342 adantlr h:ωSkωhsuckGhkkωhsuckranh
344 funssfv Funranhhsuckranhsuckdomhsuckranhsuck=hsucksuck
345 340 343 307 344 syl3anc h:ωSkωhsuckGhkkωranhsuck=hsucksuck
346 215 sseld h:ωShsuckranhhsucks|domsdomsω
347 330 eleq2d s=hsuckdomsdomhsuck
348 330 eleq1d s=hsuckdomsωdomhsuckω
349 347 348 anbi12d s=hsuckdomsdomsωdomhsuckdomhsuckω
350 329 349 elab hsucks|domsdomsωdomhsuckdomhsuckω
351 346 350 imbitrdi h:ωShsuckranhdomhsuckdomhsuckω
352 351 adantr h:ωSkωhsuckranhdomhsuckdomhsuckω
353 297 352 mpd h:ωSkωdomhsuckdomhsuckω
354 353 simprd h:ωSkωdomhsuckω
355 nnord domhsuckωOrddomhsuck
356 ordtr OrddomhsuckTrdomhsuck
357 trsuc Trdomhsucksuckdomhsuckkdomhsuck
358 357 ex Trdomhsucksuckdomhsuckkdomhsuck
359 354 355 356 358 4syl h:ωSkωsuckdomhsuckkdomhsuck
360 359 adantlr h:ωSkωhsuckGhkkωsuckdomhsuckkdomhsuck
361 307 360 mpd h:ωSkωhsuckGhkkωkdomhsuck
362 funssfv Funranhhsuckranhkdomhsuckranhk=hsuckk
363 340 343 361 362 syl3anc h:ωSkωhsuckGhkkωranhk=hsuckk
364 simpl ranhsuck=hsucksuckranhk=hsuckkranhsuck=hsucksuck
365 simpr ranhsuck=hsucksuckranhk=hsuckkranhk=hsuckk
366 365 fveq2d ranhsuck=hsucksuckranhk=hsuckkFranhk=Fhsuckk
367 364 366 eleq12d ranhsuck=hsucksuckranhk=hsuckkranhsuckFranhkhsucksuckFhsuckk
368 345 363 367 syl2anc h:ωSkωhsuckGhkkωranhsuckFranhkhsucksuckFhsuckk
369 339 368 mpbird h:ωSkωhsuckGhkkωranhsuckFranhk
370 369 ex h:ωSkωhsuckGhkkωranhsuckFranhk
371 293 370 ralrimi h:ωSkωhsuckGhkkωranhsuckFranhk
372 vex hV
373 372 rnex ranhV
374 373 uniex ranhV
375 feq1 g=ranhg:ωAranh:ωA
376 fveq1 g=ranhg=ranh
377 376 eqeq1d g=ranhg=Cranh=C
378 fveq1 g=ranhgsuck=ranhsuck
379 fveq1 g=ranhgk=ranhk
380 379 fveq2d g=ranhFgk=Franhk
381 378 380 eleq12d g=ranhgsuckFgkranhsuckFranhk
382 381 ralbidv g=ranhkωgsuckFgkkωranhsuckFranhk
383 375 377 382 3anbi123d g=ranhg:ωAg=CkωgsuckFgkranh:ωAranh=CkωranhsuckFranhk
384 374 383 spcev ranh:ωAranh=CkωranhsuckFranhkgg:ωAg=CkωgsuckFgk
385 268 290 371 384 syl3anc h:ωSkωhsuckGhkgg:ωAg=CkωgsuckFgk
386 385 exlimiv hh:ωSkωhsuckGhkgg:ωAg=CkωgsuckFgk