Metamath Proof Explorer


Theorem basellem3

Description: Lemma for basel . Using the binomial theorem and de Moivre's formula, we have the identity _e ^i N x / ( sin x ) ^ n = sum m e. ( 0 ... N ) ( NC m ) ( i ^ m ) ( cot x ) ^ ( N - m ) , so taking imaginary parts yields sin ( N x ) / ( sin x ) ^ N = sum_ j e. ( 0 ... M ) ( N _C 2 j ) ( -u 1 ) ^ ( M - j ) ( cot x ) ^ ( -u 2 j ) = P ( ( cot x ) ^ 2 ) , where N = 2 M + 1 . (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Hypotheses basel.n N = 2 M + 1
basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
Assertion basellem3 M A 0 π 2 P tan A 2 = sin N A sin A N

Proof

Step Hyp Ref Expression
1 basel.n N = 2 M + 1
2 basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
3 tanrpcl A 0 π 2 tan A +
4 3 adantl M A 0 π 2 tan A +
5 4 rpreccld M A 0 π 2 1 tan A +
6 5 rpcnd M A 0 π 2 1 tan A
7 ax-icn i
8 7 a1i M A 0 π 2 i
9 2nn 2
10 simpl M A 0 π 2 M
11 nnmulcl 2 M 2 M
12 9 10 11 sylancr M A 0 π 2 2 M
13 12 peano2nnd M A 0 π 2 2 M + 1
14 1 13 eqeltrid M A 0 π 2 N
15 14 nnnn0d M A 0 π 2 N 0
16 binom 1 tan A i N 0 1 tan A + i N = m = 0 N ( N m) 1 tan A N m i m
17 6 8 15 16 syl3anc M A 0 π 2 1 tan A + i N = m = 0 N ( N m) 1 tan A N m i m
18 elioore A 0 π 2 A
19 18 adantl M A 0 π 2 A
20 19 recoscld M A 0 π 2 cos A
21 20 recnd M A 0 π 2 cos A
22 19 resincld M A 0 π 2 sin A
23 22 recnd M A 0 π 2 sin A
24 mulcl i sin A i sin A
25 7 23 24 sylancr M A 0 π 2 i sin A
26 21 25 addcld M A 0 π 2 cos A + i sin A
27 sincosq1sgn A 0 π 2 0 < sin A 0 < cos A
28 27 adantl M A 0 π 2 0 < sin A 0 < cos A
29 28 simpld M A 0 π 2 0 < sin A
30 29 gt0ne0d M A 0 π 2 sin A 0
31 26 23 30 15 expdivd M A 0 π 2 cos A + i sin A sin A N = cos A + i sin A N sin A N
32 21 25 23 30 divdird M A 0 π 2 cos A + i sin A sin A = cos A sin A + i sin A sin A
33 19 recnd M A 0 π 2 A
34 28 simprd M A 0 π 2 0 < cos A
35 34 gt0ne0d M A 0 π 2 cos A 0
36 tanval A cos A 0 tan A = sin A cos A
37 33 35 36 syl2anc M A 0 π 2 tan A = sin A cos A
38 37 oveq2d M A 0 π 2 1 tan A = 1 sin A cos A
39 23 21 30 35 recdivd M A 0 π 2 1 sin A cos A = cos A sin A
40 38 39 eqtr2d M A 0 π 2 cos A sin A = 1 tan A
41 8 23 30 divcan4d M A 0 π 2 i sin A sin A = i
42 40 41 oveq12d M A 0 π 2 cos A sin A + i sin A sin A = 1 tan A + i
43 32 42 eqtrd M A 0 π 2 cos A + i sin A sin A = 1 tan A + i
44 43 oveq1d M A 0 π 2 cos A + i sin A sin A N = 1 tan A + i N
45 14 nnzd M A 0 π 2 N
46 demoivre A N cos A + i sin A N = cos N A + i sin N A
