Metamath Proof Explorer


Theorem dchrisumlem2

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrisum.2 n=xA=B
dchrisum.3 φM
dchrisum.4 φn+A
dchrisum.5 φn+x+MnnxBA
dchrisum.6 φn+A0
dchrisum.7 F=nXLnA
dchrisum.9 φR
dchrisum.10 φu0..^Nn0..^uXLnR
dchrisumlem2.1 φU+
dchrisumlem2.2 φMU
dchrisumlem2.3 φUI+1
dchrisumlem2.4 φI
dchrisumlem2.5 φJI
Assertion dchrisumlem2 φseq1+FJseq1+FI2RU/nA

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrisum.2 n=xA=B
10 dchrisum.3 φM
11 dchrisum.4 φn+A
12 dchrisum.5 φn+x+MnnxBA
13 dchrisum.6 φn+A0
14 dchrisum.7 F=nXLnA
15 dchrisum.9 φR
16 dchrisum.10 φu0..^Nn0..^uXLnR
17 dchrisumlem2.1 φU+
18 dchrisumlem2.2 φMU
19 dchrisumlem2.3 φUI+1
20 dchrisumlem2.4 φI
21 dchrisumlem2.5 φJI
22 fzodisj 1..^I+1I+1..^J+1=
23 22 a1i φ1..^I+1I+1..^J+1=
24 20 peano2nnd φI+1
25 nnuz =1
26 24 25 eleqtrdi φI+11
27 eluzp1p1 JIJ+1I+1
28 21 27 syl φJ+1I+1
29 elfzuzb I+11J+1I+11J+1I+1
30 26 28 29 sylanbrc φI+11J+1
31 fzosplit I+11J+11..^J+1=1..^I+1I+1..^J+1
32 30 31 syl φ1..^J+1=1..^I+1I+1..^J+1
33 fzofi 1..^J+1Fin
34 33 a1i φ1..^J+1Fin
35 elfzouz i1..^J+1i1
36 35 25 eleqtrrdi i1..^J+1i
37 7 adantr φiXD
38 nnz ii
39 38 adantl φii
40 4 1 5 2 37 39 dchrzrhcl φiXLi
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φi+i/nAiM+∞0i/nA
42 41 simpld φi+i/nA
43 nnrp ii+
44 42 43 impel φii/nA
45 44 recnd φii/nA
46 40 45 mulcld φiXLii/nA
47 36 46 sylan2 φi1..^J+1XLii/nA
48 23 32 34 47 fsumsplit φi1..^J+1XLii/nA=i1..^I+1XLii/nA+iI+1..^J+1XLii/nA
49 eluzelz JIJ
50 fzval3 J1J=1..^J+1
51 21 49 50 3syl φ1J=1..^J+1
52 51 sumeq1d φi=1JXLii/nA=i1..^J+1XLii/nA
53 20 nnzd φI
54 fzval3 I1I=1..^I+1
55 53 54 syl φ1I=1..^I+1
56 55 sumeq1d φi=1IXLii/nA=i1..^I+1XLii/nA
57 56 oveq1d φi=1IXLii/nA+iI+1..^J+1XLii/nA=i1..^I+1XLii/nA+iI+1..^J+1XLii/nA
58 48 52 57 3eqtr4d φi=1JXLii/nA=i=1IXLii/nA+iI+1..^J+1XLii/nA
59 elfznn i1Ji
60 simpr φii
61 nfcv _ni
62 nfcv _nXLi
63 nfcv _n×
64 nfcsb1v _ni/nA
65 62 63 64 nfov _nXLii/nA
66 2fveq3 n=iXLn=XLi
67 csbeq1a n=iA=i/nA
68 66 67 oveq12d n=iXLnA=XLii/nA
69 61 65 68 14 fvmptf iXLii/nAFi=XLii/nA
70 60 46 69 syl2anc φiFi=XLii/nA
71 59 70 sylan2 φi1JFi=XLii/nA
72 20 25 eleqtrdi φI1
73 uztrn JII1J1
74 21 72 73 syl2anc φJ1
75 59 46 sylan2 φi1JXLii/nA
76 71 74 75 fsumser φi=1JXLii/nA=seq1+FJ
77 58 76 eqtr3d φi=1IXLii/nA+iI+1..^J+1XLii/nA=seq1+FJ
78 elfznn i1Ii
79 78 70 sylan2 φi1IFi=XLii/nA
80 78 46 sylan2 φi1IXLii/nA
81 79 72 80 fsumser φi=1IXLii/nA=seq1+FI
82 77 81 oveq12d φi=1IXLii/nA+iI+1..^J+1XLii/nA-i=1IXLii/nA=seq1+FJseq1+FI
