Metamath Proof Explorer


Theorem basellem3

Description: Lemma for basel . Using the binomial theorem and de Moivre's formula, we have the identity _e ^i N x / ( sin x ) ^ n = sum m e. ( 0 ... N ) ( NC m ) ( i ^ m ) ( cot x ) ^ ( N - m ) , so taking imaginary parts yields sin ( N x ) / ( sin x ) ^ N = sum_ j e. ( 0 ... M ) ( N _C 2 j ) ( -u 1 ) ^ ( M - j ) ( cot x ) ^ ( -u 2 j ) = P ( ( cot x ) ^ 2 ) , where N = 2 M + 1 . (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Hypotheses basel.n N = 2 M + 1
basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
Assertion basellem3 M A 0 π 2 P tan A 2 = sin N A sin A N

Proof

Step Hyp Ref Expression
1 basel.n N = 2 M + 1
2 basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
3 tanrpcl A 0 π 2 tan A +
4 3 adantl M A 0 π 2 tan A +
5 4 rpreccld M A 0 π 2 1 tan A +
6 5 rpcnd M A 0 π 2 1 tan A
7 ax-icn i
8 7 a1i M A 0 π 2 i
9 2nn 2
10 simpl M A 0 π 2 M
11 nnmulcl 2 M 2 M
12 9 10 11 sylancr M A 0 π 2 2 M
13 12 peano2nnd M A 0 π 2 2 M + 1
14 1 13 eqeltrid M A 0 π 2 N
15 14 nnnn0d M A 0 π 2 N 0
16 binom 1 tan A i N 0 1 tan A + i N = m = 0 N ( N m) 1 tan A N m i m
17 6 8 15 16 syl3anc M A 0 π 2 1 tan A + i N = m = 0 N ( N m) 1 tan A N m i m
18 elioore A 0 π 2 A
19 18 adantl M A 0 π 2 A
20 19 recoscld M A 0 π 2 cos A
21 20 recnd M A 0 π 2 cos A
22 19 resincld M A 0 π 2 sin A
23 22 recnd M A 0 π 2 sin A
24 mulcl i sin A i sin A
25 7 23 24 sylancr M A 0 π 2 i sin A
26 21 25 addcld M A 0 π 2 cos A + i sin A
27 sincosq1sgn A 0 π 2 0 < sin A 0 < cos A
28 27 adantl M A 0 π 2 0 < sin A 0 < cos A
29 28 simpld M A 0 π 2 0 < sin A
30 29 gt0ne0d M A 0 π 2 sin A 0
31 26 23 30 15 expdivd M A 0 π 2 cos A + i sin A sin A N = cos A + i sin A N sin A N
32 21 25 23 30 divdird M A 0 π 2 cos A + i sin A sin A = cos A sin A + i sin A sin A
33 19 recnd M A 0 π 2 A
34 28 simprd M A 0 π 2 0 < cos A
35 34 gt0ne0d M A 0 π 2 cos A 0
36 tanval A cos A 0 tan A = sin A cos A
37 33 35 36 syl2anc M A 0 π 2 tan A = sin A cos A
38 37 oveq2d M A 0 π 2 1 tan A = 1 sin A cos A
39 23 21 30 35 recdivd M A 0 π 2 1 sin A cos A = cos A sin A
40 38 39 eqtr2d M A 0 π 2 cos A sin A = 1 tan A
41 8 23 30 divcan4d M A 0 π 2 i sin A sin A = i
42 40 41 oveq12d M A 0 π 2 cos A sin A + i sin A sin A = 1 tan A + i
43 32 42 eqtrd M A 0 π 2 cos A + i sin A sin A = 1 tan A + i
44 43 oveq1d M A 0 π 2 cos A + i sin A sin A N = 1 tan A + i N
45 14 nnzd M A 0 π 2 N
46 demoivre A N cos A + i sin A N = cos N A + i sin N A
