Metamath Proof Explorer


Theorem fourierdlem97

Description: F is continuous on the intervals induced by the moved partition V . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem97.f φF:
fourierdlem97.g G=DF
fourierdlem97.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem97.a φB
fourierdlem97.b φA
fourierdlem97.t T=BA
fourierdlem97.m φM
fourierdlem97.q φQPM
fourierdlem97.fper φxFx+T=Fx
fourierdlem97.qcn φi0..^MGQiQi+1:QiQi+1cn
fourierdlem97.c φC
fourierdlem97.d φDC+∞
fourierdlem97.j φJ0..^CDyCD|ky+kTranQ1
fourierdlem97.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
fourierdlem97.h H=sifsdomGGs0
Assertion fourierdlem97 φGVJVJ+1:VJVJ+1cn

Proof

Step Hyp Ref Expression
1 fourierdlem97.f φF:
2 fourierdlem97.g G=DF
3 fourierdlem97.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
4 fourierdlem97.a φB
5 fourierdlem97.b φA
6 fourierdlem97.t T=BA
7 fourierdlem97.m φM
8 fourierdlem97.q φQPM
9 fourierdlem97.fper φxFx+T=Fx
10 fourierdlem97.qcn φi0..^MGQiQi+1:QiQi+1cn
11 fourierdlem97.c φC
12 fourierdlem97.d φDC+∞
13 fourierdlem97.j φJ0..^CDyCD|ky+kTranQ1
14 fourierdlem97.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
15 fourierdlem97.h H=sifsdomGGs0
16 ioossre VJVJ+1
17 16 a1i φVJVJ+1
18 17 sselda φsVJVJ+1s
19 iftrue sdomGifsdomGGs0=Gs
20 19 adantl φsdomGifsdomGGs0=Gs
21 ssid
22 dvfre F:F:domF
23 1 21 22 sylancl φF:domF
24 2 feq1i G:domFF:domF
25 23 24 sylibr φG:domF
26 25 adantr φsdomGG:domF
27 id sdomGsdomG
28 2 dmeqi domG=domF
29 27 28 eleqtrdi sdomGsdomF
30 29 adantl φsdomGsdomF
31 26 30 ffvelcdmd φsdomGGs
32 20 31 eqeltrd φsdomGifsdomGGs0
33 32 adantlr φssdomGifsdomGGs0
34 iffalse ¬sdomGifsdomGGs0=0
35 0red ¬sdomG0
36 34 35 eqeltrd ¬sdomGifsdomGGs0
37 36 adantl φs¬sdomGifsdomGGs0
38 33 37 pm2.61dan φsifsdomGGs0
39 18 38 syldan φsVJVJ+1ifsdomGGs0
40 15 fvmpt2 sifsdomGGs0Hs=ifsdomGGs0
41 18 39 40 syl2anc φsVJVJ+1Hs=ifsdomGGs0
42 elioore DC+∞D
43 12 42 syl φD
44 11 rexrd φC*
45 pnfxr +∞*
46 45 a1i φ+∞*
47 ioogtlb C*+∞*DC+∞C<D
48 44 46 12 47 syl3anc φC<D
49 oveq1 y=xy+hT=x+hT
50 49 eleq1d y=xy+hTranQx+hTranQ
51 50 rexbidv y=xhy+hTranQhx+hTranQ
52 51 cbvrabv yCD|hy+hTranQ=xCD|hx+hTranQ
53 52 uneq2i CDyCD|hy+hTranQ=CDxCD|hx+hTranQ
54 oveq1 k=lkT=lT
55 54 oveq2d k=ly+kT=y+lT
56 55 eleq1d k=ly+kTranQy+lTranQ
57 56 cbvrexvw ky+kTranQly+lTranQ
58 57 a1i yCDky+kTranQly+lTranQ
59 58 rabbiia yCD|ky+kTranQ=yCD|ly+lTranQ
