Metamath Proof Explorer


Theorem axcontlem4

Description: Lemma for axcont . Given the separation assumption, A is a subset of D . (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypothesis axcontlem4.1 D=p𝔼N|UBtwnZppBtwnZU
Assertion axcontlem4 NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUAD

Proof

Step Hyp Ref Expression
1 axcontlem4.1 D=p𝔼N|UBtwnZppBtwnZU
2 simplr1 NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUA𝔼N
3 n0 BbbB
4 idd bBA𝔼NA𝔼N
5 ssel B𝔼NbBb𝔼N
6 5 com12 bBB𝔼Nb𝔼N
7 opeq2 y=bZy=Zb
8 7 breq2d y=bxBtwnZyxBtwnZb
9 8 rspcv bByBxBtwnZyxBtwnZb
10 9 ralimdv bBxAyBxBtwnZyxAxBtwnZb
11 4 6 10 3anim123d bBA𝔼NB𝔼NxAyBxBtwnZyA𝔼Nb𝔼NxAxBtwnZb
12 11 anim2d bBNA𝔼NB𝔼NxAyBxBtwnZyNA𝔼Nb𝔼NxAxBtwnZb
13 simplr1 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUA𝔼N
14 13 adantr NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAA𝔼N
15 simplr2 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAUA
16 14 15 sseldd NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAU𝔼N
17 simpr3 NA𝔼Nb𝔼NxAxBtwnZbxAxBtwnZb
18 simp2 Z𝔼NUAZUUA
19 breq1 x=UxBtwnZbUBtwnZb
20 19 rspccva xAxBtwnZbUAUBtwnZb
21 17 18 20 syl2an NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUUBtwnZb
22 21 adantr NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAUBtwnZb
23 16 22 jca NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAU𝔼NUBtwnZb
24 13 sselda NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAp𝔼N
25 17 adantr NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUxAxBtwnZb
26 breq1 x=pxBtwnZbpBtwnZb
27 26 rspccva xAxBtwnZbpApBtwnZb
28 25 27 sylan NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpApBtwnZb
29 23 24 28 jca32 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAU𝔼NUBtwnZbp𝔼NpBtwnZb
30 an4 U𝔼NUBtwnZbp𝔼NpBtwnZbU𝔼Np𝔼NUBtwnZbpBtwnZb
31 29 30 sylib NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAU𝔼Np𝔼NUBtwnZbpBtwnZb
32 simp2 A𝔼Nb𝔼NxAxBtwnZbb𝔼N
33 simpl2r Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01ZU
34 33 adantr Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbiZU
35 simpl Ui=1tZi+tbipi=1sZi+sbiUi=1tZi+tbi
36 35 ralimi i1NUi=1tZi+tbipi=1sZi+sbii1NUi=1tZi+tbi
37 eqcom Ui=1tZi+tbi1tZi+tbi=Ui
38 oveq2 t=01t=10
39 1m0e1 10=1
40 38 39 eqtrdi t=01t=1
41 40 oveq1d t=01tZi=1Zi
42 oveq1 t=0tbi=0bi
43 41 42 oveq12d t=01tZi+tbi=1Zi+0bi
44 43 eqeq1d t=01tZi+tbi=Ui1Zi+0bi=Ui
45 37 44 bitrid t=0Ui=1tZi+tbi1Zi+0bi=Ui
46 45 ralbidv t=0i1NUi=1tZi+tbii1N1Zi+0bi=Ui
47 46 biimpac i1NUi=1tZi+tbit=0i1N1Zi+0bi=Ui
48 simpl2l Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01Z𝔼N
49 simpl3l Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01U𝔼N