47 33 45 46 syl2anc M A 0 π 2 cos A + i sin A N = cos N A + i sin N A
48 47 oveq1d M A 0 π 2 cos A + i sin A N sin A N = cos N A + i sin N A sin A N
49 31 44 48 3eqtr3d M A 0 π 2 1 tan A + i N = cos N A + i sin N A sin A N
50 14 nnred M A 0 π 2 N
51 50 19 remulcld M A 0 π 2 N A
52 51 recoscld M A 0 π 2 cos N A
53 52 recnd M A 0 π 2 cos N A
54 51 resincld M A 0 π 2 sin N A
55 54 recnd M A 0 π 2 sin N A
56 mulcl i sin N A i sin N A
57 7 55 56 sylancr M A 0 π 2 i sin N A
58 22 29 elrpd M A 0 π 2 sin A +
59 58 45 rpexpcld M A 0 π 2 sin A N +
60 59 rpcnd M A 0 π 2 sin A N
61 59 rpne0d M A 0 π 2 sin A N 0
62 53 57 60 61 divdird M A 0 π 2 cos N A + i sin N A sin A N = cos N A sin A N + i sin N A sin A N
63 8 55 60 61 divassd M A 0 π 2 i sin N A sin A N = i sin N A sin A N
64 63 oveq2d M A 0 π 2 cos N A sin A N + i sin N A sin A N = cos N A sin A N + i sin N A sin A N
65 49 62 64 3eqtrd M A 0 π 2 1 tan A + i N = cos N A sin A N + i sin N A sin A N
66 17 65 eqtr3d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = cos N A sin A N + i sin N A sin A N
67 66 fveq2d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = cos N A sin A N + i sin N A sin A N
68 oveq2 m = N 2 j ( N m) = ( N N 2 j )
69 oveq2 m = N 2 j N m = N N 2 j
70 69 oveq2d m = N 2 j 1 tan A N m = 1 tan A N N 2 j
71 oveq2 m = N 2 j i m = i N 2 j
72 70 71 oveq12d m = N 2 j 1 tan A N m i m = 1 tan A N N 2 j i N 2 j
73 68 72 oveq12d m = N 2 j ( N m) 1 tan A N m i m = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
74 73 fveq2d m = N 2 j ( N m) 1 tan A N m i m = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
75 fzfid M A 0 π 2 0 M Fin
76 2nn0 2 0
77 elfznn0 k 0 M k 0
78 77 adantl M A 0 π 2 k 0 M k 0
79 nn0mulcl 2 0 k 0 2 k 0
80 76 78 79 sylancr M A 0 π 2 k 0 M 2 k 0
81 80 nn0red M A 0 π 2 k 0 M 2 k
82 12 nnred M A 0 π 2 2 M
83 82 adantr M A 0 π 2 k 0 M 2 M
84 50 adantr M A 0 π 2 k 0 M N
85 elfzle2 k 0 M k M
86 85 adantl M A 0 π 2 k 0 M k M
87 78 nn0red M A 0 π 2 k 0 M k
88 nnre M M
89 88 ad2antrr M A 0 π 2 k 0 M M
90 2re 2
91 2pos 0 < 2
92 90 91 pm3.2i 2 0 < 2
93 92 a1i M A 0 π 2 k 0 M 2 0 < 2
94 lemul2 k M 2 0 < 2 k M 2 k 2 M
95 87 89 93 94 syl3anc M A 0 π 2 k 0 M k M 2 k 2 M
96 86 95 mpbid M A 0 π 2 k 0 M 2 k 2 M
97 83 lep1d M A 0 π 2 k 0 M 2 M 2 M + 1
98 97 1 breqtrrdi M A 0 π 2 k 0 M 2 M N
99 81 83 84 96 98 letrd M A 0 π 2 k 0 M 2 k N
100 nn0uz 0 = 0
101 80 100 eleqtrdi M A 0 π 2 k 0 M 2 k 0
102 45 adantr M A 0 π 2 k 0 M N
