Metamath Proof Explorer


Theorem basellem3

Description: Lemma for basel . Using the binomial theorem and de Moivre's formula, we have the identity _e ^i N x / ( sin x ) ^ n = sum m e. ( 0 ... N ) ( NC m ) ( i ^ m ) ( cot x ) ^ ( N - m ) , so taking imaginary parts yields sin ( N x ) / ( sin x ) ^ N = sum_ j e. ( 0 ... M ) ( N _C 2 j ) ( -u 1 ) ^ ( M - j ) ( cot x ) ^ ( -u 2 j ) = P ( ( cot x ) ^ 2 ) , where N = 2 M + 1 . (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Hypotheses basel.n N=2 M+1
basel.p P=tj=0M(N2j)1Mjtj
Assertion basellem3 MA0π2PtanA2=sinNAsinAN

Proof

Step Hyp Ref Expression
1 basel.n N=2 M+1
2 basel.p P=tj=0M(N2j)1Mjtj
3 tanrpcl A0π2tanA+
4 3 adantl MA0π2tanA+
5 4 rpreccld MA0π21tanA+
6 5 rpcnd MA0π21tanA
7 ax-icn i
8 7 a1i MA0π2i
9 2nn 2
10 simpl MA0π2M
11 nnmulcl 2M2 M
12 9 10 11 sylancr MA0π22 M
13 12 peano2nnd MA0π22 M+1
14 1 13 eqeltrid MA0π2N
15 14 nnnn0d MA0π2N0
16 binom 1tanAiN01tanA+iN=m=0N(Nm)1tanANmim
17 6 8 15 16 syl3anc MA0π21tanA+iN=m=0N(Nm)1tanANmim
18 elioore A0π2A
19 18 adantl MA0π2A
20 19 recoscld MA0π2cosA
21 20 recnd MA0π2cosA
22 19 resincld MA0π2sinA
23 22 recnd MA0π2sinA
24 mulcl isinAisinA
25 7 23 24 sylancr MA0π2isinA
26 21 25 addcld MA0π2cosA+isinA
27 sincosq1sgn A0π20<sinA0<cosA
28 27 adantl MA0π20<sinA0<cosA
29 28 simpld MA0π20<sinA
30 29 gt0ne0d MA0π2sinA0
31 26 23 30 15 expdivd MA0π2cosA+isinAsinAN=cosA+isinANsinAN
32 21 25 23 30 divdird MA0π2cosA+isinAsinA=cosAsinA+isinAsinA
33 19 recnd MA0π2A
34 28 simprd MA0π20<cosA
35 34 gt0ne0d MA0π2cosA0
36 tanval AcosA0tanA=sinAcosA
37 33 35 36 syl2anc MA0π2tanA=sinAcosA
38 37 oveq2d MA0π21tanA=1sinAcosA
39 23 21 30 35 recdivd MA0π21sinAcosA=cosAsinA
40 38 39 eqtr2d MA0π2cosAsinA=1tanA
41 8 23 30 divcan4d MA0π2isinAsinA=i
42 40 41 oveq12d MA0π2cosAsinA+isinAsinA=1tanA+i
43 32 42 eqtrd MA0π2cosA+isinAsinA=1tanA+i
44 43 oveq1d MA0π2cosA+isinAsinAN=1tanA+iN
45 14 nnzd MA0π2N
46 demoivre ANcosA+isinAN=cosNA+isinNA
47 33 45 46 syl2anc MA0π2cosA+isinAN=cosNA+isinNA
48 47 oveq1d MA0π2cosA+isinANsinAN=cosNA+isinNAsinAN
49 31 44 48 3eqtr3d MA0π21tanA+iN=cosNA+isinNAsinAN
50 14 nnred MA0π2N
51 50 19 remulcld MA0π2NA
52 51 recoscld MA0π2cosNA
53 52 recnd MA0π2cosNA
54 51 resincld MA0π2sinNA
55 54 recnd MA0π2sinNA
56 mulcl isinNAisinNA
57 7 55 56 sylancr MA0π2isinNA