83 fzfid φ1IFin
84 83 80 fsumcl φi=1IXLii/nA
85 fzofi I+1..^J+1Fin
86 85 a1i φI+1..^J+1Fin
87 ssun2 I+1..^J+11..^I+1I+1..^J+1
88 87 32 sseqtrrid φI+1..^J+11..^J+1
89 88 sselda φiI+1..^J+1i1..^J+1
90 89 47 syldan φiI+1..^J+1XLii/nA
91 86 90 fsumcl φiI+1..^J+1XLii/nA
92 84 91 pncan2d φi=1IXLii/nA+iI+1..^J+1XLii/nA-i=1IXLii/nA=iI+1..^J+1XLii/nA
93 82 92 eqtr3d φseq1+FJseq1+FI=iI+1..^J+1XLii/nA
94 93 fveq2d φseq1+FJseq1+FI=iI+1..^J+1XLii/nA
95 91 abscld φiI+1..^J+1XLii/nA
96 2re 2
97 96 a1i φ2
98 97 15 remulcld φ2R
99 44 ralrimiva φii/nA
100 csbeq1 i=I+1i/nA=I+1/nA
101 100 eleq1d i=I+1i/nAI+1/nA
102 101 rspcv I+1ii/nAI+1/nA
103 24 99 102 sylc φI+1/nA
104 98 103 remulcld φ2RI+1/nA
105 11 ralrimiva φn+A
106 nfcsb1v _nU/nA
107 106 nfel1 nU/nA
108 csbeq1a n=UA=U/nA
109 108 eleq1d n=UAU/nA
110 107 109 rspc U+n+AU/nA
111 17 105 110 sylc φU/nA
112 98 111 remulcld φ2RU/nA
113 74 25 eleqtrrdi φJ
114 113 peano2nnd φJ+1
115 114 nnrpd φJ+1+
116 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φJ+1+J+1/nAJ+1M+∞0J+1/nA
117 116 simpld φJ+1+J+1/nA
118 115 117 mpd φJ+1/nA
119 118 recnd φJ+1/nA
120 fzofi 0..^J+1Fin
121 120 a1i φ0..^J+1Fin
122 elfzoelz n0..^J+1n
123 7 adantr φnXD
124 simpr φnn
125 4 1 5 2 123 124 dchrzrhcl φnXLn
126 122 125 sylan2 φn0..^J+1XLn
127 121 126 fsumcl φn0..^J+1XLn
128 119 127 mulcld φJ+1/nAn0..^J+1XLn
129 103 recnd φI+1/nA
130 fzofi 0..^I+1Fin
131 130 a1i φ0..^I+1Fin
132 elfzoelz n0..^I+1n
133 132 125 sylan2 φn0..^I+1XLn
134 131 133 fsumcl φn0..^I+1XLn
135 129 134 mulcld φI+1/nAn0..^I+1XLn
136 128 135 subcld φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn
137 136 abscld φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn
138 89 36 syl φiI+1..^J+1i
139 peano2nn ii+1
140 139 nnrpd ii+1+
141 nfcsb1v _ni+1/nA
142 141 nfel1 ni+1/nA
143 csbeq1a n=i+1A=i+1/nA
144 143 eleq1d n=i+1Ai+1/nA
145 142 144 rspc i+1+n+Ai+1/nA
146 145 impcom n+Ai+1+i+1/nA
147 105 140 146 syl2an φii+1/nA
148 147 44 resubcld φii+1/nAi/nA
149 148 recnd φii+1/nAi/nA
150 fzofi 0..^i+1Fin
151 150 a1i φ0..^i+1Fin
152 elfzoelz n0..^i+1n
153 152 125 sylan2 φn0..^i+1XLn
154 151 153 fsumcl φn0..^i+1XLn
155 154 adantr φin0..^i+1XLn
156 149 155 mulcld φii+1/nAi/nAn0..^i+1XLn
157 138 156 syldan φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn
158 86 157 fsumcl φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn
159 158 abscld φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn
160 137 159 readdcld φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn+iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
161 40 45 mulcomd φiXLii/nA=i/nAXLi
162 nnnn0 ii0
163 162 adantl φii0
164 nn0uz 0=0
165 163 164 eleqtrdi φii0
166 elfzelz n0in
167 125 adantlr φinXLn
168 166 167 sylan2 φin0iXLn
169 165 168 66 fzosump1 φin0..^i+1XLn=n0..^iXLn+XLi
170 169 oveq1d φin0..^i+1XLnn0..^iXLn=n0..^iXLn+XLi-n0..^iXLn
171 fzofi 0..^iFin
172 171 a1i φi0..^iFin
173 elfzoelz n0..^in
174 173 167 sylan2 φin0..^iXLn
175 172 174 fsumcl φin0..^iXLn
176 175 40 pncan2d φin0..^iXLn+XLi-n0..^iXLn=XLi
177 170 176 eqtr2d φiXLi=n0..^i+1XLnn0..^iXLn
178 177 oveq2d φii/nAXLi=i/nAn0..^i+1XLnn0..^iXLn
179 161 178 eqtrd φiXLii/nA=i/nAn0..^i+1XLnn0..^iXLn
180 138 179 syldan φiI+1..^J+1XLii/nA=i/nAn0..^i+1XLnn0..^iXLn
181 180 sumeq2dv φiI+1..^J+1XLii/nA=iI+1..^J+1i/nAn0..^i+1XLnn0..^iXLn
182 csbeq1 k=ik/nA=i/nA
183 oveq2 k=i0..^k=0..^i
184 183 sumeq1d k=in0..^kXLn=n0..^iXLn
185 182 184 jca k=ik/nA=i/nAn0..^kXLn=n0..^iXLn
186 csbeq1 k=i+1k/nA=i+1/nA
187 oveq2 k=i+10..^k=0..^i+1
188 187 sumeq1d k=i+1n0..^kXLn=n0..^i+1XLn
189 186 188 jca k=i+1k/nA=i+1/nAn0..^kXLn=n0..^i+1XLn
190 csbeq1 k=I+1k/nA=I+1/nA
191 oveq2 k=I+10..^k=0..^I+1
192 191 sumeq1d k=I+1n0..^kXLn=n0..^I+1XLn
193 190 192 jca k=I+1k/nA=I+1/nAn0..^kXLn=n0..^I+1XLn
194 csbeq1 k=J+1k/nA=J+1/nA
195 oveq2 k=J+10..^k=0..^J+1
196 195 sumeq1d k=J+1n0..^kXLn=n0..^J+1XLn
197 194 196 jca k=J+1k/nA=J+1/nAn0..^kXLn=n0..^J+1XLn
198 45 ralrimiva φii/nA
199 elfzuz kI+1J+1kI+1
200 eluznn I+1kI+1k
201 24 199 200 syl2an φkI+1J+1k
202 csbeq1 i=ki/nA=k/nA
203 202 eleq1d i=ki/nAk/nA
204 203 rspccva ii/nAkk/nA
205 198 201 204 syl2an2r φkI+1J+1k/nA
206 fzofi 0..^kFin
207 206 a1i φ0..^kFin
208 elfzoelz n0..^kn
209 208 125 sylan2 φn0..^kXLn
210 207 209 fsumcl φn0..^kXLn
211 210 adantr φkI+1J+1n0..^kXLn
212 185 189 193 197 28 205 211 fsumparts φiI+1..^J+1i/nAn0..^i+1XLnn0..^iXLn=J+1/nAn0..^J+1XLn-I+1/nAn0..^I+1XLn-iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
213 181 212 eqtrd φiI+1..^J+1XLii/nA=J+1/nAn0..^J+1XLn-I+1/nAn0..^I+1XLn-iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
214 213 fveq2d φiI+1..^J+1XLii/nA=J+1/nAn0..^J+1XLn-I+1/nAn0..^I+1XLn-iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
215 136 158 abs2dif2d φJ+1/nAn0..^J+1XLn-I+1/nAn0..^I+1XLn-iI+1..^J+1i+1/nAi/nAn0..^i+1XLnJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn+iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