47 33 45 46 syl2anc M A 0 π 2 cos A + i sin A N = cos N A + i sin N A
48 47 oveq1d M A 0 π 2 cos A + i sin A N sin A N = cos N A + i sin N A sin A N
49 31 44 48 3eqtr3d M A 0 π 2 1 tan A + i N = cos N A + i sin N A sin A N
50 14 nnred M A 0 π 2 N
51 50 19 remulcld M A 0 π 2 N A
52 51 recoscld M A 0 π 2 cos N A
53 52 recnd M A 0 π 2 cos N A
54 51 resincld M A 0 π 2 sin N A
55 54 recnd M A 0 π 2 sin N A
56 mulcl i sin N A i sin N A
57 7 55 56 sylancr M A 0 π 2 i sin N A
58 22 29 elrpd M A 0 π 2 sin A +
59 58 45 rpexpcld M A 0 π 2 sin A N +
60 59 rpcnd M A 0 π 2 sin A N
61 59 rpne0d M A 0 π 2 sin A N 0
62 53 57 60 61 divdird M A 0 π 2 cos N A + i sin N A sin A N = cos N A sin A N + i sin N A sin A N
63 8 55 60 61 divassd M A 0 π 2 i sin N A sin A N = i sin N A sin A N
64 63 oveq2d M A 0 π 2 cos N A sin A N + i sin N A sin A N = cos N A sin A N + i sin N A sin A N
65 49 62 64 3eqtrd M A 0 π 2 1 tan A + i N = cos N A sin A N + i sin N A sin A N
66 17 65 eqtr3d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = cos N A sin A N + i sin N A sin A N
67 66 fveq2d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = cos N A sin A N + i sin N A sin A N
68 oveq2 m = N 2 j ( N m) = ( N N 2 j )
69 oveq2 m = N 2 j N m = N N 2 j
70 69 oveq2d m = N 2 j 1 tan A N m = 1 tan A N N 2 j
71 oveq2 m = N 2 j i m = i N 2 j
72 70 71 oveq12d m = N 2 j 1 tan A N m i m = 1 tan A N N 2 j i N 2 j
73 68 72 oveq12d m = N 2 j ( N m) 1 tan A N m i m = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
74 73 fveq2d m = N 2 j ( N m) 1 tan A N m i m = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
75 fzfid M A 0 π 2 0 M Fin
76 2nn0 2 0
77 elfznn0 k 0 M k 0
78 77 adantl M A 0 π 2 k 0 M k 0
79 nn0mulcl 2 0 k 0 2 k 0
80 76 78 79 sylancr M A 0 π 2 k 0 M 2 k 0
81 80 nn0red M A 0 π 2 k 0 M 2 k
82 12 nnred M A 0 π 2 2 M
83 82 adantr M A 0 π 2 k 0 M 2 M
84 50 adantr M A 0 π 2 k 0 M N
85 elfzle2 k 0 M k M
86 85 adantl M A 0 π 2 k 0 M k M
87 78 nn0red M A 0 π 2 k 0 M k
88 nnre M M
89 88 ad2antrr M A 0 π 2 k 0 M M
90 2re 2
91 2pos 0 < 2
92 90 91 pm3.2i 2 0 < 2
93 92 a1i M A 0 π 2 k 0 M 2 0 < 2
94 lemul2 k M 2 0 < 2 k M 2 k 2 M
95 87 89 93 94 syl3anc M A 0 π 2 k 0 M k M 2 k 2 M
96 86 95 mpbid M A 0 π 2 k 0 M 2 k 2 M
97 83 lep1d M A 0 π 2 k 0 M 2 M 2 M + 1
98 97 1 breqtrrdi M A 0 π 2 k 0 M 2 M N
99 81 83 84 96 98 letrd M A 0 π 2 k 0 M 2 k N
100 nn0uz 0 = 0
101 80 100 eleqtrdi M A 0 π 2 k 0 M 2 k 0
