Metamath Proof Explorer


Theorem cpmadugsumlemF

Description: Lemma F for cpmadugsum . (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
cpmadugsum.g +˙=+Y
cpmadugsum.s -˙=-Y
Assertion cpmadugsumlemF NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 cpmadugsum.g +˙=+Y
12 cpmadugsum.s -˙=-Y
13 nnnn0 ss0
14 1 2 3 4 5 6 7 8 9 10 cpmadugsumlemB NFinRCRingMBs0bB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi=Yi=0si+1×˙X·˙Tbi
15 13 14 sylanr1 NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi=Yi=0si+1×˙X·˙Tbi
16 1 2 3 4 5 6 7 8 9 10 cpmadugsumlemC NFinRCRingMBs0bB0sTM×˙Yi=0si×˙X·˙Tbi=Yi=0si×˙X·˙TM×˙Tbi
17 13 16 sylanr1 NFinRCRingMBsbB0sTM×˙Yi=0si×˙X·˙Tbi=Yi=0si×˙X·˙TM×˙Tbi
18 15 17 oveq12d NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi=Yi=0si+1×˙X·˙Tbi-˙Yi=0si×˙X·˙TM×˙Tbi
19 nncn ss
20 npcan1 ss-1+1=s
21 20 eqcomd ss=s-1+1
22 19 21 syl ss=s-1+1
23 22 oveq2d s0s=0s-1+1
24 23 mpteq1d si0si+1×˙X·˙Tbi=i0s-1+1i+1×˙X·˙Tbi
25 24 oveq2d sYi=0si+1×˙X·˙Tbi=Yi=0s-1+1i+1×˙X·˙Tbi
26 25 ad2antrl NFinRCRingMBsbB0sYi=0si+1×˙X·˙Tbi=Yi=0s-1+1i+1×˙X·˙Tbi
27 eqid BaseY=BaseY
28 crngring RCRingRRing
29 28 anim2i NFinRCRingNFinRRing
30 29 3adant3 NFinRCRingMBNFinRRing
31 3 4 pmatring NFinRRingYRing
32 30 31 syl NFinRCRingMBYRing
33 ringcmn YRingYCMnd
34 32 33 syl NFinRCRingMBYCMnd
35 34 adantr NFinRCRingMBsbB0sYCMnd
36 nnm1nn0 ss10
37 36 ad2antrl NFinRCRingMBsbB0ss10
38 simpll1 NFinRCRingMBsbB0si0s-1+1NFin
39 28 3ad2ant2 NFinRCRingMBRRing
40 39 adantr NFinRCRingMBsbB0sRRing
41 40 adantr NFinRCRingMBsbB0si0s-1+1RRing
42 elmapi bB0sb:0sB
43 23 feq2d sb:0sBb:0s-1+1B
44 42 43 syl5ibcom bB0ssb:0s-1+1B
45 44 impcom sbB0sb:0s-1+1B
46 45 adantl NFinRCRingMBsbB0sb:0s-1+1B
47 46 ffvelcdmda NFinRCRingMBsbB0si0s-1+1biB
48 elfznn0 i0s-1+1i0
49 48 adantl NFinRCRingMBsbB0si0s-1+1i0
50 1nn0 10
51 50 a1i NFinRCRingMBsbB0si0s-1+110
52 49 51 nn0addcld NFinRCRingMBsbB0si0s-1+1i+10
53 1 2 5 3 4 27 8 7 6 mat2pmatscmxcl NFinRRingbiBi+10i+1×˙X·˙TbiBaseY
54 38 41 47 52 53 syl22anc NFinRCRingMBsbB0si0s-1+1i+1×˙X·˙TbiBaseY
55 27 11 35 37 54 gsummptfzsplit NFinRCRingMBsbB0sYi=0s-1+1i+1×˙X·˙Tbi=Yi=0s1i+1×˙X·˙Tbi+˙Yis-1+1i+1×˙X·˙Tbi
56 ringmnd YRingYMnd
57 32 56 syl NFinRCRingMBYMnd
58 57 adantr NFinRCRingMBsbB0sYMnd
59 ovexd NFinRCRingMBsbB0ss-1+1V
60 simpl1 NFinRCRingMBsbB0sNFin
61 nn0fz0 s0s0s
62 13 61 sylib ss0s
63 ffvelcdm b:0sBs0sbsB
64 42 62 63 syl2anr sbB0sbsB
65 13 adantr sbB0ss0
66 50 a1i sbB0s10
67 65 66 nn0addcld sbB0ss+10
68 64 67 jca sbB0sbsBs+10
69 68 adantl NFinRCRingMBsbB0sbsBs+10
70 1 2 5 3 4 27 8 7 6 mat2pmatscmxcl NFinRRingbsBs+10s+1×˙X·˙TbsBaseY
71 60 40 69 70 syl21anc NFinRCRingMBsbB0ss+1×˙X·˙TbsBaseY
72 oveq1 i=s-1+1i+1=s1+1+1