103 elfz5 2 k 0 N 2 k 0 N 2 k N
104 101 102 103 syl2anc M A 0 π 2 k 0 M 2 k 0 N 2 k N
105 99 104 mpbird M A 0 π 2 k 0 M 2 k 0 N
106 fznn0sub2 2 k 0 N N 2 k 0 N
107 105 106 syl M A 0 π 2 k 0 M N 2 k 0 N
108 107 ex M A 0 π 2 k 0 M N 2 k 0 N
109 14 nncnd M A 0 π 2 N
110 109 adantr M A 0 π 2 k 0 M m 0 M N
111 2cn 2
112 elfzelz k 0 M k
113 112 zcnd k 0 M k
114 113 ad2antrl M A 0 π 2 k 0 M m 0 M k
115 mulcl 2 k 2 k
116 111 114 115 sylancr M A 0 π 2 k 0 M m 0 M 2 k
117 113 ssriv 0 M
118 simprr M A 0 π 2 k 0 M m 0 M m 0 M
119 117 118 sseldi M A 0 π 2 k 0 M m 0 M m
120 mulcl 2 m 2 m
121 111 119 120 sylancr M A 0 π 2 k 0 M m 0 M 2 m
122 110 116 121 subcanad M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m 2 k = 2 m
123 2cnne0 2 2 0
124 123 a1i M A 0 π 2 k 0 M m 0 M 2 2 0
125 mulcan k m 2 2 0 2 k = 2 m k = m
126 114 119 124 125 syl3anc M A 0 π 2 k 0 M m 0 M 2 k = 2 m k = m
127 122 126 bitrd M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m k = m
128 127 ex M A 0 π 2 k 0 M m 0 M N 2 k = N 2 m k = m
129 108 128 dom2lem M A 0 π 2 k 0 M N 2 k : 0 M 1-1 0 N
130 f1f1orn k 0 M N 2 k : 0 M 1-1 0 N k 0 M N 2 k : 0 M 1-1 onto ran k 0 M N 2 k
131 129 130 syl M A 0 π 2 k 0 M N 2 k : 0 M 1-1 onto ran k 0 M N 2 k
132 oveq2 k = j 2 k = 2 j
133 132 oveq2d k = j N 2 k = N 2 j
134 eqid k 0 M N 2 k = k 0 M N 2 k
135 ovex N 2 j V
136 133 134 135 fvmpt j 0 M k 0 M N 2 k j = N 2 j
137 136 adantl M A 0 π 2 j 0 M k 0 M N 2 k j = N 2 j
138 107 fmpttd M A 0 π 2 k 0 M N 2 k : 0 M 0 N
139 138 frnd M A 0 π 2 ran k 0 M N 2 k 0 N
140 139 sselda M A 0 π 2 m ran k 0 M N 2 k m 0 N
141 bccl2 m 0 N ( N m)
142 141 adantl M A 0 π 2 m 0 N ( N m)
143 142 nncnd M A 0 π 2 m 0 N ( N m)
144 4 rprecred M A 0 π 2 1 tan A
145 fznn0sub m 0 N N m 0
146 reexpcl 1 tan A N m 0 1 tan A N m
147 144 145 146 syl2an M A 0 π 2 m 0 N 1 tan A N m
148 147 recnd M A 0 π 2 m 0 N 1 tan A N m
149 elfznn0 m 0 N m 0
150 149 adantl M A 0 π 2 m 0 N m 0
151 expcl i m 0 i m
152 7 150 151 sylancr M A 0 π 2 m 0 N i m
153 148 152 mulcld M A 0 π 2 m 0 N 1 tan A N m i m
154 143 153 mulcld M A 0 π 2 m 0 N ( N m) 1 tan A N m i m
155 140 154 syldan M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
156 155 imcld M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
157 156 recnd M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m
158 74 75 131 137 157 fsumf1o M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m = j = 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j