102 45 adantr M A 0 π 2 k 0 M N
103 elfz5 2 k 0 N 2 k 0 N 2 k N
104 101 102 103 syl2anc M A 0 π 2 k 0 M 2 k 0 N 2 k N
105 99 104 mpbird M A 0 π 2 k 0 M 2 k 0 N
106 fznn0sub2 2 k 0 N N 2 k 0 N
107 105 106 syl M A 0 π 2 k 0 M N 2 k 0 N
108 107 ex M A 0 π 2 k 0 M N 2 k 0 N
109 14 nncnd M A 0 π 2 N
110 109 adantr M A 0 π 2 k 0 M m 0 M N
111 2cn 2
112 elfzelz k 0 M k
113 112 zcnd k 0 M k
114 113 ad2antrl M A 0 π 2 k 0 M m 0 M k
115 mulcl 2 k 2 k
116 111 114 115 sylancr M A 0 π 2 k 0 M m 0 M 2 k
117 113 ssriv 0 M
118 simprr M A 0 π 2 k 0 M m 0 M m 0 M
119 117 118 sselid M A 0 π 2 k 0 M m 0 M m
120 mulcl 2 m 2 m
121 111 119 120 sylancr M A 0 π 2 k 0 M m 0 M 2 m
122 110 116 121 subcanad M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m 2 k = 2 m
123 2cnne0 2 2 0
124 123 a1i M A 0 π 2 k 0 M m 0 M 2 2 0
125 mulcan k m 2 2 0 2 k = 2 m k = m
126 114 119 124 125 syl3anc M A 0 π 2 k 0 M m 0 M 2 k = 2 m k = m
127 122 126 bitrd M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m k = m
128 127 ex M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m k = m
129 108 128 dom2lem M A 0 π 2 k 0 M N 2 k : 0 M 1-1 0 N
130 f1f1orn k 0 M N 2 k : 0 M 1-1 0 N k 0 M N 2 k : 0 M 1-1 onto ran k 0 M N 2 k
131 129 130 syl M A 0 π 2 k 0 M N 2 k : 0 M 1-1 onto ran k 0 M N 2 k
132 oveq2 k = j 2 k = 2 j
133 132 oveq2d k = j N 2 k = N 2 j
134 eqid k 0 M N 2 k = k 0 M N 2 k
135 ovex N 2 j V
136 133 134 135 fvmpt j 0 M k 0 M N 2 k j = N 2 j
137 136 adantl M A 0 π 2 j 0 M k 0 M N 2 k j = N 2 j
138 107 fmpttd M A 0 π 2 k 0 M N 2 k : 0 M 0 N
139 138 frnd M A 0 π 2 ran k 0 M N 2 k 0 N
140 139 sselda M A 0 π 2 m ran k 0 M N 2 k m 0 N
141 bccl2 m 0 N ( N m)
142 141 adantl M A 0 π 2 m 0 N ( N m)
143 142 nncnd M A 0 π 2 m 0 N ( N m)
144 4 rprecred M A 0 π 2 1 tan A
145 fznn0sub m 0 N N m 0
146 reexpcl 1 tan A N m 0 1 tan A N m
147 144 145 146 syl2an M A 0 π 2 m 0 N 1 tan A N m
148 147 recnd M A 0 π 2 m 0 N 1 tan A N m
149 elfznn0 m 0 N m 0
150 149 adantl M A 0 π 2 m 0 N m 0
151 expcl i m 0 i m
152 7 150 151 sylancr M A 0 π 2 m 0 N i m
153 148 152 mulcld M A 0 π 2 m 0 N 1 tan A N m i m
154 143 153 mulcld M A 0 π 2 m 0 N ( N m) 1 tan A N m i m
155 140 154 syldan M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
156 155 imcld M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
157 156 recnd M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
158 74 75 131 137 157 fsumf1o M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m = j = 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j