58 22 29 elrpd MA0π2sinA+
59 58 45 rpexpcld MA0π2sinAN+
60 59 rpcnd MA0π2sinAN
61 59 rpne0d MA0π2sinAN0
62 53 57 60 61 divdird MA0π2cosNA+isinNAsinAN=cosNAsinAN+isinNAsinAN
63 8 55 60 61 divassd MA0π2isinNAsinAN=isinNAsinAN
64 63 oveq2d MA0π2cosNAsinAN+isinNAsinAN=cosNAsinAN+isinNAsinAN
65 49 62 64 3eqtrd MA0π21tanA+iN=cosNAsinAN+isinNAsinAN
66 17 65 eqtr3d MA0π2m=0N(Nm)1tanANmim=cosNAsinAN+isinNAsinAN
67 66 fveq2d MA0π2m=0N(Nm)1tanANmim=cosNAsinAN+isinNAsinAN
68 oveq2 m=N2j(Nm)=(NN2j)
69 oveq2 m=N2jNm=NN2j
70 69 oveq2d m=N2j1tanANm=1tanANN2j
71 oveq2 m=N2jim=iN2j
72 70 71 oveq12d m=N2j1tanANmim=1tanANN2jiN2j
73 68 72 oveq12d m=N2j(Nm)1tanANmim=(NN2j)1tanANN2jiN2j
74 73 fveq2d m=N2j(Nm)1tanANmim=(NN2j)1tanANN2jiN2j
75 fzfid MA0π20MFin
76 2nn0 20
77 elfznn0 k0Mk0
78 77 adantl MA0π2k0Mk0
79 nn0mulcl 20k02k0
80 76 78 79 sylancr MA0π2k0M2k0
81 80 nn0red MA0π2k0M2k
82 12 nnred MA0π22 M
83 82 adantr MA0π2k0M2 M
84 50 adantr MA0π2k0MN
85 elfzle2 k0MkM
86 85 adantl MA0π2k0MkM
87 78 nn0red MA0π2k0Mk
88 nnre MM
89 88 ad2antrr MA0π2k0MM
90 2re 2
91 2pos 0<2
92 90 91 pm3.2i 20<2
93 92 a1i MA0π2k0M20<2
94 lemul2 kM20<2kM2k2 M
95 87 89 93 94 syl3anc MA0π2k0MkM2k2 M
96 86 95 mpbid MA0π2k0M2k2 M
97 83 lep1d MA0π2k0M2 M2 M+1
98 97 1 breqtrrdi MA0π2k0M2 MN
99 81 83 84 96 98 letrd MA0π2k0M2kN
100 nn0uz 0=0
101 80 100 eleqtrdi MA0π2k0M2k0
102 45 adantr MA0π2k0MN
103 elfz5 2k0N2k0N2kN
104 101 102 103 syl2anc MA0π2k0M2k0N2kN
105 99 104 mpbird MA0π2k0M2k0N
106 fznn0sub2 2k0NN2k0N
107 105 106 syl MA0π2k0MN2k0N
108 107 ex MA0π2k0MN2k0N
109 14 nncnd MA0π2N
110 109 adantr MA0π2k0Mm0MN
111 2cn 2
112 elfzelz k0Mk
113 112 zcnd k0Mk
114 113 ad2antrl MA0π2k0Mm0Mk
115 mulcl 2k2k
116 111 114 115 sylancr MA0π2k0Mm0M2k
117 113 ssriv 0M
118 simprr MA0π2k0Mm0Mm0M
119 117 118 sselid MA0π2k0Mm0Mm
120 mulcl 2m2m
121 111 119 120 sylancr MA0π2k0Mm0M2m
122 110 116 121 subcanad MA0π2k0Mm0MN2k=N2m2k=2m
123 2cnne0 220
124 123 a1i MA0π2k0Mm0M220
125 mulcan km2202k=2mk=m
126 114 119 124 125 syl3anc MA0π2k0Mm0M2k=2mk=m
127 122 126 bitrd MA0π2k0Mm0MN2k=N2mk=m
128 127 ex MA0π2k0Mm0MN2k=N2mk=m
129 108 128 dom2lem MA0π2k0MN2k:0M1-10N
130 f1f1orn k0MN2k:0M1-10Nk0MN2k:0M1-1 ontorank0MN2k
131 129 130 syl MA0π2k0MN2k:0M1-1 ontorank0MN2k
132 oveq2 k=j2k=2j
133 132 oveq2d k=jN2k=N2j
134 eqid k0MN2k=k0MN2k