159 eldifi m 0 N ran k 0 M N 2 k m 0 N
160 142 nnred M A 0 π 2 m 0 N ( N m)
161 159 160 sylan2 M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m)
162 159 147 sylan2 M A 0 π 2 m 0 N ran k 0 M N 2 k 1 tan A N m
163 eldif m 0 N ran k 0 M N 2 k m 0 N ¬ m ran k 0 M N 2 k
164 elfzelz m 0 N m
165 164 adantl M A 0 π 2 m 0 N m
166 zeo m m 2 m + 1 2
167 165 166 syl M A 0 π 2 m 0 N m 2 m + 1 2
168 i2 i 2 = 1
169 168 oveq1i i 2 m 2 = 1 m 2
170 simprr M A 0 π 2 m 0 N m 2 m 2
171 149 ad2antrl M A 0 π 2 m 0 N m 2 m 0
172 nn0re m 0 m
173 nn0ge0 m 0 0 m
174 divge0 m 0 m 2 0 < 2 0 m 2
175 90 91 174 mpanr12 m 0 m 0 m 2
176 172 173 175 syl2anc m 0 0 m 2
177 171 176 syl M A 0 π 2 m 0 N m 2 0 m 2
178 elnn0z m 2 0 m 2 0 m 2
179 170 177 178 sylanbrc M A 0 π 2 m 0 N m 2 m 2 0
180 expmul i 2 0 m 2 0 i 2 m 2 = i 2 m 2
181 7 76 179 180 mp3an12i M A 0 π 2 m 0 N m 2 i 2 m 2 = i 2 m 2
182 171 nn0cnd M A 0 π 2 m 0 N m 2 m
183 2ne0 2 0
184 divcan2 m 2 2 0 2 m 2 = m
185 111 183 184 mp3an23 m 2 m 2 = m
186 182 185 syl M A 0 π 2 m 0 N m 2 2 m 2 = m
187 186 oveq2d M A 0 π 2 m 0 N m 2 i 2 m 2 = i m
188 181 187 eqtr3d M A 0 π 2 m 0 N m 2 i 2 m 2 = i m
189 169 188 syl5eqr M A 0 π 2 m 0 N m 2 1 m 2 = i m
190 neg1rr 1
191 reexpcl 1 m 2 0 1 m 2
192 190 179 191 sylancr M A 0 π 2 m 0 N m 2 1 m 2
193 189 192 eqeltrrd M A 0 π 2 m 0 N m 2 i m
194 193 expr M A 0 π 2 m 0 N m 2 i m
195 145 ad2antrl M A 0 π 2 m 0 N m + 1 2 N m 0
196 nn0re N m 0 N m
197 nn0ge0 N m 0 0 N m
198 divge0 N m 0 N m 2 0 < 2 0 N m 2
199 90 91 198 mpanr12 N m 0 N m 0 N m 2
200 196 197 199 syl2anc N m 0 0 N m 2
201 195 200 syl M A 0 π 2 m 0 N m + 1 2 0 N m 2
202 195 nn0red M A 0 π 2 m 0 N m + 1 2 N m
203 50 adantr M A 0 π 2 m 0 N m + 1 2 N
204 peano2re N N + 1
205 203 204 syl M A 0 π 2 m 0 N m + 1 2 N + 1
206 149 ad2antrl M A 0 π 2 m 0 N m + 1 2 m 0
207 206 173 syl M A 0 π 2 m 0 N m + 1 2 0 m
208 206 nn0red M A 0 π 2 m 0 N m + 1 2 m
209 203 208 subge02d M A 0 π 2 m 0 N m + 1 2 0 m N m N
210 207 209 mpbid M A 0 π 2 m 0 N m + 1 2 N m N
211 203 ltp1d M A 0 π 2 m 0 N m + 1 2 N < N + 1
212 202 203 205 210 211 lelttrd M A 0 π 2 m 0 N m + 1 2 N m < N + 1
213 2t1e2 2 1 = 2
214 df-2 2 = 1 + 1
215 213 214 eqtr2i 1 + 1 = 2 1
216 215 oveq2i 2 M + 1 + 1 = 2 M + 2 1
217 1 oveq1i N + 1 = 2 M + 1 + 1
218 12 nncnd M A 0 π 2 2 M
219 218 adantr M A 0 π 2 m 0 N m + 1 2 2 M
220 1cnd M A 0 π 2 m 0 N m + 1 2 1
221 219 220 220 addassd M A 0 π 2 m 0 N m + 1 2 2 M + 1 + 1 = 2 M + 1 + 1