50 eqeefv Z𝔼NU𝔼NZ=Ui1NZi=Ui
51 48 49 50 syl2anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01Z=Ui1NZi=Ui
52 fveecn Z𝔼Ni1NZi
53 48 52 sylan Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NZi
54 simp1r Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nb𝔼N
55 54 ad2antrr Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1Nb𝔼N
56 fveecn b𝔼Ni1Nbi
57 55 56 sylancom Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1Nbi
58 mullid Zi1Zi=Zi
59 mul02 bi0bi=0
60 58 59 oveqan12d Zibi1Zi+0bi=Zi+0
61 addrid ZiZi+0=Zi
62 61 adantr ZibiZi+0=Zi
63 60 62 eqtrd Zibi1Zi+0bi=Zi
64 53 57 63 syl2anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1N1Zi+0bi=Zi
65 64 eqeq1d Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1N1Zi+0bi=UiZi=Ui
66 65 ralbidva Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1N1Zi+0bi=Uii1NZi=Ui
67 51 66 bitr4d Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01Z=Ui1N1Zi+0bi=Ui
68 47 67 imbitrrid Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbit=0Z=U
69 68 expdimp Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbit=0Z=U
70 36 69 sylan2 Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbit=0Z=U
71 70 necon3d Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbiZUt0
72 34 71 mpd Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbit0
73 simp1l Nb𝔼NZ𝔼NZUU𝔼Np𝔼NN
74 simp2l Nb𝔼NZ𝔼NZUU𝔼Np𝔼NZ𝔼N
75 73 74 54 3jca Nb𝔼NZ𝔼NZUU𝔼Np𝔼NNZ𝔼Nb𝔼N
76 simp2l NZ𝔼Nb𝔼Nt01s01t0t01
77 elicc01 t01t0tt1
78 77 simp1bi t01t
79 76 78 syl NZ𝔼Nb𝔼Nt01s01t0t
80 simp2r NZ𝔼Nb𝔼Nt01s01t0s01
81 elicc01 s01s0ss1
82 81 simp1bi s01s
83 80 82 syl NZ𝔼Nb𝔼Nt01s01t0s
84 79 83 letrid NZ𝔼Nb𝔼Nt01s01t0tsst
85 simpr NZ𝔼Nb𝔼Nt01s01t0tsts
86 79 adantr NZ𝔼Nb𝔼Nt01s01t0tst
87 77 simp2bi t010t
88 76 87 syl NZ𝔼Nb𝔼Nt01s01t00t
89 88 adantr NZ𝔼Nb𝔼Nt01s01t0ts0t
90 83 adantr NZ𝔼Nb𝔼Nt01s01t0tss
91 0red NZ𝔼Nb𝔼Nt01s01t0ts0
92 simp3 NZ𝔼Nb𝔼Nt01s01t0t0
93 79 88 92 ne0gt0d NZ𝔼Nb𝔼Nt01s01t00<t
94 93 adantr NZ𝔼Nb𝔼Nt01s01t0ts0<t
95 91 86 90 94 85 ltletrd NZ𝔼Nb𝔼Nt01s01t0ts0<s
96 divelunit t0ts0<sts01ts
97 86 89 90 95 96 syl22anc NZ𝔼Nb𝔼Nt01s01t0tsts01ts
98 85 97 mpbird NZ𝔼Nb𝔼Nt01s01t0tsts01
99 simp12 NZ𝔼Nb𝔼Nt01s01t0Z𝔼N
100 99 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1NZ𝔼N
101 100 52 sylancom NZ𝔼Nb𝔼Nt01s01t0tsi1NZi
102 simp13 NZ𝔼Nb𝔼Nt01s01t0b𝔼N
103 102 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1Nb𝔼N
104 103 56 sylancom NZ𝔼Nb𝔼Nt01s01t0tsi1Nbi
105 78 recnd t01t
106 76 105 syl NZ𝔼Nb𝔼Nt01s01t0t
107 106 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1Nt
108 82 recnd s01s
109 80 108 syl NZ𝔼Nb𝔼Nt01s01t0s
110 109 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1Ns
111 0red NZ𝔼Nb𝔼Nt01s01t0tsi1N0