216 214 215 eqbrtrd φiI+1..^J+1XLii/nAJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn+iI+1..^J+1i+1/nAi/nAn0..^i+1XLn
217 118 103 readdcld φJ+1/nA+I+1/nA
218 217 15 remulcld φJ+1/nA+I+1/nAR
219 182 186 190 194 28 205 telfsumo φiI+1..^J+1i/nAi+1/nA=I+1/nAJ+1/nA
220 138 44 syldan φiI+1..^J+1i/nA
221 138 147 syldan φiI+1..^J+1i+1/nA
222 220 221 resubcld φiI+1..^J+1i/nAi+1/nA
223 86 222 fsumrecl φiI+1..^J+1i/nAi+1/nA
224 219 223 eqeltrrd φI+1/nAJ+1/nA
225 224 15 remulcld φI+1/nAJ+1/nAR
226 128 abscld φJ+1/nAn0..^J+1XLn
227 135 abscld φI+1/nAn0..^I+1XLn
228 226 227 readdcld φJ+1/nAn0..^J+1XLn+I+1/nAn0..^I+1XLn
229 128 135 abs2dif2d φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLnJ+1/nAn0..^J+1XLn+I+1/nAn0..^I+1XLn
230 118 15 remulcld φJ+1/nAR
231 103 15 remulcld φI+1/nAR
232 119 127 absmuld φJ+1/nAn0..^J+1XLn=J+1/nAn0..^J+1XLn
233 eluzelre iMi
234 233 adantl φiMi
235 eluzle iMMi
236 235 adantl φiMMi
237 10 nnred φM
238 237 adantr φiMM
239 elicopnf MiM+∞iMi
240 238 239 syl φiMiM+∞iMi
241 234 236 240 mpbir2and φiMiM+∞
242 241 ex φiMiM+∞
243 242 ssrdv φMM+∞
244 10 nnzd φM
245 53 peano2zd φI+1
246 17 rpred φU
247 24 nnred φI+1
248 237 246 247 18 19 letrd φMI+1
249 eluz2 I+1MMI+1MI+1
250 244 245 248 249 syl3anbrc φI+1M
251 uztrn J+1I+1I+1MJ+1M
252 28 250 251 syl2anc φJ+1M
253 243 252 sseldd φJ+1M+∞
254 116 simprd φJ+1M+∞0J+1/nA
255 253 254 mpd φ0J+1/nA
256 118 255 absidd φJ+1/nA=J+1/nA
257 256 oveq1d φJ+1/nAn0..^J+1XLn=J+1/nAn0..^J+1XLn
258 232 257 eqtrd φJ+1/nAn0..^J+1XLn=J+1/nAn0..^J+1XLn
259 127 abscld φn0..^J+1XLn
260 114 nnnn0d φJ+10
261 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φJ+10n0..^J+1XLnR
262 260 261 mpdan φn0..^J+1XLnR
263 259 15 118 255 262 lemul2ad φJ+1/nAn0..^J+1XLnJ+1/nAR
264 258 263 eqbrtrd φJ+1/nAn0..^J+1XLnJ+1/nAR
265 129 134 absmuld φI+1/nAn0..^I+1XLn=I+1/nAn0..^I+1XLn
266 243 250 sseldd φI+1M+∞
267 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dchrisumlema φI+1+I+1/nAI+1M+∞0I+1/nA
268 267 simprd φI+1M+∞0I+1/nA
269 266 268 mpd φ0I+1/nA
270 103 269 absidd φI+1/nA=I+1/nA
271 270 oveq1d φI+1/nAn0..^I+1XLn=I+1/nAn0..^I+1XLn
272 265 271 eqtrd φI+1/nAn0..^I+1XLn=I+1/nAn0..^I+1XLn
273 134 abscld φn0..^I+1XLn
274 24 nnnn0d φI+10
275 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φI+10n0..^I+1XLnR
276 274 275 mpdan φn0..^I+1XLnR
277 273 15 103 269 276 lemul2ad φI+1/nAn0..^I+1XLnI+1/nAR
278 272 277 eqbrtrd φI+1/nAn0..^I+1XLnI+1/nAR
279 226 227 230 231 264 278 le2addd φJ+1/nAn0..^J+1XLn+I+1/nAn0..^I+1XLnJ+1/nAR+I+1/nAR