222 217 221 syl5eq M A 0 π 2 m 0 N m + 1 2 N + 1 = 2 M + 1 + 1
223 2cnd M A 0 π 2 m 0 N m + 1 2 2
224 nncn M M
225 224 ad2antrr M A 0 π 2 m 0 N m + 1 2 M
226 223 225 220 adddid M A 0 π 2 m 0 N m + 1 2 2 M + 1 = 2 M + 2 1
227 216 222 226 3eqtr4a M A 0 π 2 m 0 N m + 1 2 N + 1 = 2 M + 1
228 212 227 breqtrd M A 0 π 2 m 0 N m + 1 2 N m < 2 M + 1
229 nnz M M
230 229 ad2antrr M A 0 π 2 m 0 N m + 1 2 M
231 230 peano2zd M A 0 π 2 m 0 N m + 1 2 M + 1
232 231 zred M A 0 π 2 m 0 N m + 1 2 M + 1
233 92 a1i M A 0 π 2 m 0 N m + 1 2 2 0 < 2
234 ltdivmul N m M + 1 2 0 < 2 N m 2 < M + 1 N m < 2 M + 1
235 202 232 233 234 syl3anc M A 0 π 2 m 0 N m + 1 2 N m 2 < M + 1 N m < 2 M + 1
236 228 235 mpbird M A 0 π 2 m 0 N m + 1 2 N m 2 < M + 1
237 109 adantr M A 0 π 2 m 0 N m + 1 2 N
238 206 nn0cnd M A 0 π 2 m 0 N m + 1 2 m
239 237 238 220 pnpcan2d M A 0 π 2 m 0 N m + 1 2 N + 1 - m + 1 = N m
240 227 oveq1d M A 0 π 2 m 0 N m + 1 2 N + 1 - m + 1 = 2 M + 1 m + 1
241 239 240 eqtr3d M A 0 π 2 m 0 N m + 1 2 N m = 2 M + 1 m + 1
242 241 oveq1d M A 0 π 2 m 0 N m + 1 2 N m 2 = 2 M + 1 m + 1 2
243 231 zcnd M A 0 π 2 m 0 N m + 1 2 M + 1
244 mulcl 2 M + 1 2 M + 1
245 111 243 244 sylancr M A 0 π 2 m 0 N m + 1 2 2 M + 1
246 peano2cn m m + 1
247 238 246 syl M A 0 π 2 m 0 N m + 1 2 m + 1
248 123 a1i M A 0 π 2 m 0 N m + 1 2 2 2 0
249 divsubdir 2 M + 1 m + 1 2 2 0 2 M + 1 m + 1 2 = 2 M + 1 2 m + 1 2
250 245 247 248 249 syl3anc M A 0 π 2 m 0 N m + 1 2 2 M + 1 m + 1 2 = 2 M + 1 2 m + 1 2
251 183 a1i M A 0 π 2 m 0 N m + 1 2 2 0
252 243 223 251 divcan3d M A 0 π 2 m 0 N m + 1 2 2 M + 1 2 = M + 1
253 252 oveq1d M A 0 π 2 m 0 N m + 1 2 2 M + 1 2 m + 1 2 = M + 1 - m + 1 2
254 242 250 253 3eqtrd M A 0 π 2 m 0 N m + 1 2 N m 2 = M + 1 - m + 1 2
255 simprr M A 0 π 2 m 0 N m + 1 2 m + 1 2
256 231 255 zsubcld M A 0 π 2 m 0 N m + 1 2 M + 1 - m + 1 2
257 254 256 eqeltrd M A 0 π 2 m 0 N m + 1 2 N m 2
258 zleltp1 N m 2 M N m 2 M N m 2 < M + 1
259 257 230 258 syl2anc M A 0 π 2 m 0 N m + 1 2 N m 2 M N m 2 < M + 1
260 236 259 mpbird M A 0 π 2 m 0 N m + 1 2 N m 2 M
261 0zd M A 0 π 2 m 0 N m + 1 2 0
262 elfz N m 2 0 M N m 2 0 M 0 N m 2 N m 2 M
263 257 261 230 262 syl3anc M A 0 π 2 m 0 N m + 1 2 N m 2 0 M 0 N m 2 N m 2 M
264 201 260 263 mpbir2and M A 0 π 2 m 0 N m + 1 2 N m 2 0 M
265 oveq2 k = N m 2 2 k = 2 N m 2
266 265 oveq2d k = N m 2 N 2 k = N 2 N m 2
267 ovex N 2 N m 2 V
268 266 134 267 fvmpt N m 2 0 M k 0 M N 2 k N m 2 = N 2 N m 2