112 79 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1Nt
113 83 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1Ns
114 88 ad2antrr NZ𝔼Nb𝔼Nt01s01t0tsi1N0t
115 simpll3 NZ𝔼Nb𝔼Nt01s01t0tsi1Nt0
116 112 114 115 ne0gt0d NZ𝔼Nb𝔼Nt01s01t0tsi1N0<t
117 simplr NZ𝔼Nb𝔼Nt01s01t0tsi1Nts
118 111 112 113 116 117 ltletrd NZ𝔼Nb𝔼Nt01s01t0tsi1N0<s
119 118 gt0ne0d NZ𝔼Nb𝔼Nt01s01t0tsi1Ns0
120 divcl tss0ts
121 120 adantl Zibitss0ts
122 ax-1cn 1
123 simpr2 Zibitss0s
124 subcl 1s1s
125 122 123 124 sylancr Zibitss01s
126 simpll Zibitss0Zi
127 125 126 mulcld Zibitss01sZi
128 simplr Zibitss0bi
129 123 128 mulcld Zibitss0sbi
130 121 127 129 adddid Zibitss0ts1sZi+sbi=ts1sZi+tssbi
131 130 oveq2d Zibitss01tsZi+ts1sZi+sbi=1tsZi+ts1sZi+tssbi
132 subcl 1ts1ts
133 122 121 132 sylancr Zibitss01ts
134 133 126 mulcld Zibitss01tsZi
135 121 127 mulcld Zibitss0ts1sZi
136 121 129 mulcld Zibitss0tssbi
137 134 135 136 addassd Zibitss01tsZi+ts1sZi+tssbi=1tsZi+ts1sZi+tssbi
138 121 125 mulcld Zibitss0ts1s
139 133 138 126 adddird Zibitss01-ts+ts1sZi=1tsZi+ts1sZi
140 simp2 tss0s
141 subdi ts1sts1s=ts1tss
142 122 141 mp3an2 tssts1s=ts1tss
143 120 140 142 syl2anc tss0ts1s=ts1tss
144 120 mulridd tss0ts1=ts
145 divcan1 tss0tss=t
146 144 145 oveq12d tss0ts1tss=tst
147 143 146 eqtrd tss0ts1s=tst
148 147 oveq2d tss01-ts+ts1s=1ts+ts-t
149 simp1 tss0t
150 npncan 1tst1ts+ts-t=1t
151 122 120 149 150 mp3an2i tss01ts+ts-t=1t
152 148 151 eqtrd tss01-ts+ts1s=1t
153 152 adantl Zibitss01-ts+ts1s=1t
154 153 oveq1d Zibitss01-ts+ts1sZi=1tZi
155 121 125 126 mulassd Zibitss0ts1sZi=ts1sZi
156 155 oveq2d Zibitss01tsZi+ts1sZi=1tsZi+ts1sZi
157 139 154 156 3eqtr3rd Zibitss01tsZi+ts1sZi=1tZi
158 121 123 128 mulassd Zibitss0tssbi=tssbi
159 145 adantl Zibitss0tss=t
160 159 oveq1d Zibitss0tssbi=tbi
161 158 160 eqtr3d Zibitss0tssbi=tbi
162 157 161 oveq12d Zibitss01tsZi+ts1sZi+tssbi=1tZi+tbi
163 131 137 162 3eqtr2rd Zibitss01tZi+tbi=1tsZi+ts1sZi+sbi
164 101 104 107 110 119 163 syl23anc NZ𝔼Nb𝔼Nt01s01t0tsi1N1tZi+tbi=1tsZi+ts1sZi+sbi
165 164 ralrimiva NZ𝔼Nb𝔼Nt01s01t0tsi1N1tZi+tbi=1tsZi+ts1sZi+sbi
166 oveq2 r=ts1r=1ts
167 166 oveq1d r=ts1rZi=1tsZi
168 oveq1 r=tsr1sZi+sbi=ts1sZi+sbi
169 167 168 oveq12d r=ts1rZi+r1sZi+sbi=1tsZi+ts1sZi+sbi
170 169 eqeq2d r=ts1tZi+tbi=1rZi+r1sZi+sbi1tZi+tbi=1tsZi+ts1sZi+sbi
171 170 ralbidv r=tsi1N1tZi+tbi=1rZi+r1sZi+sbii1N1tZi+tbi=1tsZi+ts1sZi+sbi
172 171 rspcev ts01i1N1tZi+tbi=1tsZi+ts1sZi+sbir01i1N1tZi+tbi=1rZi+r1sZi+sbi
173 98 165 172 syl2anc NZ𝔼Nb𝔼Nt01s01t0tsr01i1N1tZi+tbi=1rZi+r1sZi+sbi
174 173 ex NZ𝔼Nb𝔼Nt01s01t0tsr01i1N1tZi+tbi=1rZi+r1sZi+sbi
175 81 simp2bi s010s
176 80 175 syl NZ𝔼Nb𝔼Nt01s01t00s
177 divelunit s0st0<tst01st