135 ovex N2jV
136 133 134 135 fvmpt j0Mk0MN2kj=N2j
137 136 adantl MA0π2j0Mk0MN2kj=N2j
138 107 fmpttd MA0π2k0MN2k:0M0N
139 138 frnd MA0π2rank0MN2k0N
140 139 sselda MA0π2mrank0MN2km0N
141 bccl2 m0N(Nm)
142 141 adantl MA0π2m0N(Nm)
143 142 nncnd MA0π2m0N(Nm)
144 4 rprecred MA0π21tanA
145 fznn0sub m0NNm0
146 reexpcl 1tanANm01tanANm
147 144 145 146 syl2an MA0π2m0N1tanANm
148 147 recnd MA0π2m0N1tanANm
149 elfznn0 m0Nm0
150 149 adantl MA0π2m0Nm0
151 expcl im0im
152 7 150 151 sylancr MA0π2m0Nim
153 148 152 mulcld MA0π2m0N1tanANmim
154 143 153 mulcld MA0π2m0N(Nm)1tanANmim
155 140 154 syldan MA0π2mrank0MN2k(Nm)1tanANmim
156 155 imcld MA0π2mrank0MN2k(Nm)1tanANmim
157 156 recnd MA0π2mrank0MN2k(Nm)1tanANmim
158 74 75 131 137 157 fsumf1o MA0π2mrank0MN2k(Nm)1tanANmim=j=0M(NN2j)1tanANN2jiN2j
159 eldifi m0Nrank0MN2km0N
160 142 nnred MA0π2m0N(Nm)
161 159 160 sylan2 MA0π2m0Nrank0MN2k(Nm)
162 159 147 sylan2 MA0π2m0Nrank0MN2k1tanANm
163 eldif m0Nrank0MN2km0N¬mrank0MN2k
164 elfzelz m0Nm
165 164 adantl MA0π2m0Nm
166 zeo mm2m+12
167 165 166 syl MA0π2m0Nm2m+12
168 i2 i2=1
169 168 oveq1i i2m2=1m2
170 simprr MA0π2m0Nm2m2
171 149 ad2antrl MA0π2m0Nm2m0
172 nn0re m0m
173 nn0ge0 m00m
174 divge0 m0m20<20m2
175 90 91 174 mpanr12 m0m0m2
176 172 173 175 syl2anc m00m2
177 171 176 syl MA0π2m0Nm20m2
178 elnn0z m20m20m2
179 170 177 178 sylanbrc MA0π2m0Nm2m20
180 expmul i20m20i2m2=i2m2
181 7 76 179 180 mp3an12i MA0π2m0Nm2i2m2=i2m2
182 171 nn0cnd MA0π2m0Nm2m
183 2ne0 20
184 divcan2 m2202m2=m
185 111 183 184 mp3an23 m2m2=m
186 182 185 syl MA0π2m0Nm22m2=m
187 186 oveq2d MA0π2m0Nm2i2m2=im
188 181 187 eqtr3d MA0π2m0Nm2i2m2=im
189 169 188 eqtr3id MA0π2m0Nm21m2=im
190 neg1rr 1
191 reexpcl 1m201m2
192 190 179 191 sylancr MA0π2m0Nm21m2
193 189 192 eqeltrrd MA0π2m0Nm2im
194 193 expr MA0π2m0Nm2im
195 0zd MA0π2m0Nm+120
196 nnz MM
197 196 ad2antrr MA0π2m0Nm+12M
198 109 adantr MA0π2m0Nm+12N
199 149 ad2antrl MA0π2m0Nm+12m0
200 199 nn0cnd MA0π2m0Nm+12m
201 1cnd MA0π2m0Nm+121
202 198 200 201 pnpcan2d MA0π2m0Nm+12N+1-m+1=Nm
203 2t1e2 21=2
204 df-2 2=1+1
205 203 204 eqtr2i 1+1=21
206 205 oveq2i 2 M+1+1=2 M+21
207 1 oveq1i N+1=2 M+1+1
208 12 nncnd MA0π22 M
209 208 adantr MA0π2m0Nm+122 M
210 209 201 201 addassd MA0π2m0Nm+122 M+1+1=2 M+1+1
211 207 210 eqtrid MA0π2m0Nm+12N+1=2 M+1+1
212 2cnd MA0π2m0Nm+122
213 nncn MM