269 264 268 syl M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 = N 2 N m 2
270 195 nn0cnd M A 0 π 2 m 0 N m + 1 2 N m
271 270 223 251 divcan2d M A 0 π 2 m 0 N m + 1 2 2 N m 2 = N m
272 271 oveq2d M A 0 π 2 m 0 N m + 1 2 N 2 N m 2 = N N m
273 237 238 nncand M A 0 π 2 m 0 N m + 1 2 N N m = m
274 269 272 273 3eqtrd M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 = m
275 138 ffnd M A 0 π 2 k 0 M N 2 k Fn 0 M
276 fnfvelrn k 0 M N 2 k Fn 0 M N m 2 0 M k 0 M N 2 k N m 2 ran k 0 M N 2 k
277 275 264 276 syl2an2r M A 0 π 2 m 0 N m + 1 2 k 0 M N 2 k N m 2 ran k 0 M N 2 k
278 274 277 eqeltrrd M A 0 π 2 m 0 N m + 1 2 m ran k 0 M N 2 k
279 278 expr M A 0 π 2 m 0 N m + 1 2 m ran k 0 M N 2 k
280 194 279 orim12d M A 0 π 2 m 0 N m 2 m + 1 2 i m m ran k 0 M N 2 k
281 167 280 mpd M A 0 π 2 m 0 N i m m ran k 0 M N 2 k
282 281 orcomd M A 0 π 2 m 0 N m ran k 0 M N 2 k i m
283 282 ord M A 0 π 2 m 0 N ¬ m ran k 0 M N 2 k i m
284 283 impr M A 0 π 2 m 0 N ¬ m ran k 0 M N 2 k i m
285 163 284 sylan2b M A 0 π 2 m 0 N ran k 0 M N 2 k i m
286 162 285 remulcld M A 0 π 2 m 0 N ran k 0 M N 2 k 1 tan A N m i m
287 161 286 remulcld M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m) 1 tan A N m i m
288 287 reim0d M A 0 π 2 m 0 N ran k 0 M N 2 k ( N m) 1 tan A N m i m = 0
289 fzfid M A 0 π 2 0 N Fin
290 139 157 288 289 fsumss M A 0 π 2 m ran k 0 M N 2 k ( N m) 1 tan A N m i m = m = 0 N ( N m) 1 tan A N m i m
291 elfznn0 j 0 M j 0
292 291 adantl M A 0 π 2 j 0 M j 0
293 nn0mulcl 2 0 j 0 2 j 0
294 76 292 293 sylancr M A 0 π 2 j 0 M 2 j 0
295 294 nn0zd M A 0 π 2 j 0 M 2 j
296 bccl N 0 2 j ( N 2 j ) 0
297 15 295 296 syl2an2r M A 0 π 2 j 0 M ( N 2 j ) 0
298 297 nn0red M A 0 π 2 j 0 M ( N 2 j )
299 fznn0sub j 0 M M j 0
300 299 adantl M A 0 π 2 j 0 M M j 0
301 reexpcl 1 M j 0 1 M j
302 190 300 301 sylancr M A 0 π 2 j 0 M 1 M j
303 298 302 remulcld M A 0 π 2 j 0 M ( N 2 j ) 1 M j
304 2z 2
305 znegcl 2 2
306 304 305 ax-mp 2
307 rpexpcl tan A + 2 tan A 2 +
308 4 306 307 sylancl M A 0 π 2 tan A 2 +
309 308 rpred M A 0 π 2 tan A 2
310 reexpcl tan A 2 j 0 tan A 2 j
311 309 291 310 syl2an M A 0 π 2 j 0 M tan A 2 j
312 303 311 remulcld M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j
313 312 recnd M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j
314 mulcl i ( N 2 j ) 1 M j tan A 2 j i ( N 2 j ) 1 M j tan A 2 j
315 7 313 314 sylancr M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j
316 315 addid2d M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = i ( N 2 j ) 1 M j tan A 2 j