178 83 176 79 93 177 syl22anc NZ𝔼Nb𝔼Nt01s01t0st01st
179 178 biimpar NZ𝔼Nb𝔼Nt01s01t0stst01
180 simp112 NZ𝔼Nb𝔼Nt01s01t0sti1NZ𝔼N
181 simp3 NZ𝔼Nb𝔼Nt01s01t0sti1Ni1N
182 180 181 52 syl2anc NZ𝔼Nb𝔼Nt01s01t0sti1NZi
183 simp113 NZ𝔼Nb𝔼Nt01s01t0sti1Nb𝔼N
184 183 181 56 syl2anc NZ𝔼Nb𝔼Nt01s01t0sti1Nbi
185 simp12r NZ𝔼Nb𝔼Nt01s01t0sti1Ns01
186 185 108 syl NZ𝔼Nb𝔼Nt01s01t0sti1Ns
187 simp12l NZ𝔼Nb𝔼Nt01s01t0sti1Nt01
188 187 105 syl NZ𝔼Nb𝔼Nt01s01t0sti1Nt
189 simp13 NZ𝔼Nb𝔼Nt01s01t0sti1Nt0
190 divcl stt0st
191 190 adantl Zibistt0st
192 simpr2 Zibistt0t
193 subcl 1t1t
194 122 192 193 sylancr Zibistt01t
195 simpll Zibistt0Zi
196 194 195 mulcld Zibistt01tZi
197 simplr Zibistt0bi
198 192 197 mulcld Zibistt0tbi
199 191 196 198 adddid Zibistt0st1tZi+tbi=st1tZi+sttbi
200 199 oveq2d Zibistt01stZi+st1tZi+tbi=1stZi+st1tZi+sttbi
201 subcl 1st1st
202 122 191 201 sylancr Zibistt01st
203 202 195 mulcld Zibistt01stZi
204 191 196 mulcld Zibistt0st1tZi
205 191 198 mulcld Zibistt0sttbi
206 203 204 205 addassd Zibistt01stZi+st1tZi+sttbi=1stZi+st1tZi+sttbi
207 simp2 stt0t
208 subdi st1tst1t=st1stt
209 122 208 mp3an2 sttst1t=st1stt
210 190 207 209 syl2anc stt0st1t=st1stt
211 190 mulridd stt0st1=st
212 divcan1 stt0stt=s
213 211 212 oveq12d stt0st1stt=sts
214 210 213 eqtrd stt0st1t=sts
215 214 oveq2d stt01-st+st1t=1st+st-s
216 simp1 stt0s
217 npncan 1sts1st+st-s=1s
218 122 190 216 217 mp3an2i stt01st+st-s=1s
219 215 218 eqtr2d stt01s=1-st+st1t
220 219 oveq1d stt01sZi=1-st+st1tZi
221 220 adantl Zibistt01sZi=1-st+st1tZi
222 191 194 mulcld Zibistt0st1t
223 202 222 195 adddird Zibistt01-st+st1tZi=1stZi+st1tZi
224 191 194 195 mulassd Zibistt0st1tZi=st1tZi
225 224 oveq2d Zibistt01stZi+st1tZi=1stZi+st1tZi
226 221 223 225 3eqtrrd Zibistt01stZi+st1tZi=1sZi
227 191 192 197 mulassd Zibistt0sttbi=sttbi
228 212 oveq1d stt0sttbi=sbi
229 228 adantl Zibistt0sttbi=sbi
230 227 229 eqtr3d Zibistt0sttbi=sbi
231 226 230 oveq12d Zibistt01stZi+st1tZi+sttbi=1sZi+sbi
232 200 206 231 3eqtr2rd Zibistt01sZi+sbi=1stZi+st1tZi+tbi
233 182 184 186 188 189 232 syl23anc NZ𝔼Nb𝔼Nt01s01t0sti1N1sZi+sbi=1stZi+st1tZi+tbi
234 233 3expa NZ𝔼Nb𝔼Nt01s01t0sti1N1sZi+sbi=1stZi+st1tZi+tbi
235 234 ralrimiva NZ𝔼Nb𝔼Nt01s01t0sti1N1sZi+sbi=1stZi+st1tZi+tbi
236 oveq2 r=st1r=1st
237 236 oveq1d r=st1rZi=1stZi
238 oveq1 r=str1tZi+tbi=st1tZi+tbi
239 237 238 oveq12d r=st1rZi+r1tZi+tbi=1stZi+st1tZi+tbi
240 239 eqeq2d r=st1sZi+sbi=1rZi+r1tZi+tbi1sZi+sbi=1stZi+st1tZi+tbi
241 240 ralbidv r=sti1N1sZi+sbi=1rZi+r1tZi+tbii1N1sZi+sbi=1stZi+st1tZi+tbi
242 241 rspcev st01i1N1sZi+sbi=1stZi+st1tZi+tbir01i1N1sZi+sbi=1rZi+r1tZi+tbi
243 179 235 242 syl2anc NZ𝔼Nb𝔼Nt01s01t0str01i1N1sZi+sbi=1rZi+r1tZi+tbi