214 213 ad2antrr MA0π2m0Nm+12M
215 212 214 201 adddid MA0π2m0Nm+122M+1=2 M+21
216 206 211 215 3eqtr4a MA0π2m0Nm+12N+1=2M+1
217 216 oveq1d MA0π2m0Nm+12N+1-m+1=2M+1m+1
218 202 217 eqtr3d MA0π2m0Nm+12Nm=2M+1m+1
219 218 oveq1d MA0π2m0Nm+12Nm2=2M+1m+12
220 197 peano2zd MA0π2m0Nm+12M+1
221 220 zcnd MA0π2m0Nm+12M+1
222 mulcl 2M+12M+1
223 111 221 222 sylancr MA0π2m0Nm+122M+1
224 peano2cn mm+1
225 200 224 syl MA0π2m0Nm+12m+1
226 123 a1i MA0π2m0Nm+12220
227 divsubdir 2M+1m+12202M+1m+12=2M+12m+12
228 223 225 226 227 syl3anc MA0π2m0Nm+122M+1m+12=2M+12m+12
229 183 a1i MA0π2m0Nm+1220
230 221 212 229 divcan3d MA0π2m0Nm+122M+12=M+1
231 230 oveq1d MA0π2m0Nm+122M+12m+12=M+1-m+12
232 219 228 231 3eqtrd MA0π2m0Nm+12Nm2=M+1-m+12
233 simprr MA0π2m0Nm+12m+12
234 220 233 zsubcld MA0π2m0Nm+12M+1-m+12
235 232 234 eqeltrd MA0π2m0Nm+12Nm2
236 145 ad2antrl MA0π2m0Nm+12Nm0
237 nn0re Nm0Nm
238 nn0ge0 Nm00Nm
239 divge0 Nm0Nm20<20Nm2
240 90 91 239 mpanr12 Nm0Nm0Nm2
241 237 238 240 syl2anc Nm00Nm2
242 236 241 syl MA0π2m0Nm+120Nm2
243 236 nn0red MA0π2m0Nm+12Nm
244 50 adantr MA0π2m0Nm+12N
245 peano2re NN+1
246 244 245 syl MA0π2m0Nm+12N+1
247 199 173 syl MA0π2m0Nm+120m
248 199 nn0red MA0π2m0Nm+12m
249 244 248 subge02d MA0π2m0Nm+120mNmN
250 247 249 mpbid MA0π2m0Nm+12NmN
251 244 ltp1d MA0π2m0Nm+12N<N+1
252 243 244 246 250 251 lelttrd MA0π2m0Nm+12Nm<N+1
253 252 216 breqtrd MA0π2m0Nm+12Nm<2M+1
254 220 zred MA0π2m0Nm+12M+1
255 92 a1i MA0π2m0Nm+1220<2
256 ltdivmul NmM+120<2Nm2<M+1Nm<2M+1
257 243 254 255 256 syl3anc MA0π2m0Nm+12Nm2<M+1Nm<2M+1
258 253 257 mpbird MA0π2m0Nm+12Nm2<M+1
259 zleltp1 Nm2MNm2MNm2<M+1
260 235 197 259 syl2anc MA0π2m0Nm+12Nm2MNm2<M+1
261 258 260 mpbird MA0π2m0Nm+12Nm2M
262 195 197 235 242 261 elfzd MA0π2m0Nm+12Nm20M
263 oveq2 k=Nm22k=2Nm2
264 263 oveq2d k=Nm2N2k=N2Nm2
265 ovex N2Nm2V
266 264 134 265 fvmpt Nm20Mk0MN2kNm2=N2Nm2
267 262 266 syl MA0π2m0Nm+12k0MN2kNm2=N2Nm2
268 236 nn0cnd MA0π2m0Nm+12Nm
269 268 212 229 divcan2d MA0π2m0Nm+122Nm2=Nm
270 269 oveq2d MA0π2m0Nm+12N2Nm2=NNm
271 198 200 nncand MA0π2m0Nm+12NNm=m
272 267 270 271 3eqtrd MA0π2m0Nm+12k0MN2kNm2=m
273 138 ffnd MA0π2k0MN2kFn0M
274 fnfvelrn k0MN2kFn0MNm20Mk0MN2kNm2rank0MN2k
275 273 262 274 syl2an2r MA0π2m0Nm+12k0MN2kNm2rank0MN2k
276 272 275 eqeltrrd MA0π2m0Nm+12mrank0MN2k
277 276 expr MA0π2m0Nm+12mrank0MN2k