317 297 nn0cnd M A 0 π 2 j 0 M ( N 2 j )
318 302 recnd M A 0 π 2 j 0 M 1 M j
319 311 recnd M A 0 π 2 j 0 M tan A 2 j
320 317 318 319 mulassd M A 0 π 2 j 0 M ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
321 320 oveq2d M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = i ( N 2 j ) 1 M j tan A 2 j
322 7 a1i M A 0 π 2 j 0 M i
323 318 319 mulcld M A 0 π 2 j 0 M 1 M j tan A 2 j
324 322 317 323 mul12d M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) i 1 M j tan A 2 j
325 321 324 eqtrd M A 0 π 2 j 0 M i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) i 1 M j tan A 2 j
326 bccmpl N 0 2 j ( N 2 j ) = ( N N 2 j )
327 15 295 326 syl2an2r M A 0 π 2 j 0 M ( N 2 j ) = ( N N 2 j )
328 109 adantr M A 0 π 2 j 0 M N
329 294 nn0cnd M A 0 π 2 j 0 M 2 j
330 328 329 nncand M A 0 π 2 j 0 M N N 2 j = 2 j
331 330 oveq2d M A 0 π 2 j 0 M 1 tan A N N 2 j = 1 tan A 2 j
332 4 adantr M A 0 π 2 j 0 M tan A +
333 332 rpcnd M A 0 π 2 j 0 M tan A
334 expneg tan A 2 j 0 tan A 2 j = 1 tan A 2 j
335 333 294 334 syl2anc M A 0 π 2 j 0 M tan A 2 j = 1 tan A 2 j
336 292 nn0cnd M A 0 π 2 j 0 M j
337 mulneg1 2 j -2 j = 2 j
338 111 336 337 sylancr M A 0 π 2 j 0 M -2 j = 2 j
339 338 oveq2d M A 0 π 2 j 0 M tan A -2 j = tan A 2 j
340 332 rpne0d M A 0 π 2 j 0 M tan A 0
341 333 340 295 exprecd M A 0 π 2 j 0 M 1 tan A 2 j = 1 tan A 2 j
342 335 339 341 3eqtr4d M A 0 π 2 j 0 M tan A -2 j = 1 tan A 2 j
343 306 a1i M A 0 π 2 j 0 M 2
344 292 nn0zd M A 0 π 2 j 0 M j
345 expmulz tan A tan A 0 2 j tan A -2 j = tan A 2 j
346 333 340 343 344 345 syl22anc M A 0 π 2 j 0 M tan A -2 j = tan A 2 j
347 331 342 346 3eqtr2d M A 0 π 2 j 0 M 1 tan A N N 2 j = tan A 2 j
348 1 oveq1i N 2 j = 2 M + 1 - 2 j
349 12 adantr M A 0 π 2 j 0 M 2 M
350 349 nncnd M A 0 π 2 j 0 M 2 M
351 1cnd M A 0 π 2 j 0 M 1
352 350 351 329 addsubd M A 0 π 2 j 0 M 2 M + 1 - 2 j = 2 M - 2 j + 1
353 2cnd M A 0 π 2 j 0 M 2
354 224 ad2antrr M A 0 π 2 j 0 M M
355 353 354 336 subdid M A 0 π 2 j 0 M 2 M j = 2 M 2 j
356 355 oveq1d M A 0 π 2 j 0 M 2 M j + 1 = 2 M - 2 j + 1
357 352 356 eqtr4d M A 0 π 2 j 0 M 2 M + 1 - 2 j = 2 M j + 1
358 348 357 syl5eq M A 0 π 2 j 0 M N 2 j = 2 M j + 1
359 358 oveq2d M A 0 π 2 j 0 M i N 2 j = i 2 M j + 1
360 nn0mulcl 2 0 M j 0 2 M j 0
361 76 300 360 sylancr M A 0 π 2 j 0 M 2 M j 0
362 expp1 i 2 M j 0 i 2 M j + 1 = i 2 M j i
363 7 361 362 sylancr M A 0 π 2 j 0 M i 2 M j + 1 = i 2 M j i
364 76 a1i M A 0 π 2 j 0 M 2 0