159 eldifi m 0 N ran k 0 M N 2 k m 0 N
160 142 nnred M A 0 π 2 m 0 N ( N m)
161 159 160 sylan2 M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m)
162 159 147 sylan2 M A 0 π 2 m 0 N ran k 0 M N 2 k 1 tan A N m
163 eldif m 0 N ran k 0 M N 2 k m 0 N ¬ m ran k 0 M N 2 k
164 elfzelz m 0 N m
165 164 adantl M A 0 π 2 m 0 N m
166 zeo m m 2 m + 1 2
167 165 166 syl M A 0 π 2 m 0 N m 2 m + 1 2
168 i2 i 2 = 1
169 168 oveq1i i 2 m 2 = 1 m 2
170 simprr M A 0 π 2 m 0 N m 2 m 2
171 149 ad2antrl M A 0 π 2 m 0 N m 2 m 0
172 nn0re m 0 m
173 nn0ge0 m 0 0 m
174 divge0 m 0 m 2 0 < 2 0 m 2
175 90 91 174 mpanr12 m 0 m 0 m 2
176 172 173 175 syl2anc m 0 0 m 2
177 171 176 syl M A 0 π 2 m 0 N m 2 0 m 2
178 elnn0z m 2 0 m 2 0 m 2
179 170 177 178 sylanbrc M A 0 π 2 m 0 N m 2 m 2 0
180 expmul i 2 0 m 2 0 i 2 m 2 = i 2 m 2
181 7 76 179 180 mp3an12i M A 0 π 2 m 0 N m 2 i 2 m 2 = i 2 m 2
182 171 nn0cnd M A 0 π 2 m 0 N m 2 m
183 2ne0 2 0
184 divcan2 m 2 2 0 2 m 2 = m
185 111 183 184 mp3an23 m 2 m 2 = m
186 182 185 syl M A 0 π 2 m 0 N m 2 2 m 2 = m
187 186 oveq2d M A 0 π 2 m 0 N m 2 i 2 m 2 = i m
188 181 187 eqtr3d M A 0 π 2 m 0 N m 2 i 2 m 2 = i m
189 169 188 eqtr3id M A 0 π 2 m 0 N m 2 1 m 2 = i m
190 neg1rr 1
191 reexpcl 1 m 2 0 1 m 2
192 190 179 191 sylancr M A 0 π 2 m 0 N m 2 1 m 2
193 189 192 eqeltrrd M A 0 π 2 m 0 N m 2 i m
194 193 expr M A 0 π 2 m 0 N m 2 i m
195 0zd M A 0 π 2 m 0 N m + 1 2 0
196 nnz M M
197 196 ad2antrr M A 0 π 2 m 0 N m + 1 2 M
198 109 adantr M A 0 π 2 m 0 N m + 1 2 N
199 149 ad2antrl M A 0 π 2 m 0 N m + 1 2 m 0
200 199 nn0cnd M A 0 π 2 m 0 N m + 1 2 m
201 1cnd M A 0 π 2 m 0 N m + 1 2 1
202 198 200 201 pnpcan2d M A 0 π 2 m 0 N m + 1 2 N + 1 - m + 1 = N m
203 2t1e2 2 1 = 2
204 df-2 2 = 1 + 1
205 203 204 eqtr2i 1 + 1 = 2 1
206 205 oveq2i 2 M + 1 + 1 = 2 M + 2 1
207 1 oveq1i N + 1 = 2 M + 1 + 1
208 12 nncnd M A 0 π 2 2 M
209 208 adantr M A 0 π 2 m 0 N m + 1 2 2 M
210 209 201 201 addassd M A 0 π 2 m 0 N m + 1 2 2 M + 1 + 1 = 2 M + 1 + 1
211 207 210 eqtrid M A 0 π 2 m 0 N m + 1 2 N + 1 = 2 M + 1 + 1
212 2cnd M A 0 π 2 m 0 N m + 1 2 2
213 nncn M M
214 213 ad2antrr M A 0 π 2 m 0 N m + 1 2 M
215 212 214 201 adddid M A 0 π 2 m 0 N m + 1 2 2 M + 1 = 2 M + 2 1
216 206 211 215 3eqtr4a M A 0 π 2 m 0 N m + 1 2 N + 1 = 2 M + 1
217 216 oveq1d M A 0 π 2 m 0 N m + 1 2 N + 1 - m + 1 = 2 M + 1 m + 1
218 202 217 eqtr3d M A 0 π 2 m 0 N m + 1 2 N m = 2 M + 1 m + 1