278 194 277 orim12d MA0π2m0Nm2m+12immrank0MN2k
279 167 278 mpd MA0π2m0Nimmrank0MN2k
280 279 orcomd MA0π2m0Nmrank0MN2kim
281 280 ord MA0π2m0N¬mrank0MN2kim
282 281 impr MA0π2m0N¬mrank0MN2kim
283 163 282 sylan2b MA0π2m0Nrank0MN2kim
284 162 283 remulcld MA0π2m0Nrank0MN2k1tanANmim
285 161 284 remulcld MA0π2m0Nrank0MN2k(Nm)1tanANmim
286 285 reim0d MA0π2m0Nrank0MN2k(Nm)1tanANmim=0
287 fzfid MA0π20NFin
288 139 157 286 287 fsumss MA0π2mrank0MN2k(Nm)1tanANmim=m=0N(Nm)1tanANmim
289 elfznn0 j0Mj0
290 289 adantl MA0π2j0Mj0
291 nn0mulcl 20j02j0
292 76 290 291 sylancr MA0π2j0M2j0
293 292 nn0zd MA0π2j0M2j
294 bccl N02j(N2j)0
295 15 293 294 syl2an2r MA0π2j0M(N2j)0
296 295 nn0red MA0π2j0M(N2j)
297 fznn0sub j0MMj0
298 297 adantl MA0π2j0MMj0
299 reexpcl 1Mj01Mj
300 190 298 299 sylancr MA0π2j0M1Mj
301 296 300 remulcld MA0π2j0M(N2j)1Mj
302 2z 2
303 znegcl 22
304 302 303 ax-mp 2
305 rpexpcl tanA+2tanA2+
306 4 304 305 sylancl MA0π2tanA2+
307 306 rpred MA0π2tanA2
308 reexpcl tanA2j0tanA2j
309 307 289 308 syl2an MA0π2j0MtanA2j
310 301 309 remulcld MA0π2j0M(N2j)1MjtanA2j
311 310 recnd MA0π2j0M(N2j)1MjtanA2j
312 mulcl i(N2j)1MjtanA2ji(N2j)1MjtanA2j
313 7 311 312 sylancr MA0π2j0Mi(N2j)1MjtanA2j
314 313 addlidd MA0π2j0M0+i(N2j)1MjtanA2j=i(N2j)1MjtanA2j
315 295 nn0cnd MA0π2j0M(N2j)
316 300 recnd MA0π2j0M1Mj
317 309 recnd MA0π2j0MtanA2j
318 315 316 317 mulassd MA0π2j0M(N2j)1MjtanA2j=(N2j)1MjtanA2j
319 318 oveq2d MA0π2j0Mi(N2j)1MjtanA2j=i(N2j)1MjtanA2j
320 7 a1i MA0π2j0Mi
321 316 317 mulcld MA0π2j0M1MjtanA2j
322 320 315 321 mul12d MA0π2j0Mi(N2j)1MjtanA2j=(N2j)i1MjtanA2j
323 319 322 eqtrd MA0π2j0Mi(N2j)1MjtanA2j=(N2j)i1MjtanA2j
324 bccmpl N02j(N2j)=(NN2j)
325 15 293 324 syl2an2r MA0π2j0M(N2j)=(NN2j)
326 109 adantr MA0π2j0MN
327 292 nn0cnd MA0π2j0M2j
328 326 327 nncand MA0π2j0MNN2j=2j
329 328 oveq2d MA0π2j0M1tanANN2j=1tanA2j
330 4 adantr MA0π2j0MtanA+
331 330 rpcnd MA0π2j0MtanA
332 expneg tanA2j0tanA2j=1tanA2j
333 331 292 332 syl2anc MA0π2j0MtanA2j=1tanA2j
334 290 nn0cnd MA0π2j0Mj
335 mulneg1 2j-2j=2j
336 111 334 335 sylancr MA0π2j0M-2j=2j
337 336 oveq2d MA0π2j0MtanA-2j=tanA2j
338 330 rpne0d MA0π2j0MtanA0
339 331 338 293 exprecd MA0π2j0M1tanA2j=1tanA2j
340 333 337 339 3eqtr4d MA0π2j0MtanA-2j=1tanA2j
341 304 a1i MA0π2j0M2
342 290 nn0zd MA0π2j0Mj
343 expmulz tanAtanA02jtanA-2j=tanA2j