60 59 uneq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
61 oveq1 l=hlT=hT
62 61 oveq2d l=hy+lT=y+hT
63 62 eleq1d l=hy+lTranQy+hTranQ
64 63 cbvrexvw ly+lTranQhy+hTranQ
65 64 a1i yCDly+lTranQhy+hTranQ
66 65 rabbiia yCD|ly+lTranQ=yCD|hy+hTranQ
67 66 uneq2i CDyCD|ly+lTranQ=CDyCD|hy+hTranQ
68 60 67 eqtri CDyCD|ky+kTranQ=CDyCD|hy+hTranQ
69 68 fveq2i CDyCD|ky+kTranQ=CDyCD|hy+hTranQ
70 69 oveq1i CDyCD|ky+kTranQ1=CDyCD|hy+hTranQ1
71 oveq1 k=hkT=hT
72 71 oveq2d k=hQ0+kT=Q0+hT
73 72 breq1d k=hQ0+kTVJQ0+hTVJ
74 73 cbvrabv k|Q0+kTVJ=h|Q0+hTVJ
75 74 supeq1i supk|Q0+kTVJ<=suph|Q0+hTVJ<
76 fveq2 j=eQj=Qe
77 76 oveq1d j=eQj+supk|Q0+kTVJ<T=Qe+supk|Q0+kTVJ<T
78 77 breq1d j=eQj+supk|Q0+kTVJ<TVJQe+supk|Q0+kTVJ<TVJ
79 78 cbvrabv j0..^M|Qj+supk|Q0+kTVJ<TVJ=e0..^M|Qe+supk|Q0+kTVJ<TVJ
80 79 supeq1i supj0..^M|Qj+supk|Q0+kTVJ<TVJ<=supe0..^M|Qe+supk|Q0+kTVJ<TVJ<
81 6 3 7 8 11 43 48 53 70 14 13 75 80 fourierdlem64 φsupj0..^M|Qj+supk|Q0+kTVJ<TVJ<0..^Msupk|Q0+kTVJ<i0..^MlVJVJ+1Qi+lTQi+1+lT
82 81 simprd φi0..^MlVJVJ+1Qi+lTQi+1+lT
83 simpl1 φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1φ
84 simpl2l φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1i0..^M
85 cncff GQiQi+1:QiQi+1cnGQiQi+1:QiQi+1
86 10 85 syl φi0..^MGQiQi+1:QiQi+1
87 ffun G:domFFunG
88 25 87 syl φFunG
89 88 adantr φi0..^MFunG
90 ffvresb FunGGQiQi+1:QiQi+1sQiQi+1sdomGGs
91 89 90 syl φi0..^MGQiQi+1:QiQi+1sQiQi+1sdomGGs
92 86 91 mpbid φi0..^MsQiQi+1sdomGGs
93 92 r19.21bi φi0..^MsQiQi+1sdomGGs
94 93 simpld φi0..^MsQiQi+1sdomG
95 94 ralrimiva φi0..^MsQiQi+1sdomG
96 dfss3 QiQi+1domGsQiQi+1sdomG
97 95 96 sylibr φi0..^MQiQi+1domG
98 83 84 97 syl2anc φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1QiQi+1domG
99 simpl2 φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1i0..^Ml
100 83 99 jca φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1φi0..^Ml
101 simpl3 φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1VJVJ+1Qi+lTQi+1+lT
102 simpr φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tVJVJ+1
103 101 102 sseldd φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tQi+lTQi+1+lT
104 3 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
105 7 104 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
106 8 105 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
107 106 simpld φQ0M
108 elmapi Q0MQ:0M
109 107 108 syl φQ:0M
110 109 adantr φi0..^MQ:0M
111 elfzofz i0..^Mi0M
112 111 adantl φi0..^Mi0M