73 72 oveq1d i=s-1+1i+1×˙X=s1+1+1×˙X
74 2fveq3 i=s-1+1Tbi=Tbs-1+1
75 73 74 oveq12d i=s-1+1i+1×˙X·˙Tbi=s1+1+1×˙X·˙Tbs-1+1
76 19 20 syl ss-1+1=s
77 76 oveq1d ss1+1+1=s+1
78 77 oveq1d ss1+1+1×˙X=s+1×˙X
79 76 fveq2d sbs-1+1=bs
80 79 fveq2d sTbs-1+1=Tbs
81 78 80 oveq12d ss1+1+1×˙X·˙Tbs-1+1=s+1×˙X·˙Tbs
82 81 ad2antrl NFinRCRingMBsbB0ss1+1+1×˙X·˙Tbs-1+1=s+1×˙X·˙Tbs
83 75 82 sylan9eqr NFinRCRingMBsbB0si=s-1+1i+1×˙X·˙Tbi=s+1×˙X·˙Tbs
84 27 58 59 71 83 gsumsnd NFinRCRingMBsbB0sYis-1+1i+1×˙X·˙Tbi=s+1×˙X·˙Tbs
85 84 oveq2d NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi+˙Yis-1+1i+1×˙X·˙Tbi=Yi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs
86 26 55 85 3eqtrd NFinRCRingMBsbB0sYi=0si+1×˙X·˙Tbi=Yi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs
87 13 ad2antrl NFinRCRingMBsbB0ss0
88 3 4 pmatlmod NFinRRingYLMod
89 29 88 syl NFinRCRingYLMod
90 89 3adant3 NFinRCRingMBYLMod
91 90 adantr NFinRCRingMBsbB0sYLMod
92 91 adantr NFinRCRingMBsbB0si0sYLMod
93 eqid mulGrpP=mulGrpP
94 eqid BaseP=BaseP
95 93 94 mgpbas BaseP=BasemulGrpP
96 3 ply1ring RRingPRing
97 28 96 syl RCRingPRing
98 97 3ad2ant2 NFinRCRingMBPRing
99 93 ringmgp PRingmulGrpPMnd
100 98 99 syl NFinRCRingMBmulGrpPMnd
101 100 adantr NFinRCRingMBsbB0smulGrpPMnd
102 101 adantr NFinRCRingMBsbB0si0smulGrpPMnd
103 elfznn0 i0si0
104 103 adantl NFinRCRingMBsbB0si0si0
105 6 3 94 vr1cl RRingXBaseP
106 28 105 syl RCRingXBaseP
107 106 3ad2ant2 NFinRCRingMBXBaseP
108 107 adantr NFinRCRingMBsbB0sXBaseP
109 108 adantr NFinRCRingMBsbB0si0sXBaseP
110 95 7 102 104 109 mulgnn0cld NFinRCRingMBsbB0si0si×˙XBaseP
111 3 ply1crng RCRingPCRing
112 111 anim2i NFinRCRingNFinPCRing
113 112 3adant3 NFinRCRingMBNFinPCRing
114 4 matsca2 NFinPCRingP=ScalarY
115 113 114 syl NFinRCRingMBP=ScalarY
116 115 eqcomd NFinRCRingMBScalarY=P
117 116 fveq2d NFinRCRingMBBaseScalarY=BaseP
118 117 eleq2d NFinRCRingMBi×˙XBaseScalarYi×˙XBaseP
119 118 adantr NFinRCRingMBsbB0si×˙XBaseScalarYi×˙XBaseP
120 119 adantr NFinRCRingMBsbB0si0si×˙XBaseScalarYi×˙XBaseP
121 110 120 mpbird NFinRCRingMBsbB0si0si×˙XBaseScalarY
122 32 adantr NFinRCRingMBsbB0sYRing
123 122 adantr NFinRCRingMBsbB0si0sYRing
124 simpll1 NFinRCRingMBsbB0si0sNFin
125 40 adantr NFinRCRingMBsbB0si0sRRing
126 simpll3 NFinRCRingMBsbB0si0sMB
127 5 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
128 124 125 126 127 syl3anc NFinRCRingMBsbB0si0sTMBaseY
129 87 adantr NFinRCRingMBsbB0si0ss0
130 simprr NFinRCRingMBsbB0sbB0s
131 130 anim1i NFinRCRingMBsbB0si0sbB0si0s
132 1 2 3 4 5 m2pmfzmap NFinRRings0bB0si0sTbiBaseY
133 124 125 129 131 132 syl31anc NFinRCRingMBsbB0si0sTbiBaseY
134 27 9 ringcl YRingTMBaseYTbiBaseYTM×˙TbiBaseY
135 123 128 133 134 syl3anc NFinRCRingMBsbB0si0sTM×˙TbiBaseY