244 243 ex NZ𝔼Nb𝔼Nt01s01t0str01i1N1sZi+sbi=1rZi+r1tZi+tbi
245 174 244 orim12d NZ𝔼Nb𝔼Nt01s01t0tsstr01i1N1tZi+tbi=1rZi+r1sZi+sbir01i1N1sZi+sbi=1rZi+r1tZi+tbi
246 r19.43 r01i1N1tZi+tbi=1rZi+r1sZi+sbii1N1sZi+sbi=1rZi+r1tZi+tbir01i1N1tZi+tbi=1rZi+r1sZi+sbir01i1N1sZi+sbi=1rZi+r1tZi+tbi
247 245 246 syl6ibr NZ𝔼Nb𝔼Nt01s01t0tsstr01i1N1tZi+tbi=1rZi+r1sZi+sbii1N1sZi+sbi=1rZi+r1tZi+tbi
248 84 247 mpd NZ𝔼Nb𝔼Nt01s01t0r01i1N1tZi+tbi=1rZi+r1sZi+sbii1N1sZi+sbi=1rZi+r1tZi+tbi
249 id Ui=1tZi+tbiUi=1tZi+tbi
250 oveq2 pi=1sZi+sbirpi=r1sZi+sbi
251 250 oveq2d pi=1sZi+sbi1rZi+rpi=1rZi+r1sZi+sbi
252 249 251 eqeqan12d Ui=1tZi+tbipi=1sZi+sbiUi=1rZi+rpi1tZi+tbi=1rZi+r1sZi+sbi
253 252 ralimi i1NUi=1tZi+tbipi=1sZi+sbii1NUi=1rZi+rpi1tZi+tbi=1rZi+r1sZi+sbi
254 ralbi i1NUi=1rZi+rpi1tZi+tbi=1rZi+r1sZi+sbii1NUi=1rZi+rpii1N1tZi+tbi=1rZi+r1sZi+sbi
255 253 254 syl i1NUi=1tZi+tbipi=1sZi+sbii1NUi=1rZi+rpii1N1tZi+tbi=1rZi+r1sZi+sbi
256 id pi=1sZi+sbipi=1sZi+sbi
257 oveq2 Ui=1tZi+tbirUi=r1tZi+tbi
258 257 oveq2d Ui=1tZi+tbi1rZi+rUi=1rZi+r1tZi+tbi
259 256 258 eqeqan12rd Ui=1tZi+tbipi=1sZi+sbipi=1rZi+rUi1sZi+sbi=1rZi+r1tZi+tbi
260 259 ralimi i1NUi=1tZi+tbipi=1sZi+sbii1Npi=1rZi+rUi1sZi+sbi=1rZi+r1tZi+tbi
261 ralbi i1Npi=1rZi+rUi1sZi+sbi=1rZi+r1tZi+tbii1Npi=1rZi+rUii1N1sZi+sbi=1rZi+r1tZi+tbi
262 260 261 syl i1NUi=1tZi+tbipi=1sZi+sbii1Npi=1rZi+rUii1N1sZi+sbi=1rZi+r1tZi+tbi
263 255 262 orbi12d i1NUi=1tZi+tbipi=1sZi+sbii1NUi=1rZi+rpii1Npi=1rZi+rUii1N1tZi+tbi=1rZi+r1sZi+sbii1N1sZi+sbi=1rZi+r1tZi+tbi
264 263 rexbidv i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUir01i1N1tZi+tbi=1rZi+r1sZi+sbii1N1sZi+sbi=1rZi+r1tZi+tbi
265 248 264 syl5ibrcom NZ𝔼Nb𝔼Nt01s01t0i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUi
266 265 3expia NZ𝔼Nb𝔼Nt01s01t0i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUi
267 266 com23 NZ𝔼Nb𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbit0r01i1NUi=1rZi+rpii1Npi=1rZi+rUi
268 75 267 sylan Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbit0r01i1NUi=1rZi+rpii1Npi=1rZi+rUi
269 268 imp Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbit0r01i1NUi=1rZi+rpii1Npi=1rZi+rUi
270 72 269 mpd Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUi
271 270 ex Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUi
272 271 rexlimdvva Nb𝔼NZ𝔼NZUU𝔼Np𝔼Nt01s01i1NUi=1tZi+tbipi=1sZi+sbir01i1NUi=1rZi+rpii1Npi=1rZi+rUi
273 simp3l Nb𝔼NZ𝔼NZUU𝔼Np𝔼NU𝔼N
274 brbtwn U𝔼NZ𝔼Nb𝔼NUBtwnZbt01i1NUi=1tZi+tbi
275 273 74 54 274 syl3anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbt01i1NUi=1tZi+tbi
276 simp3r Nb𝔼NZ𝔼NZUU𝔼Np𝔼Np𝔼N
277 brbtwn p𝔼NZ𝔼Nb𝔼NpBtwnZbs01i1Npi=1sZi+sbi