113 110 112 ffvelcdmd φi0..^MQi
114 113 rexrd φi0..^MQi*
115 114 adantrr φi0..^MlQi*
116 115 adantr φi0..^MltQi+lTQi+1+lTQi*
117 fzofzp1 i0..^Mi+10M
118 117 adantl φi0..^Mi+10M
119 110 118 ffvelcdmd φi0..^MQi+1
120 119 adantrr φi0..^MlQi+1
121 120 adantr φi0..^MltQi+lTQi+1+lTQi+1
122 121 rexrd φi0..^MltQi+lTQi+1+lTQi+1*
123 elioore tQi+lTQi+1+lTt
124 123 adantl φi0..^MltQi+lTQi+1+lTt
125 zre ll
126 125 adantl i0..^Mll
127 126 ad2antlr φi0..^MltQi+lTQi+1+lTl
128 4 5 resubcld φBA
129 6 128 eqeltrid φT
130 129 ad2antrr φi0..^MltQi+lTQi+1+lTT
131 127 130 remulcld φi0..^MltQi+lTQi+1+lTlT
132 124 131 resubcld φi0..^MltQi+lTQi+1+lTtlT
133 113 adantrr φi0..^MlQi
134 125 ad2antll φi0..^Mll
135 129 adantr φi0..^MlT
136 134 135 remulcld φi0..^MllT
137 133 136 readdcld φi0..^MlQi+lT
138 137 rexrd φi0..^MlQi+lT*
139 138 adantr φi0..^MltQi+lTQi+1+lTQi+lT*
140 120 136 readdcld φi0..^MlQi+1+lT
141 140 rexrd φi0..^MlQi+1+lT*
142 141 adantr φi0..^MltQi+lTQi+1+lTQi+1+lT*
143 simpr φi0..^MltQi+lTQi+1+lTtQi+lTQi+1+lT
144 ioogtlb Qi+lT*Qi+1+lT*tQi+lTQi+1+lTQi+lT<t
145 139 142 143 144 syl3anc φi0..^MltQi+lTQi+1+lTQi+lT<t
146 133 adantr φi0..^MltQi+lTQi+1+lTQi
147 146 131 124 ltaddsubd φi0..^MltQi+lTQi+1+lTQi+lT<tQi<tlT
148 145 147 mpbid φi0..^MltQi+lTQi+1+lTQi<tlT
149 iooltub Qi+lT*Qi+1+lT*tQi+lTQi+1+lTt<Qi+1+lT
150 139 142 143 149 syl3anc φi0..^MltQi+lTQi+1+lTt<Qi+1+lT
151 124 131 121 ltsubaddd φi0..^MltQi+lTQi+1+lTtlT<Qi+1t<Qi+1+lT
152 150 151 mpbird φi0..^MltQi+lTQi+1+lTtlT<Qi+1
153 116 122 132 148 152 eliood φi0..^MltQi+lTQi+1+lTtlTQiQi+1
154 100 103 153 syl2anc φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tlTQiQi+1
155 98 154 sseldd φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tlTdomG
156 elioore tVJVJ+1t
157 recn tt
158 157 adantl φltt
159 zcn ll
160 159 ad2antlr φltl
161 129 recnd φT
162 161 ad2antrr φltT
163 160 162 mulcld φltlT
164 158 163 npcand φltt-lT+lT=t
165 164 eqcomd φltt=t-lT+lT
166 165 adantr φlttlTdomGt=t-lT+lT
167 ovex tlTV
168 eleq1 s=tlTsdomGtlTdomG
169 168 anbi2d s=tlTφlsdomGφltlTdomG
170 oveq1 s=tlTs+lT=t-lT+lT
171 170 eleq1d s=tlTs+lTdomGt-lT+lTdomG
172 170 fveq2d s=tlTGs+lT=Gt-lT+lT
173 fveq2 s=tlTGs=GtlT
174 172 173 eqeq12d s=tlTGs+lT=GsGt-lT+lT=GtlT
175 171 174 anbi12d s=tlTs+lTdomGGs+lT=Gst-lT+lTdomGGt-lT+lT=GtlT
176 169 175 imbi12d s=tlTφlsdomGs+lTdomGGs+lT=GsφltlTdomGt-lT+lTdomGGt-lT+lT=GtlT
177 ax-resscn
178 177 a1i φ