136 eqid ScalarY=ScalarY
137 eqid BaseScalarY=BaseScalarY
138 27 136 8 137 lmodvscl YLModi×˙XBaseScalarYTM×˙TbiBaseYi×˙X·˙TM×˙TbiBaseY
139 92 121 135 138 syl3anc NFinRCRingMBsbB0si0si×˙X·˙TM×˙TbiBaseY
140 27 11 35 87 139 gsummptfzsplitl NFinRCRingMBsbB0sYi=0si×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙TM×˙Tbi+˙Yi0i×˙X·˙TM×˙Tbi
141 0nn0 00
142 141 a1i NFinRCRingMBsbB0s00
143 eqid 0mulGrpP=0mulGrpP
144 95 143 7 mulg0 XBaseP0×˙X=0mulGrpP
145 107 144 syl NFinRCRingMB0×˙X=0mulGrpP
146 145 adantr NFinRCRingMBsbB0s0×˙X=0mulGrpP
147 146 oveq1d NFinRCRingMBsbB0s0×˙X·˙TM×˙Tb0=0mulGrpP·˙TM×˙Tb0
148 eqid 1P=1P
149 93 148 ringidval 1P=0mulGrpP
150 149 a1i NFinRCRingMBsbB0s1P=0mulGrpP
151 150 eqcomd NFinRCRingMBsbB0s0mulGrpP=1P
152 151 oveq1d NFinRCRingMBsbB0s0mulGrpP·˙TM×˙Tb0=1P·˙TM×˙Tb0
153 115 adantr NFinRCRingMBsbB0sP=ScalarY
154 153 fveq2d NFinRCRingMBsbB0s1P=1ScalarY
155 154 oveq1d NFinRCRingMBsbB0s1P·˙TM×˙Tb0=1ScalarY·˙TM×˙Tb0
156 28 127 syl3an2 NFinRCRingMBTMBaseY
157 156 adantr NFinRCRingMBsbB0sTMBaseY
158 simpl b:0sBsb:0sB
159 elnn0uz s0s0
160 13 159 sylib ss0
161 eluzfz1 s000s
162 160 161 syl s00s
163 162 adantl b:0sBs00s
164 158 163 ffvelcdmd b:0sBsb0B
165 164 ex b:0sBsb0B
166 42 165 syl bB0ssb0B
167 166 impcom sbB0sb0B
168 167 adantl NFinRCRingMBsbB0sb0B
169 5 1 2 3 4 mat2pmatbas NFinRRingb0BTb0BaseY
170 60 40 168 169 syl3anc NFinRCRingMBsbB0sTb0BaseY
171 27 9 ringcl YRingTMBaseYTb0BaseYTM×˙Tb0BaseY
172 122 157 170 171 syl3anc NFinRCRingMBsbB0sTM×˙Tb0BaseY
173 eqid 1ScalarY=1ScalarY
174 27 136 8 173 lmodvs1 YLModTM×˙Tb0BaseY1ScalarY·˙TM×˙Tb0=TM×˙Tb0
175 91 172 174 syl2anc NFinRCRingMBsbB0s1ScalarY·˙TM×˙Tb0=TM×˙Tb0
176 155 175 eqtrd NFinRCRingMBsbB0s1P·˙TM×˙Tb0=TM×˙Tb0
177 147 152 176 3eqtrd NFinRCRingMBsbB0s0×˙X·˙TM×˙Tb0=TM×˙Tb0
178 177 172 eqeltrd NFinRCRingMBsbB0s0×˙X·˙TM×˙Tb0BaseY
179 oveq1 i=0i×˙X=0×˙X
180 2fveq3 i=0Tbi=Tb0
181 180 oveq2d i=0TM×˙Tbi=TM×˙Tb0
182 179 181 oveq12d i=0i×˙X·˙TM×˙Tbi=0×˙X·˙TM×˙Tb0
183 182 adantl NFinRCRingMBsbB0si=0i×˙X·˙TM×˙Tbi=0×˙X·˙TM×˙Tb0
184 27 58 142 178 183 gsumsnd NFinRCRingMBsbB0sYi0i×˙X·˙TM×˙Tbi=0×˙X·˙TM×˙Tb0
185 95 149 7 mulg0 XBaseP0×˙X=1P
186 107 185 syl NFinRCRingMB0×˙X=1P
187 186 adantr NFinRCRingMBsbB0s0×˙X=1P
188 187 oveq1d NFinRCRingMBsbB0s0×˙X·˙TM×˙Tb0=1P·˙TM×˙Tb0
189 184 188 176 3eqtrd NFinRCRingMBsbB0sYi0i×˙X·˙TM×˙Tbi=TM×˙Tb0
190 189 oveq2d NFinRCRingMBsbB0sYi=1si×˙X·˙TM×˙Tbi+˙Yi0i×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0
191 140 190 eqtrd NFinRCRingMBsbB0sYi=0si×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0
192 86 191 oveq12d NFinRCRingMBsbB0sYi=0si+1×˙X·˙Tbi-˙Yi=0si×˙X·˙TM×˙Tbi=Yi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0