278 276 74 54 277 syl3anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼NpBtwnZbs01i1Npi=1sZi+sbi
279 275 278 anbi12d Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbt01i1NUi=1tZi+tbis01i1Npi=1sZi+sbi
280 r19.26 i1NUi=1tZi+tbipi=1sZi+sbii1NUi=1tZi+tbii1Npi=1sZi+sbi
281 280 2rexbii t01s01i1NUi=1tZi+tbipi=1sZi+sbit01s01i1NUi=1tZi+tbii1Npi=1sZi+sbi
282 reeanv t01s01i1NUi=1tZi+tbii1Npi=1sZi+sbit01i1NUi=1tZi+tbis01i1Npi=1sZi+sbi
283 281 282 bitri t01s01i1NUi=1tZi+tbipi=1sZi+sbit01i1NUi=1tZi+tbis01i1Npi=1sZi+sbi
284 279 283 bitr4di Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbt01s01i1NUi=1tZi+tbipi=1sZi+sbi
285 brbtwn U𝔼NZ𝔼Np𝔼NUBtwnZpr01i1NUi=1rZi+rpi
286 273 74 276 285 syl3anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZpr01i1NUi=1rZi+rpi
287 brbtwn p𝔼NZ𝔼NU𝔼NpBtwnZUr01i1Npi=1rZi+rUi
288 276 74 273 287 syl3anc Nb𝔼NZ𝔼NZUU𝔼Np𝔼NpBtwnZUr01i1Npi=1rZi+rUi
289 286 288 orbi12d Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZppBtwnZUr01i1NUi=1rZi+rpir01i1Npi=1rZi+rUi
290 r19.43 r01i1NUi=1rZi+rpii1Npi=1rZi+rUir01i1NUi=1rZi+rpir01i1Npi=1rZi+rUi
291 289 290 bitr4di Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZppBtwnZUr01i1NUi=1rZi+rpii1Npi=1rZi+rUi
292 272 284 291 3imtr4d Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
293 292 3expia Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
294 293 impd Nb𝔼NZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
295 32 294 sylanl2 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NZUU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
296 295 3adantr2 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
297 296 adantr NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAU𝔼Np𝔼NUBtwnZbpBtwnZbUBtwnZppBtwnZU
298 31 297 mpd NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAUBtwnZppBtwnZU
299 298 ralrimiva NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAUBtwnZppBtwnZU
300 299 3exp2 NA𝔼Nb𝔼NxAxBtwnZbZ𝔼NUAZUpAUBtwnZppBtwnZU
301 12 300 syl6 bBNA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUAZUpAUBtwnZppBtwnZU
302 301 exlimiv bbBNA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUAZUpAUBtwnZppBtwnZU
303 3 302 sylbi BNA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUAZUpAUBtwnZppBtwnZU
304 303 com4l NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUpAUBtwnZppBtwnZU
305 304 3impd NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUpAUBtwnZppBtwnZU
306 305 imp32 NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUpAUBtwnZppBtwnZU
307 1 sseq2i ADAp𝔼N|UBtwnZppBtwnZU
308 ssrab Ap𝔼N|UBtwnZppBtwnZUA𝔼NpAUBtwnZppBtwnZU
309 307 308 bitri ADA𝔼NpAUBtwnZppBtwnZU
310 2 306 309 sylanbrc NA𝔼NB𝔼NxAyBxBtwnZyZ𝔼NUABZUAD