219 218 oveq1d M A 0 π 2 m 0 N m + 1 2 N m 2 = 2 M + 1 m + 1 2
220 197 peano2zd M A 0 π 2 m 0 N m + 1 2 M + 1
221 220 zcnd M A 0 π 2 m 0 N m + 1 2 M + 1
222 mulcl 2 M + 1 2 M + 1
223 111 221 222 sylancr M A 0 π 2 m 0 N m + 1 2 2 M + 1
224 peano2cn m m + 1
225 200 224 syl M A 0 π 2 m 0 N m + 1 2 m + 1
226 123 a1i M A 0 π 2 m 0 N m + 1 2 2 2 0
227 divsubdir 2 M + 1 m + 1 2 2 0 2 M + 1 m + 1 2 = 2 M + 1 2 m + 1 2
228 223 225 226 227 syl3anc M A 0 π 2 m 0 N m + 1 2 2 M + 1 m + 1 2 = 2 M + 1 2 m + 1 2
229 183 a1i M A 0 π 2 m 0 N m + 1 2 2 0
230 221 212 229 divcan3d M A 0 π 2 m 0 N m + 1 2 2 M + 1 2 = M + 1
231 230 oveq1d M A 0 π 2 m 0 N m + 1 2 2 M + 1 2 m + 1 2 = M + 1 - m + 1 2
232 219 228 231 3eqtrd M A 0 π 2 m 0 N m + 1 2 N m 2 = M + 1 - m + 1 2
233 simprr M A 0 π 2 m 0 N m + 1 2 m + 1 2
234 220 233 zsubcld M A 0 π 2 m 0 N m + 1 2 M + 1 - m + 1 2
235 232 234 eqeltrd M A 0 π 2 m 0 N m + 1 2 N m 2
236 145 ad2antrl M A 0 π 2 m 0 N m + 1 2 N m 0
237 nn0re N m 0 N m
238 nn0ge0 N m 0 0 N m
239 divge0 N m 0 N m 2 0 < 2 0 N m 2
240 90 91 239 mpanr12 N m 0 N m 0 N m 2
241 237 238 240 syl2anc N m 0 0 N m 2
242 236 241 syl M A 0 π 2 m 0 N m + 1 2 0 N m 2
243 236 nn0red M A 0 π 2 m 0 N m + 1 2 N m
244 50 adantr M A 0 π 2 m 0 N m + 1 2 N
245 peano2re N N + 1
246 244 245 syl M A 0 π 2 m 0 N m + 1 2 N + 1
247 199 173 syl M A 0 π 2 m 0 N m + 1 2 0 m
248 199 nn0red M A 0 π 2 m 0 N m + 1 2 m
249 244 248 subge02d M A 0 π 2 m 0 N m + 1 2 0 m N m N
250 247 249 mpbid M A 0 π 2 m 0 N m + 1 2 N m N
251 244 ltp1d M A 0 π 2 m 0 N m + 1 2 N < N + 1
252 243 244 246 250 251 lelttrd M A 0 π 2 m 0 N m + 1 2 N m < N + 1
253 252 216 breqtrd M A 0 π 2 m 0 N m + 1 2 N m < 2 M + 1
254 220 zred M A 0 π 2 m 0 N m + 1 2 M + 1
255 92 a1i M A 0 π 2 m 0 N m + 1 2 2 0 < 2
256 ltdivmul N m M + 1 2 0 < 2 N m 2 < M + 1 N m < 2 M + 1
257 243 254 255 256 syl3anc M A 0 π 2 m 0 N m + 1 2 N m 2 < M + 1 N m < 2 M + 1
258 253 257 mpbird M A 0 π 2 m 0 N m + 1 2 N m 2 < M + 1
259 zleltp1 N m 2 M N m 2 M N m 2 < M + 1
260 235 197 259 syl2anc M A 0 π 2 m 0 N m + 1 2 N m 2 M N m 2 < M + 1
261 258 260 mpbird M A 0 π 2 m 0 N m + 1 2 N m 2 M
262 195 197 235 242 261 elfzd M A 0 π 2 m 0 N m + 1 2 N m 2 0 M
263 oveq2 k = N m 2 2 k = 2 N m 2
264 263 oveq2d k = N m 2 N 2 k = N 2 N m 2
265 ovex N 2 N m 2 V
266 264 134 265 fvmpt N m 2 0 M k 0 M N 2 k N m 2 = N 2 N m 2
267 262 266 syl M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 = N 2 N m 2