365 322 300 364 expmuld M A 0 π 2 j 0 M i 2 M j = i 2 M j
366 168 oveq1i i 2 M j = 1 M j
367 365 366 syl6eq M A 0 π 2 j 0 M i 2 M j = 1 M j
368 367 oveq1d M A 0 π 2 j 0 M i 2 M j i = 1 M j i
369 359 363 368 3eqtrd M A 0 π 2 j 0 M i N 2 j = 1 M j i
370 mulcom 1 M j i 1 M j i = i 1 M j
371 318 7 370 sylancl M A 0 π 2 j 0 M 1 M j i = i 1 M j
372 369 371 eqtrd M A 0 π 2 j 0 M i N 2 j = i 1 M j
373 347 372 oveq12d M A 0 π 2 j 0 M 1 tan A N N 2 j i N 2 j = tan A 2 j i 1 M j
374 mulcl i 1 M j i 1 M j
375 7 318 374 sylancr M A 0 π 2 j 0 M i 1 M j
376 375 319 mulcomd M A 0 π 2 j 0 M i 1 M j tan A 2 j = tan A 2 j i 1 M j
377 322 318 319 mulassd M A 0 π 2 j 0 M i 1 M j tan A 2 j = i 1 M j tan A 2 j
378 373 376 377 3eqtr2rd M A 0 π 2 j 0 M i 1 M j tan A 2 j = 1 tan A N N 2 j i N 2 j
379 327 378 oveq12d M A 0 π 2 j 0 M ( N 2 j ) i 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
380 316 325 379 3eqtrd M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
381 380 fveq2d M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N N 2 j ) 1 tan A N N 2 j i N 2 j
382 0re 0
383 crim 0 ( N 2 j ) 1 M j tan A 2 j 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
384 382 312 383 sylancr M A 0 π 2 j 0 M 0 + i ( N 2 j ) 1 M j tan A 2 j = ( N 2 j ) 1 M j tan A 2 j
385 381 384 eqtr3d M A 0 π 2 j 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j = ( N 2 j ) 1 M j tan A 2 j
386 385 sumeq2dv M A 0 π 2 j = 0 M ( N N 2 j ) 1 tan A N N 2 j i N 2 j = j = 0 M ( N 2 j ) 1 M j tan A 2 j
387 158 290 386 3eqtr3d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = j = 0 M ( N 2 j ) 1 M j tan A 2 j
388 289 154 fsumim M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = m = 0 N ( N m) 1 tan A N m i m
389 308 rpcnd M A 0 π 2 tan A 2
390 oveq1 t = tan A 2 t j = tan A 2 j
391 390 oveq2d t = tan A 2 ( N 2 j ) 1 M j t j = ( N 2 j ) 1 M j tan A 2 j
392 391 sumeq2sdv t = tan A 2 j = 0 M ( N 2 j ) 1 M j t j = j = 0 M ( N 2 j ) 1 M j tan A 2 j
393 sumex j = 0 M ( N 2 j ) 1 M j tan A 2 j V
394 392 2 393 fvmpt tan A 2 P tan A 2 = j = 0 M ( N 2 j ) 1 M j tan A 2 j
395 389 394 syl M A 0 π 2 P tan A 2 = j = 0 M ( N 2 j ) 1 M j tan A 2 j
396 387 388 395 3eqtr4d M A 0 π 2 m = 0 N ( N m) 1 tan A N m i m = P tan A 2
397 52 59 rerpdivcld M A 0 π 2 cos N A sin A N
398 54 59 rerpdivcld M A 0 π 2 sin N A sin A N
399 397 398 crimd M A 0 π 2 cos N A sin A N + i sin N A sin A N = sin N A sin A N
400 67 396 399 3eqtr3d M A 0 π 2 P tan A 2 = sin N A sin A N