179 1 178 fssd φF:
180 179 adantr φlF:
181 125 adantl φll
182 129 adantr φlT
183 181 182 remulcld φllT
184 179 ad2antrr φlsF:
185 129 ad2antrr φlsT
186 simplr φlsl
187 simpr φlss
188 9 ad4ant14 φlsxFx+T=Fx
189 184 185 186 187 188 fperiodmul φlsFs+lT=Fs
190 180 183 189 2 fperdvper φlsdomGs+lTdomGGs+lT=Gs
191 167 176 190 vtocl φltlTdomGt-lT+lTdomGGt-lT+lT=GtlT
192 191 simpld φltlTdomGt-lT+lTdomG
193 192 adantlr φlttlTdomGt-lT+lTdomG
194 166 193 eqeltrd φlttlTdomGtdomG
195 194 ex φlttlTdomGtdomG
196 156 195 sylan2 φltVJVJ+1tlTdomGtdomG
197 196 adantlrl φi0..^MltVJVJ+1tlTdomGtdomG
198 197 3adantl3 φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tlTdomGtdomG
199 155 198 mpd φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tdomG
200 199 ralrimiva φi0..^MlVJVJ+1Qi+lTQi+1+lTtVJVJ+1tdomG
201 dfss3 VJVJ+1domGtVJVJ+1tdomG
202 200 201 sylibr φi0..^MlVJVJ+1Qi+lTQi+1+lTVJVJ+1domG
203 202 3exp φi0..^MlVJVJ+1Qi+lTQi+1+lTVJVJ+1domG
204 203 rexlimdvv φi0..^MlVJVJ+1Qi+lTQi+1+lTVJVJ+1domG
205 82 204 mpd φVJVJ+1domG
206 205 sselda φsVJVJ+1sdomG
207 206 iftrued φsVJVJ+1ifsdomGGs0=Gs
208 41 207 eqtr2d φsVJVJ+1Gs=Hs
209 208 mpteq2dva φsVJVJ+1Gs=sVJVJ+1Hs
210 28 a1i φdomG=domF
211 210 feq2d φG:domGG:domF
212 25 211 mpbird φG:domG
213 212 205 feqresmpt φGVJVJ+1=sVJVJ+1Gs
214 38 15 fmptd φH:
215 214 17 feqresmpt φHVJVJ+1=sVJVJ+1Hs
216 209 213 215 3eqtr4d φGVJVJ+1=HVJVJ+1
217 214 178 fssd φH:
218 15 a1i φxxdomGH=sifsdomGGs0
219 eleq1 s=x+TsdomGx+TdomG
220 fveq2 s=x+TGs=Gx+T
221 219 220 ifbieq1d s=x+TifsdomGGs0=ifx+TdomGGx+T0
222 179 129 9 2 fperdvper φxdomGx+TdomGGx+T=Gx
223 222 simpld φxdomGx+TdomG
224 223 iftrued φxdomGifx+TdomGGx+T0=Gx+T
225 221 224 sylan9eqr φxdomGs=x+TifsdomGGs0=Gx+T
226 225 adantllr φxxdomGs=x+TifsdomGGs0=Gx+T
227 simpr φxx
228 129 adantr φxT
229 227 228 readdcld φxx+T
230 229 adantr φxxdomGx+T
231 212 ad2antrr φxxdomGG:domG
232 223 adantlr φxxdomGx+TdomG
233 231 232 ffvelcdmd φxxdomGGx+T
234 218 226 230 233 fvmptd φxxdomGHx+T=Gx+T
235 222 simprd φxdomGGx+T=Gx
236 235 adantlr φxxdomGGx+T=Gx
237 eleq1 s=xsdomGxdomG
238 fveq2 s=xGs=Gx
239 237 238 ifbieq1d s=xifsdomGGs0=ifxdomGGx0
240 239 adantl φxxdomGs=xifsdomGGs0=ifxdomGGx0
241 simplr φxxdomGx
242 simpr φxdomGxdomG
243 242 iftrued φxdomGifxdomGGx0=Gx
244 212 ffvelcdmda φxdomGGx
245 243 244 eqeltrd φxdomGifxdomGGx0
246 245 adantlr φxxdomGifxdomGGx0
247 218 240 241 246 fvmptd φxxdomGHx=ifxdomGGx0