268 236 nn0cnd M A 0 π 2 m 0 N m + 1 2 N m
269 268 212 229 divcan2d M A 0 π 2 m 0 N m + 1 2 2 N m 2 = N m
270 269 oveq2d M A 0 π 2 m 0 N m + 1 2 N 2 N m 2 = N N m
271 198 200 nncand M A 0 π 2 m 0 N m + 1 2 N N m = m
272 267 270 271 3eqtrd M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 = m
273 138 ffnd M A 0 π 2 k 0 M N 2 k Fn 0 M
274 fnfvelrn k 0 M N 2 k Fn 0 M N m 2 0 M k 0 M N 2 k N m 2 ran k 0 M N 2 k
275 273 262 274 syl2an2r M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 ran k 0 M N 2 k
276 272 275 eqeltrrd M A 0 π 2 m 0 N m + 1 2 m ran k 0 M N 2 k
277 276 expr M A 0 π 2 m 0 N m + 1 2 m ran k 0 M N 2 k
278 194 277 orim12d M A 0 π 2 m 0 N m 2 m + 1 2 i m m ran k 0 M N 2 k
279 167 278 mpd M A 0 π 2 m 0 N i m m ran k 0 M N 2 k
280 279 orcomd M A 0 π 2 m 0 N m ran k 0 M N 2 k i m
281 280 ord M A 0 π 2 m 0 N ¬ m ran k 0 M N 2 k i m
282 281 impr M A 0 π 2 m 0 N ¬ m ran k 0 M N 2 k i m
283 163 282 sylan2b M A 0 π 2 m 0 N ran k 0 M N 2 k i m
284 162 283 remulcld M A 0 π 2 m 0 N ran k 0 M N 2 k 1 tan A N m i m
285 161 284 remulcld M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m) 1 tan A N m i m
286 285 reim0d M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m) 1 tan A N m i m = 0
287 fzfid M A 0 π 2 0 N Fin
288 139 157 286 287 fsumss M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m = m = 0 N ( N m) 1 tan A N m i m
289 elfznn0 j 0 M j 0
290 289 adantl M A 0 π 2 j 0 M j 0
291 nn0mulcl 2 0 j 0 2 j 0
292 76 290 291 sylancr M A 0 π 2 j 0 M 2 j 0
293 292 nn0zd M A 0 π 2 j 0 M 2 j
294 bccl N 0 2 j ( N 2 j ) 0
295 15 293 294 syl2an2r M A 0 π 2 j 0 M ( N 2 j ) 0
296 295 nn0red M A 0 π 2 j 0 M ( N 2 j )
297 fznn0sub j 0 M M j 0
298 297 adantl M A 0 π 2 j 0 M M j 0
299 reexpcl 1 M j 0 1 M j
300 190 298 299 sylancr M A 0 π 2 j 0 M 1 M j
301 296 300 remulcld M A 0 π 2 j 0 M ( N 2 j ) 1 M j
302 2z 2
303 znegcl 2 2
304 302 303 ax-mp 2
305 rpexpcl tan A + 2 tan A 2 +
306 4 304 305 sylancl M A 0 π 2 tan A 2 +
307 306 rpred M A 0 π 2 tan A 2
308 reexpcl tan A 2 j 0 tan A 2 j
309 307 289 308 syl2an M A 0 π 2 j 0 M tan A 2 j
310 301 309 remulcld M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j
311 310 recnd M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j
312 mulcl i ( N 2 j ) 1 M j tan A 2 j i ( N 2 j ) 1 M j tan A 2 j
313 7 311 312 sylancr M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j