344 331 338 341 342 343 syl22anc MA0π2j0MtanA-2j=tanA2j
345 329 340 344 3eqtr2d MA0π2j0M1tanANN2j=tanA2j
346 1 oveq1i N2j=2 M+1-2j
347 12 adantr MA0π2j0M2 M
348 347 nncnd MA0π2j0M2 M
349 1cnd MA0π2j0M1
350 348 349 327 addsubd MA0π2j0M2 M+1-2j=2 M-2j+1
351 2cnd MA0π2j0M2
352 213 ad2antrr MA0π2j0MM
353 351 352 334 subdid MA0π2j0M2Mj=2 M2j
354 353 oveq1d MA0π2j0M2Mj+1=2 M-2j+1
355 350 354 eqtr4d MA0π2j0M2 M+1-2j=2Mj+1
356 346 355 eqtrid MA0π2j0MN2j=2Mj+1
357 356 oveq2d MA0π2j0MiN2j=i2Mj+1
358 nn0mulcl 20Mj02Mj0
359 76 298 358 sylancr MA0π2j0M2Mj0
360 expp1 i2Mj0i2Mj+1=i2Mji
361 7 359 360 sylancr MA0π2j0Mi2Mj+1=i2Mji
362 76 a1i MA0π2j0M20
363 320 298 362 expmuld MA0π2j0Mi2Mj=i2Mj
364 168 oveq1i i2Mj=1Mj
365 363 364 eqtrdi MA0π2j0Mi2Mj=1Mj
366 365 oveq1d MA0π2j0Mi2Mji=1Mji
367 357 361 366 3eqtrd MA0π2j0MiN2j=1Mji
368 mulcom 1Mji1Mji=i1Mj
369 316 7 368 sylancl MA0π2j0M1Mji=i1Mj
370 367 369 eqtrd MA0π2j0MiN2j=i1Mj
371 345 370 oveq12d MA0π2j0M1tanANN2jiN2j=tanA2ji1Mj
372 mulcl i1Mji1Mj
373 7 316 372 sylancr MA0π2j0Mi1Mj
374 373 317 mulcomd MA0π2j0Mi1MjtanA2j=tanA2ji1Mj
375 320 316 317 mulassd MA0π2j0Mi1MjtanA2j=i1MjtanA2j
376 371 374 375 3eqtr2rd MA0π2j0Mi1MjtanA2j=1tanANN2jiN2j
377 325 376 oveq12d MA0π2j0M(N2j)i1MjtanA2j=(NN2j)1tanANN2jiN2j
378 314 323 377 3eqtrd MA0π2j0M0+i(N2j)1MjtanA2j=(NN2j)1tanANN2jiN2j
379 378 fveq2d MA0π2j0M0+i(N2j)1MjtanA2j=(NN2j)1tanANN2jiN2j
380 0re 0
381 crim 0(N2j)1MjtanA2j0+i(N2j)1MjtanA2j=(N2j)1MjtanA2j
382 380 310 381 sylancr MA0π2j0M0+i(N2j)1MjtanA2j=(N2j)1MjtanA2j
383 379 382 eqtr3d MA0π2j0M(NN2j)1tanANN2jiN2j=(N2j)1MjtanA2j
384 383 sumeq2dv MA0π2j=0M(NN2j)1tanANN2jiN2j=j=0M(N2j)1MjtanA2j
385 158 288 384 3eqtr3d MA0π2m=0N(Nm)1tanANmim=j=0M(N2j)1MjtanA2j
386 287 154 fsumim MA0π2m=0N(Nm)1tanANmim=m=0N(Nm)1tanANmim
387 306 rpcnd MA0π2tanA2
388 oveq1 t=tanA2tj=tanA2j
389 388 oveq2d t=tanA2(N2j)1Mjtj=(N2j)1MjtanA2j
390 389 sumeq2sdv t=tanA2j=0M(N2j)1Mjtj=j=0M(N2j)1MjtanA2j
391 sumex j=0M(N2j)1MjtanA2jV
392 390 2 391 fvmpt tanA2PtanA2=j=0M(N2j)1MjtanA2j
393 387 392 syl MA0π2PtanA2=j=0M(N2j)1MjtanA2j
394 385 386 393 3eqtr4d MA0π2m=0N(Nm)1tanANmim=PtanA2
395 52 59 rerpdivcld MA0π2cosNAsinAN
396 54 59 rerpdivcld MA0π2sinNAsinAN
397 395 396 crimd MA0π2cosNAsinAN+isinNAsinAN=sinNAsinAN
398 67 394 397 3eqtr3d MA0π2PtanA2=sinNAsinAN