248 simpr φxxdomGxdomG
249 248 iftrued φxxdomGifxdomGGx0=Gx
250 247 249 eqtr2d φxxdomGGx=Hx
251 234 236 250 3eqtrd φxxdomGHx+T=Hx
252 229 recnd φxx+T
253 228 recnd φxT
254 252 253 negsubd φxx+T+T=x+T-T
255 227 recnd φxx
256 255 253 pncand φxx+T-T=x
257 254 256 eqtr2d φxx=x+T+T
258 257 adantr φxx+TdomGx=x+T+T
259 simpr φxx+TdomGx+TdomG
260 simpll φxx+TdomGφ
261 260 259 jca φxx+TdomGφx+TdomG
262 eleq1 y=x+TydomGx+TdomG
263 262 anbi2d y=x+TφydomGφx+TdomG
264 oveq1 y=x+Ty+T=x+T+T
265 264 eleq1d y=x+Ty+TdomGx+T+TdomG
266 264 fveq2d y=x+TGy+T=Gx+T+T
267 fveq2 y=x+TGy=Gx+T
268 266 267 eqeq12d y=x+TGy+T=GyGx+T+T=Gx+T
269 265 268 anbi12d y=x+Ty+TdomGGy+T=Gyx+T+TdomGGx+T+T=Gx+T
270 263 269 imbi12d y=x+TφydomGy+TdomGGy+T=Gyφx+TdomGx+T+TdomGGx+T+T=Gx+T
271 129 renegcld φT
272 161 mulm1d φ-1T=T
273 272 eqcomd φT=-1T
274 273 adantr φyT=-1T
275 274 oveq2d φyy+T=y+-1T
276 275 fveq2d φyFy+T=Fy+-1T
277 179 adantr φyF:
278 129 adantr φyT
279 1zzd φy1
280 279 znegcld φy1
281 simpr φyy
282 9 adantlr φyxFx+T=Fx
283 277 278 280 281 282 fperiodmul φyFy+-1T=Fy
284 276 283 eqtrd φyFy+T=Fy
285 179 271 284 2 fperdvper φydomGy+TdomGGy+T=Gy
286 270 285 vtoclg x+TdomGφx+TdomGx+T+TdomGGx+T+T=Gx+T
287 259 261 286 sylc φxx+TdomGx+T+TdomGGx+T+T=Gx+T
288 287 simpld φxx+TdomGx+T+TdomG
289 258 288 eqeltrd φxx+TdomGxdomG
290 289 stoic1a φx¬xdomG¬x+TdomG
291 290 iffalsed φx¬xdomGifx+TdomGGx+T0=0
292 15 a1i φx¬xdomGH=sifsdomGGs0
293 221 adantl φx¬xdomGs=x+TifsdomGGs0=ifx+TdomGGx+T0
294 229 adantr φx¬xdomGx+T
295 0red φx¬xdomG0
296 291 295 eqeltrd φx¬xdomGifx+TdomGGx+T0
297 292 293 294 296 fvmptd φx¬xdomGHx+T=ifx+TdomGGx+T0
298 simpr φx¬xdomG¬xdomG
299 298 iffalsed φx¬xdomGifxdomGGx0=0
300 239 299 sylan9eqr φx¬xdomGs=xifsdomGGs0=0
301 simplr φx¬xdomGx
302 292 300 301 295 fvmptd φx¬xdomGHx=0
303 291 297 302 3eqtr4d φx¬xdomGHx+T=Hx
304 251 303 pm2.61dan φxHx+T=Hx
305 elioore sQiQi+1s
306 305 adantl φsQiQi+1s
307 305 38 sylan2 φsQiQi+1ifsdomGGs0
308 306 307 40 syl2anc φsQiQi+1Hs=ifsdomGGs0
309 308 adantlr φi0..^MsQiQi+1Hs=ifsdomGGs0
310 94 iftrued φi0..^MsQiQi+1ifsdomGGs0=Gs
311 309 310 eqtrd φi0..^MsQiQi+1Hs=Gs
312 311 mpteq2dva φi0..^MsQiQi+1Hs=sQiQi+1Gs
313 214 adantr φi0..^MH:
314 ioossre QiQi+1
315 314 a1i φi0..^MQiQi+1
316 313 315 feqresmpt φi0..^MHQiQi+1=sQiQi+1Hs
317 212 adantr φi0..^MG:domG
318 317 97 feqresmpt φi0..^MGQiQi+1=sQiQi+1Gs
319 312 316 318 3eqtr4d φi0..^MHQiQi+1=GQiQi+1