314 313 addid2d M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = i ( N 2 j ) 1 M j tan A 2 j
315 295 nn0cnd M A 0 π 2 j 0 M ( N 2 j )
316 300 recnd M A 0 π 2 j 0 M 1 M j
317 309 recnd M A 0 π 2 j 0 M tan A 2 j
318 315 316 317 mulassd M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
319 318 oveq2d M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = i ( N 2 j ) 1 M j tan A 2 j
320 7 a1i M A 0 π 2 j 0 M i
321 316 317 mulcld M A 0 π 2 j 0 M 1 M j tan A 2 j
322 320 315 321 mul12d M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) i 1 M j tan A 2 j
323 319 322 eqtrd M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) i 1 M j tan A 2 j
324 bccmpl N 0 2 j ( N 2 j ) = ( N N 2 j )
325 15 293 324 syl2an2r M A 0 π 2 j 0 M ( N 2 j ) = ( N N 2 j )
326 109 adantr M A 0 π 2 j 0 M N
327 292 nn0cnd M A 0 π 2 j 0 M 2 j
328 326 327 nncand M A 0 π 2 j 0 M N N 2 j = 2 j
329 328 oveq2d M A 0 π 2 j 0 M 1 tan A N N 2 j = 1 tan A 2 j
330 4 adantr M A 0 π 2 j 0 M tan A +
331 330 rpcnd M A 0 π 2 j 0 M tan A
332 expneg tan A 2 j 0 tan A 2 j = 1 tan A 2 j
333 331 292 332 syl2anc M A 0 π 2 j 0 M tan A 2 j = 1 tan A 2 j
334 290 nn0cnd M A 0 π 2 j 0 M j
335 mulneg1 2 j -2 j = 2 j
336 111 334 335 sylancr M A 0 π 2 j 0 M -2 j = 2 j
337 336 oveq2d M A 0 π 2 j 0 M tan A -2 j = tan A 2 j
338 330 rpne0d M A 0 π 2 j 0 M tan A 0
339 331 338 293 exprecd M A 0 π 2 j 0 M 1 tan A 2 j = 1 tan A 2 j
340 333 337 339 3eqtr4d M A 0 π 2 j 0 M tan A -2 j = 1 tan A 2 j
341 304 a1i M A 0 π 2 j 0 M 2
342 290 nn0zd M A 0 π 2 j 0 M j
343 expmulz tan A tan A 0 2 j tan A -2 j = tan A 2 j
344 331 338 341 342 343 syl22anc M A 0 π 2 j 0 M tan A -2 j = tan A 2 j
345 329 340 344 3eqtr2d M A 0 π 2 j 0 M 1 tan A N N 2 j = tan A 2 j
346 1 oveq1i N 2 j = 2 M + 1 - 2 j
347 12 adantr M A 0 π 2 j 0 M 2 M
348 347 nncnd M A 0 π 2 j 0 M 2 M
349 1cnd M A 0 π 2 j 0 M 1
350 348 349 327 addsubd M A 0 π 2 j 0 M 2 M + 1 - 2 j = 2 M - 2 j + 1
351 2cnd M A 0 π 2 j 0 M 2
352 213 ad2antrr M A 0 π 2 j 0 M M
353 351 352 334 subdid M A 0 π 2 j 0 M 2 M j = 2 M 2 j
354 353 oveq1d M A 0 π 2 j 0 M 2 M j + 1 = 2 M - 2 j + 1
355 350 354 eqtr4d M A 0 π 2 j 0 M 2 M + 1 - 2 j = 2 M j + 1
356 346 355 eqtrid M A 0 π 2 j 0 M N 2 j = 2 M j + 1
357 356 oveq2d M A 0 π 2 j 0 M i N 2 j = i 2 M j + 1
358 nn0mulcl 2 0 M j 0 2 M j 0
359 76 298 358 sylancr M A 0 π 2 j 0 M 2 M j 0
360 expp1 i 2 M j 0 i 2 M j + 1 = i 2 M j i
361 7 359 360 sylancr M A 0 π 2 j 0 M i 2 M j + 1 = i 2 M j i
362 76 a1i M A 0 π 2 j 0 M 2 0