280 15 recnd φR
281 119 129 280 adddird φJ+1/nA+I+1/nAR=J+1/nAR+I+1/nAR
282 279 281 breqtrrd φJ+1/nAn0..^J+1XLn+I+1/nAn0..^I+1XLnJ+1/nA+I+1/nAR
283 137 228 218 229 282 letrd φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLnJ+1/nA+I+1/nAR
284 157 abscld φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn
285 86 284 fsumrecl φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn
286 86 157 fsumabs φiI+1..^J+1i+1/nAi/nAn0..^i+1XLniI+1..^J+1i+1/nAi/nAn0..^i+1XLn
287 15 adantr φiI+1..^J+1R
288 222 287 remulcld φiI+1..^J+1i/nAi+1/nAR
289 138 149 syldan φiI+1..^J+1i+1/nAi/nA
290 154 adantr φiI+1..^J+1n0..^i+1XLn
291 289 290 absmuld φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn=i+1/nAi/nAn0..^i+1XLn
292 elfzouz iI+1..^J+1iI+1
293 uztrn iI+1I+1MiM
294 292 250 293 syl2anr φiI+1..^J+1iM
295 eluznn MiMi
296 10 295 sylan φiMi
297 296 140 syl φiMi+1+
298 296 nnrpd φiMi+
299 12 3expia φn+x+MnnxBA
300 299 ralrimivva φn+x+MnnxBA
301 300 adantr φiMn+x+MnnxBA
302 nfcv _n+
303 nfv nMiix
304 nfcv _nB
305 nfcv _n
306 304 305 64 nfbr nBi/nA
307 303 306 nfim nMiixBi/nA
308 302 307 nfralw nx+MiixBi/nA
309 breq2 n=iMnMi
310 breq1 n=inxix
311 309 310 anbi12d n=iMnnxMiix
312 67 breq2d n=iBABi/nA
313 311 312 imbi12d n=iMnnxBAMiixBi/nA
314 313 ralbidv n=ix+MnnxBAx+MiixBi/nA
315 308 314 rspc i+n+x+MnnxBAx+MiixBi/nA
316 298 301 315 sylc φiMx+MiixBi/nA
317 234 lep1d φiMii+1
318 236 317 jca φiMMiii+1
319 breq2 x=i+1ixii+1
320 319 anbi2d x=i+1MiixMiii+1
321 eqvisset x=i+1i+1V
322 eqtr3 x=i+1n=i+1x=n
323 9 equcoms x=nA=B
324 322 323 syl x=i+1n=i+1A=B
325 321 324 csbied x=i+1i+1/nA=B
326 325 eqcomd x=i+1B=i+1/nA
327 326 breq1d x=i+1Bi/nAi+1/nAi/nA
328 320 327 imbi12d x=i+1MiixBi/nAMiii+1i+1/nAi/nA
329 328 rspcv i+1+x+MiixBi/nAMiii+1i+1/nAi/nA
330 297 316 318 329 syl3c φiMi+1/nAi/nA
331 294 330 syldan φiI+1..^J+1i+1/nAi/nA
332 221 220 331 abssuble0d φiI+1..^J+1i+1/nAi/nA=i/nAi+1/nA
333 332 oveq1d φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn=i/nAi+1/nAn0..^i+1XLn
334 291 333 eqtrd φiI+1..^J+1i+1/nAi/nAn0..^i+1XLn=i/nAi+1/nAn0..^i+1XLn
335 290 abscld φiI+1..^J+1n0..^i+1XLn
336 220 221 subge0d φiI+1..^J+10i/nAi+1/nAi+1/nAi/nA
337 331 336 mpbird φiI+1..^J+10i/nAi+1/nA
338 138 peano2nnd φiI+1..^J+1i+1
339 338 nnnn0d φiI+1..^J+1i+10
340 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrisumlem1 φi+10n0..^i+1XLnR
341 339 340 syldan φiI+1..^J+1n0..^i+1XLnR
342 335 287 222 337 341 lemul2ad φiI+1..^J+1i/nAi+1/nAn0..^i+1XLni/nAi+1/nAR