320 319 10 eqeltrd φi0..^MHQiQi+1:QiQi+1cn
321 eqid mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Di0..^mpi<pi+1
322 oveq1 z=yz+lT=y+lT
323 322 eleq1d z=yz+lTranQy+lTranQ
324 323 rexbidv z=ylz+lTranQly+lTranQ
325 324 cbvrabv zCD|lz+lTranQ=yCD|ly+lTranQ
326 325 uneq2i CDzCD|lz+lTranQ=CDyCD|ly+lTranQ
327 326 eqcomi CDyCD|ly+lTranQ=CDzCD|lz+lTranQ
328 60 fveq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
329 328 oveq1i CDyCD|ky+kTranQ1=CDyCD|ly+lTranQ1
330 isoeq5 CDyCD|ly+lTranQ=CDyCD|hy+hTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
331 67 330 ax-mp gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
332 331 iotabii ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
333 isoeq1 f=gfIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
334 333 cbviotavw ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
335 332 334 14 3eqtr4ri V=ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
336 id v=xv=x
337 oveq2 v=xBv=Bx
338 337 oveq1d v=xBvT=BxT
339 338 fveq2d v=xBvT=BxT
340 339 oveq1d v=xBvTT=BxTT
341 336 340 oveq12d v=xv+BvTT=x+BxTT
342 341 cbvmptv vv+BvTT=xx+BxTT
343 eqeq1 u=zu=Bz=B
344 id u=zu=z
345 343 344 ifbieq2d u=zifu=BAu=ifz=BAz
346 345 cbvmptv uABifu=BAu=zABifz=BAz
347 eqid VJ+1vv+BvTTVJ+1=VJ+1vv+BvTTVJ+1
348 eqid HuABifu=BAuvv+BvTTVJvv+BvTTVJ+1=HuABifu=BAuvv+BvTTVJvv+BvTTVJ+1
349 eqid zuABifu=BAuvv+BvTTVJ+VJ+1-vv+BvTTVJ+1vv+BvTTVJ+1+VJ+1-vv+BvTTVJ+1HuABifu=BAuvv+BvTTVJvv+BvTTVJ+1zVJ+1vv+BvTTVJ+1=zuABifu=BAuvv+BvTTVJ+VJ+1-vv+BvTTVJ+1vv+BvTTVJ+1+VJ+1-vv+BvTTVJ+1HuABifu=BAuvv+BvTTVJvv+BvTTVJ+1zVJ+1vv+BvTTVJ+1
350 fveq2 i=tQi=Qt
351 350 breq1d i=tQiuABifu=BAuvv+BvTTxQtuABifu=BAuvv+BvTTx
352 351 cbvrabv i0..^M|QiuABifu=BAuvv+BvTTx=t0..^M|QtuABifu=BAuvv+BvTTx
353 fveq2 w=xvv+BvTTw=vv+BvTTx
354 353 fveq2d w=xuABifu=BAuvv+BvTTw=uABifu=BAuvv+BvTTx
355 354 eqcomd w=xuABifu=BAuvv+BvTTx=uABifu=BAuvv+BvTTw
356 355 breq2d w=xQtuABifu=BAuvv+BvTTxQtuABifu=BAuvv+BvTTw
357 356 rabbidv w=xt0..^M|QtuABifu=BAuvv+BvTTx=t0..^M|QtuABifu=BAuvv+BvTTw
358 352 357 eqtr2id w=xt0..^M|QtuABifu=BAuvv+BvTTw=i0..^M|QiuABifu=BAuvv+BvTTx
359 358 supeq1d w=xsupt0..^M|QtuABifu=BAuvv+BvTTw<=supi0..^M|QiuABifu=BAuvv+BvTTx<
360 359 cbvmptv wsupt0..^M|QtuABifu=BAuvv+BvTTw<=xsupi0..^M|QiuABifu=BAuvv+BvTTx<
361 3 6 7 8 217 304 320 11 12 321 327 329 335 342 346 13 347 348 349 360 fourierdlem90 φHVJVJ+1:VJVJ+1cn
362 216 361 eqeltrd φGVJVJ+1:VJVJ+1cn