193 fzfid NFinRCRingMBsbB0s0s1Fin
194 simpll1 NFinRCRingMBsbB0si0s1NFin
195 40 adantr NFinRCRingMBsbB0si0s1RRing
196 42 adantl sbB0sb:0sB
197 196 adantr sbB0si0s1b:0sB
198 nnz ss
199 fzoval s0..^s=0s1
200 198 199 syl s0..^s=0s1
201 200 eqcomd s0s1=0..^s
202 201 eleq2d si0s1i0..^s
203 elfzofz i0..^si0s
204 202 203 syl6bi si0s1i0s
205 204 adantr sbB0si0s1i0s
206 205 imp sbB0si0s1i0s
207 197 206 ffvelcdmd sbB0si0s1biB
208 207 adantll NFinRCRingMBsbB0si0s1biB
209 elfznn0 i0s1i0
210 209 adantl NFinRCRingMBsbB0si0s1i0
211 50 a1i NFinRCRingMBsbB0si0s110
212 210 211 nn0addcld NFinRCRingMBsbB0si0s1i+10
213 194 195 208 212 53 syl22anc NFinRCRingMBsbB0si0s1i+1×˙X·˙TbiBaseY
214 213 ralrimiva NFinRCRingMBsbB0si0s1i+1×˙X·˙TbiBaseY
215 27 35 193 214 gsummptcl NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙TbiBaseY
216 27 11 cmncom YCMndYi=0s1i+1×˙X·˙TbiBaseYs+1×˙X·˙TbsBaseYYi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi
217 35 215 71 216 syl3anc NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi
218 217 oveq1d NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0
219 ringgrp YRingYGrp
220 32 219 syl NFinRCRingMBYGrp
221 220 adantr NFinRCRingMBsbB0sYGrp
222 fzfid NFinRCRingMBsbB0s1sFin
223 91 adantr NFinRCRingMBsbB0si1sYLMod
224 101 adantr NFinRCRingMBsbB0si1smulGrpPMnd
225 elfznn i1si
226 225 nnnn0d i1si0
227 226 adantl NFinRCRingMBsbB0si1si0
228 108 adantr NFinRCRingMBsbB0si1sXBaseP
229 95 7 224 227 228 mulgnn0cld NFinRCRingMBsbB0si1si×˙XBaseP
230 115 fveq2d NFinRCRingMBBaseP=BaseScalarY
231 230 adantr NFinRCRingMBsbB0sBaseP=BaseScalarY
232 231 adantr NFinRCRingMBsbB0si1sBaseP=BaseScalarY
233 229 232 eleqtrd NFinRCRingMBsbB0si1si×˙XBaseScalarY
234 122 adantr NFinRCRingMBsbB0si1sYRing
235 157 adantr NFinRCRingMBsbB0si1sTMBaseY
236 simpll1 NFinRCRingMBsbB0si1sNFin
237 40 adantr NFinRCRingMBsbB0si1sRRing
238 196 adantl NFinRCRingMBsbB0sb:0sB
239 238 adantr NFinRCRingMBsbB0si1sb:0sB
240 1eluzge0 10
241 fzss1 101s0s
242 240 241 mp1i s1s0s
243 242 sseld si1si0s
244 243 ad2antrl NFinRCRingMBsbB0si1si0s
245 244 imp NFinRCRingMBsbB0si1si0s
246 239 245 ffvelcdmd NFinRCRingMBsbB0si1sbiB
247 5 1 2 3 4 mat2pmatbas NFinRRingbiBTbiBaseY
248 236 237 246 247 syl3anc NFinRCRingMBsbB0si1sTbiBaseY
249 234 235 248 134 syl3anc NFinRCRingMBsbB0si1sTM×˙TbiBaseY
250 223 233 249 138 syl3anc NFinRCRingMBsbB0si1si×˙X·˙TM×˙TbiBaseY
251 250 ralrimiva NFinRCRingMBsbB0si1si×˙X·˙TM×˙TbiBaseY
252 27 35 222 251 gsummptcl NFinRCRingMBsbB0sYi=1si×˙X·˙TM×˙TbiBaseY
253 27 11 12 grpaddsubass YGrps+1×˙X·˙TbsBaseYYi=0s1i+1×˙X·˙TbiBaseYYi=1si×˙X·˙TM×˙TbiBaseYs+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi
254 221 71 215 252 253 syl13anc NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi
255 oveq1 x=ix1=i1
256 255 oveq1d x=ix-1+1=i-1+1
257 256 oveq1d x=ix-1+1×˙X=i-1+1×˙X
258 255 fveq2d x=ibx1=bi1
259 258 fveq2d x=iTbx1=Tbi1
260 257 259 oveq12d x=ix-1+1×˙X·˙Tbx1=i-1+1×˙X·˙Tbi1
261 260 cbvmptv x1sx-1+1×˙X·˙Tbx1=i1si-1+1×˙X·˙Tbi1
262 225 nncnd i1si
263 262 adantl si1si
264 npcan1 ii-1+1=i
265 263 264 syl si1si-1+1=i
266 265 oveq1d si1si-1+1×˙X=i×˙X
267 266 oveq1d si1si-1+1×˙X·˙Tbi1=i×˙X·˙Tbi1
268 267 mpteq2dva si1si-1+1×˙X·˙Tbi1=i1si×˙X·˙Tbi1
269 261 268 eqtrid sx1sx-1+1×˙X·˙Tbx1=i1si×˙X·˙Tbi1
270 269 oveq2d sYx=1sx-1+1×˙X·˙Tbx1=Yi=1si×˙X·˙Tbi1
271 270 ad2antrl NFinRCRingMBsbB0sYx=1sx-1+1×˙X·˙Tbx1=Yi=1si×˙X·˙Tbi1
272 271 oveq1d NFinRCRingMBsbB0sYx=1sx-1+1×˙X·˙Tbx1-˙Yi=1si×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙Yi=1si×˙X·˙TM×˙Tbi
273 eqid 0Y=0Y
274 1zzd NFinRCRingMBsbB0s1
275 0zd NFinRCRingMBsbB0s0
276 37 nn0zd NFinRCRingMBsbB0ss1
277 oveq1 i=x1i+1=x-1+1
278 277 oveq1d i=x1i+1×˙X=x-1+1×˙X
279 2fveq3 i=x1Tbi=Tbx1
280 278 279 oveq12d i=x1i+1×˙X·˙Tbi=x-1+1×˙X·˙Tbx1
281 27 273 35 274 275 276 213 280 gsummptshft NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi=Yx=0+1s-1+1x-1+1×˙X·˙Tbx1
282 0p1e1 0+1=1
283 282 a1i NFinRCRingMBsbB0s0+1=1
284 76 ad2antrl NFinRCRingMBsbB0ss-1+1=s
285 283 284 oveq12d NFinRCRingMBsbB0s0+1s-1+1=1s
286 285 mpteq1d NFinRCRingMBsbB0sx0+1s-1+1x-1+1×˙X·˙Tbx1=x1sx-1+1×˙X·˙Tbx1
287 286 oveq2d NFinRCRingMBsbB0sYx=0+1s-1+1x-1+1×˙X·˙Tbx1=Yx=1sx-1+1×˙X·˙Tbx1
288 281 287 eqtrd NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi=Yx=1sx-1+1×˙X·˙Tbx1
289 288 oveq1d NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=Yx=1sx-1+1×˙X·˙Tbx1-˙Yi=1si×˙X·˙TM×˙Tbi
290 ringabl YRingYAbel
291 32 290 syl NFinRCRingMBYAbel
292 291 adantr NFinRCRingMBsbB0sYAbel
293 225 adantl si1si
294 nnz ii
295 elfzm1b isi1si10s1
296 294 198 295 syl2an isi1si10s1
297 200 adantl is0..^s=0s1
298 297 eqcomd is0s1=0..^s
299 298 eleq2d isi10s1i10..^s
300 elfzofz i10..^si10s
301 299 300 syl6bi isi10s1i10s
302 296 301 sylbid isi1si10s
303 302 expimpd isi1si10s
304 293 303 mpcom si1si10s
305 304 ex si1si10s
306 305 ad2antrl NFinRCRingMBsbB0si1si10s
307 306 imp NFinRCRingMBsbB0si1si10s
308 239 307 ffvelcdmd NFinRCRingMBsbB0si1sbi1B
309 1 2 5 3 4 27 8 7 6 mat2pmatscmxcl NFinRRingbi1Bi0i×˙X·˙Tbi1BaseY
310 236 237 308 227 309 syl22anc NFinRCRingMBsbB0si1si×˙X·˙Tbi1BaseY
311 eqid i1si×˙X·˙Tbi1=i1si×˙X·˙Tbi1
312 eqid i1si×˙X·˙TM×˙Tbi=i1si×˙X·˙TM×˙Tbi
313 27 12 292 222 310 250 311 312 gsummptfidmsub NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙Yi=1si×˙X·˙TM×˙Tbi
314 272 289 313 3eqtr4d NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi
315 314 oveq2d NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=s+1×˙X·˙Tbs+˙Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi
316 221 adantr NFinRCRingMBsbB0si1sYGrp
317 27 12 grpsubcl YGrpi×˙X·˙Tbi1BaseYi×˙X·˙TM×˙TbiBaseYi×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseY
318 316 310 250 317 syl3anc NFinRCRingMBsbB0si1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseY
319 318 ralrimiva NFinRCRingMBsbB0si1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseY
320 27 35 222 319 gsummptcl NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseY
321 27 11 cmncom YCMnds+1×˙X·˙TbsBaseYYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseYs+1×˙X·˙Tbs+˙Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs
322 35 71 320 321 syl3anc NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs
323 254 315 322 3eqtrd NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs
324 323 oveq1d NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi-˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
325 27 11 mndcl YMnds+1×˙X·˙TbsBaseYYi=0s1i+1×˙X·˙TbiBaseYs+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙TbiBaseY
326 58 71 215 325 syl3anc NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙TbiBaseY
327 27 11 12 292 326 252 172 ablsubsub4 NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi-˙TM×˙Tb0=s+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0
328 27 11 12 grpaddsubass YGrpYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙TbiBaseYs+1×˙X·˙TbsBaseYTM×˙Tb0BaseYYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
329 221 320 71 172 328 syl13anc NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
330 324 327 329 3eqtr3d NFinRCRingMBsbB0ss+1×˙X·˙Tbs+˙Yi=0s1i+1×˙X·˙Tbi-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
331 5 1 2 3 4 mat2pmatbas NFinRRingbi1BTbi1BaseY
332 236 237 308 331 syl3anc NFinRCRingMBsbB0si1sTbi1BaseY
333 27 8 136 137 12 223 233 332 249 lmodsubdi NFinRCRingMBsbB0si1si×˙X·˙Tbi1-˙TM×˙Tbi=i×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi
334 333 eqcomd NFinRCRingMBsbB0si1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=i×˙X·˙Tbi1-˙TM×˙Tbi
335 334 mpteq2dva NFinRCRingMBsbB0si1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=i1si×˙X·˙Tbi1-˙TM×˙Tbi
336 335 oveq2d NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi
337 336 oveq1d NFinRCRingMBsbB0sYi=1si×˙X·˙Tbi1-˙i×˙X·˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
338 218 330 337 3eqtrd NFinRCRingMBsbB0sYi=0s1i+1×˙X·˙Tbi+˙s+1×˙X·˙Tbs-˙Yi=1si×˙X·˙TM×˙Tbi+˙TM×˙Tb0=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
339 18 192 338 3eqtrd NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0