343 334 342 eqbrtrd φiI+1..^J+1i+1/nAi/nAn0..^i+1XLni/nAi+1/nAR
344 86 284 288 343 fsumle φiI+1..^J+1i+1/nAi/nAn0..^i+1XLniI+1..^J+1i/nAi+1/nAR
345 222 recnd φiI+1..^J+1i/nAi+1/nA
346 86 280 345 fsummulc1 φiI+1..^J+1i/nAi+1/nAR=iI+1..^J+1i/nAi+1/nAR
347 219 oveq1d φiI+1..^J+1i/nAi+1/nAR=I+1/nAJ+1/nAR
348 346 347 eqtr3d φiI+1..^J+1i/nAi+1/nAR=I+1/nAJ+1/nAR
349 344 348 breqtrd φiI+1..^J+1i+1/nAi/nAn0..^i+1XLnI+1/nAJ+1/nAR
350 159 285 225 286 349 letrd φiI+1..^J+1i+1/nAi/nAn0..^i+1XLnI+1/nAJ+1/nAR
351 137 159 218 225 283 350 le2addd φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn+iI+1..^J+1i+1/nAi/nAn0..^i+1XLnJ+1/nA+I+1/nAR+I+1/nAJ+1/nAR
352 129 2timesd φ2I+1/nA=I+1/nA+I+1/nA
353 129 119 129 ppncand φI+1/nA+J+1/nA+I+1/nAJ+1/nA=I+1/nA+I+1/nA
354 129 119 addcomd φI+1/nA+J+1/nA=J+1/nA+I+1/nA
355 354 oveq1d φI+1/nA+J+1/nA+I+1/nAJ+1/nA=J+1/nA+I+1/nA+I+1/nAJ+1/nA
356 352 353 355 3eqtr2d φ2I+1/nA=J+1/nA+I+1/nA+I+1/nAJ+1/nA
357 356 oveq1d φ2I+1/nAR=J+1/nA+I+1/nA+I+1/nAJ+1/nAR
358 2cnd φ2
359 358 129 280 mul32d φ2I+1/nAR=2RI+1/nA
360 217 recnd φJ+1/nA+I+1/nA
361 224 recnd φI+1/nAJ+1/nA
362 360 361 280 adddird φJ+1/nA+I+1/nA+I+1/nAJ+1/nAR=J+1/nA+I+1/nAR+I+1/nAJ+1/nAR
363 357 359 362 3eqtr3d φ2RI+1/nA=J+1/nA+I+1/nAR+I+1/nAJ+1/nAR
364 351 363 breqtrrd φJ+1/nAn0..^J+1XLnI+1/nAn0..^I+1XLn+iI+1..^J+1i+1/nAi/nAn0..^i+1XLn2RI+1/nA
365 95 160 104 216 364 letrd φiI+1..^J+1XLii/nA2RI+1/nA
366 2nn0 20
367 nn0ge0 2002
368 366 367 mp1i φ02
369 0red φ0
370 127 absge0d φ0n0..^J+1XLn
371 369 259 15 370 262 letrd φ0R
372 97 15 368 371 mulge0d φ02R
373 24 nnrpd φI+1+
374 nfv nMUUx
375 304 305 106 nfbr nBU/nA
376 374 375 nfim nMUUxBU/nA
377 302 376 nfralw nx+MUUxBU/nA
378 breq2 n=UMnMU
379 breq1 n=UnxUx
380 378 379 anbi12d n=UMnnxMUUx
381 108 breq2d n=UBABU/nA
382 380 381 imbi12d n=UMnnxBAMUUxBU/nA
383 382 ralbidv n=Ux+MnnxBAx+MUUxBU/nA
384 377 383 rspc U+n+x+MnnxBAx+MUUxBU/nA
385 17 300 384 sylc φx+MUUxBU/nA
386 18 19 jca φMUUI+1
387 breq2 x=I+1UxUI+1
388 387 anbi2d x=I+1MUUxMUUI+1
389 eqvisset x=I+1I+1V
390 eqtr3 x=I+1n=I+1x=n
391 390 323 syl x=I+1n=I+1A=B
392 389 391 csbied x=I+1I+1/nA=B
393 392 eqcomd x=I+1B=I+1/nA
394 393 breq1d x=I+1BU/nAI+1/nAU/nA
395 388 394 imbi12d x=I+1MUUxBU/nAMUUI+1I+1/nAU/nA
396 395 rspcv I+1+x+MUUxBU/nAMUUI+1I+1/nAU/nA
397 373 385 386 396 syl3c φI+1/nAU/nA
398 103 111 98 372 397 lemul2ad φ2RI+1/nA2RU/nA
399 95 104 112 365 398 letrd φiI+1..^J+1XLii/nA2RU/nA
400 94 399 eqbrtrd φseq1+FJseq1+FI2RU/nA