363 320 298 362 expmuld M A 0 π 2 j 0 M i 2 M j = i 2 M j
364 168 oveq1i i 2 M j = 1 M j
365 363 364 eqtrdi M A 0 π 2 j 0 M i 2 M j = 1 M j
366 365 oveq1d M A 0 π 2 j 0 M i 2 M j i = 1 M j i
367 357 361 366 3eqtrd M A 0 π 2 j 0 M i N 2 j = 1 M j i
368 mulcom 1 M j i 1 M j i = i 1 M j
369 316 7 368 sylancl M A 0 π 2 j 0 M 1 M j i = i 1 M j
370 367 369 eqtrd M A 0 π 2 j 0 M i N 2 j = i 1 M j
371 345 370 oveq12d M A 0 π 2 j 0 M 1 tan A N N 2 j i N 2 j = tan A 2 j i 1 M j
372 mulcl i 1 M j i 1 M j
373 7 316 372 sylancr M A 0 π 2 j 0 M i 1 M j
374 373 317 mulcomd M A 0 π 2 j 0 M i 1 M j tan A 2 j = tan A 2 j i 1 M j
375 320 316 317 mulassd M A 0 π 2 j 0 M i 1 M j tan A 2 j = i 1 M j tan A 2 j
376 371 374 375 3eqtr2rd M A 0 π 2 j 0 M i 1 M j tan A 2 j = 1 tan A N N 2 j i N 2 j
377 325 376 oveq12d M A 0 π 2 j 0 M ( N 2 j ) i 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
378 314 323 377 3eqtrd M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
379 378 fveq2d M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
380 0re 0
381 crim 0 ( N 2 j ) 1 M j tan A 2 j 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
382 380 310 381 sylancr M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
383 379 382 eqtr3d M A 0 π 2 j 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j = ( N 2 j ) 1 M j tan A 2 j
384 383 sumeq2dv M A 0 π 2 j = 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j = j = 0 M ( N 2 j ) 1 M j tan A 2 j
385 158 288 384 3eqtr3d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = j = 0 M ( N 2 j ) 1 M j tan A 2 j
386 287 154 fsumim M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = m = 0 N ( N m) 1 tan A N m i m
387 306 rpcnd M A 0 π 2 tan A 2
388 oveq1 t = tan A 2 t j = tan A 2 j
389 388 oveq2d t = tan A 2 ( N 2 j ) 1 M j t j = ( N 2 j ) 1 M j tan A 2 j
390 389 sumeq2sdv t = tan A 2 j = 0 M ( N 2 j ) 1 M j t j = j = 0 M ( N 2 j ) 1 M j tan A 2 j
391 sumex j = 0 M ( N 2 j ) 1 M j tan A 2 j V
392 390 2 391 fvmpt tan A 2 P tan A 2 = j = 0 M ( N 2 j ) 1 M j tan A 2 j
393 387 392 syl M A 0 π 2 P tan A 2 = j = 0 M ( N 2 j ) 1 M j tan A 2 j
394 385 386 393 3eqtr4d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = P tan A 2
395 52 59 rerpdivcld M A 0 π 2 cos N A sin A N
396 54 59 rerpdivcld M A 0 π 2 sin N A sin A N
397 395 396 crimd M A 0 π 2 cos N A sin A N + i sin N A sin A N = sin N A sin A N
398 67 394 397 3eqtr3d M A 0 π 2 P tan A 2 = sin N A sin A N