Metamath Proof Explorer


Theorem cvmliftlem10

Description: Lemma for cvmlift . The function K is going to be our complete lifted path, formed by unioning together all the Q functions (each of which is defined on one segment [ ( M - 1 ) / N , M / N ] of the interval). Here we prove by induction that K is a continuous function and a lift of G by applying cvmliftlem6 , cvmliftlem7 (to show it is a function and a lift), cvmliftlem8 (to show it is continuous), and cvmliftlem9 (to show that different Q functions agree on the intersection of their domains, so that the pasting lemma paste gives that K is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem.k K=k=1NQk
cvmliftlem10.1 χnn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
Assertion cvmliftlem10 φKL𝑡0NNCnCFK=G0NN

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem.k K=k=1NQk
14 cvmliftlem10.1 χnn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
15 nnuz =1
16 8 15 eleqtrdi φN1
17 eluzfz2 N1N1N
18 16 17 syl φN1N
19 eleq1 y=1y1N11N
20 oveq2 y=11y=11
21 1z 1
22 fzsn 111=1
23 21 22 ax-mp 11=1
24 20 23 eqtrdi y=11y=1
25 24 iuneq1d y=1k=1yQk=k1Qk
26 1ex 1V
27 fveq2 k=1Qk=Q1
28 26 27 iunxsn k1Qk=Q1
29 25 28 eqtrdi y=1k=1yQk=Q1
30 oveq1 y=1yN=1N
31 30 oveq2d y=10yN=01N
32 31 oveq2d y=1L𝑡0yN=L𝑡01N
33 32 oveq1d y=1L𝑡0yNCnC=L𝑡01NCnC
34 29 33 eleq12d y=1k=1yQkL𝑡0yNCnCQ1L𝑡01NCnC
35 29 coeq2d y=1Fk=1yQk=FQ1
36 31 reseq2d y=1G0yN=G01N
37 35 36 eqeq12d y=1Fk=1yQk=G0yNFQ1=G01N
38 34 37 anbi12d y=1k=1yQkL𝑡0yNCnCFk=1yQk=G0yNQ1L𝑡01NCnCFQ1=G01N
39 19 38 imbi12d y=1y1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yN11NQ1L𝑡01NCnCFQ1=G01N
40 39 imbi2d y=1φy1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNφ11NQ1L𝑡01NCnCFQ1=G01N
41 eleq1 y=ny1Nn1N
42 oveq2 y=n1y=1n
43 42 iuneq1d y=nk=1yQk=k=1nQk
44 oveq1 y=nyN=nN
45 44 oveq2d y=n0yN=0nN
46 45 oveq2d y=nL𝑡0yN=L𝑡0nN
47 46 oveq1d y=nL𝑡0yNCnC=L𝑡0nNCnC
48 43 47 eleq12d y=nk=1yQkL𝑡0yNCnCk=1nQkL𝑡0nNCnC
49 43 coeq2d y=nFk=1yQk=Fk=1nQk
50 45 reseq2d y=nG0yN=G0nN
51 49 50 eqeq12d y=nFk=1yQk=G0yNFk=1nQk=G0nN
52 48 51 anbi12d y=nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
53 41 52 imbi12d y=ny1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNn1Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
54 53 imbi2d y=nφy1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNφn1Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
55 eleq1 y=n+1y1Nn+11N
56 oveq2 y=n+11y=1n+1
57 56 iuneq1d y=n+1k=1yQk=k=1n+1Qk
58 oveq1 y=n+1yN=n+1N
59 58 oveq2d y=n+10yN=0n+1N
60 59 oveq2d y=n+1L𝑡0yN=L𝑡0n+1N
61 60 oveq1d y=n+1L𝑡0yNCnC=L𝑡0n+1NCnC
62 57 61 eleq12d y=n+1k=1yQkL𝑡0yNCnCk=1n+1QkL𝑡0n+1NCnC
63 57 coeq2d y=n+1Fk=1yQk=Fk=1n+1Qk
64 59 reseq2d y=n+1G0yN=G0n+1N
65 63 64 eqeq12d y=n+1Fk=1yQk=G0yNFk=1n+1Qk=G0n+1N
66 62 65 anbi12d y=n+1k=1yQkL𝑡0yNCnCFk=1yQk=G0yNk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
67 55 66 imbi12d y=n+1y1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNn+11Nk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
68 67 imbi2d y=n+1φy1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNφn+11Nk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
69 eleq1 y=Ny1NN1N
70 oveq2 y=N1y=1N
71 70 iuneq1d y=Nk=1yQk=k=1NQk
72 71 13 eqtr4di y=Nk=1yQk=K
73 oveq1 y=NyN=NN
74 73 oveq2d y=N0yN=0NN
75 74 oveq2d y=NL𝑡0yN=L𝑡0NN
76 75 oveq1d y=NL𝑡0yNCnC=L𝑡0NNCnC
77 72 76 eleq12d y=Nk=1yQkL𝑡0yNCnCKL𝑡0NNCnC
78 72 coeq2d y=NFk=1yQk=FK
79 74 reseq2d y=NG0yN=G0NN
80 78 79 eqeq12d y=NFk=1yQk=G0yNFK=G0NN
81 77 80 anbi12d y=Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNKL𝑡0NNCnCFK=G0NN
82 69 81 imbi12d y=Ny1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNN1NKL𝑡0NNCnCFK=G0NN
83 82 imbi2d y=Nφy1Nk=1yQkL𝑡0yNCnCFk=1yQk=G0yNφN1NKL𝑡0NNCnCFK=G0NN
84 eluzfz1 N111N
85 16 84 syl φ11N
86 eqid 11N1N=11N1N
87 1 2 3 4 5 6 7 8 9 10 11 12 86 cvmliftlem8 φ11NQ1L𝑡11N1NCnC
88 85 87 mpdan φQ1L𝑡11N1NCnC
89 1m1e0 11=0
90 89 oveq1i 11N=0N
91 8 nncnd φN
92 8 nnne0d φN0
93 91 92 div0d φ0N=0
94 90 93 eqtrid φ11N=0
95 94 oveq1d φ11N1N=01N
96 95 oveq2d φL𝑡11N1N=L𝑡01N
97 96 oveq1d φL𝑡11N1NCnC=L𝑡01NCnC
98 88 97 eleqtrd φQ1L𝑡01NCnC
99 simpr φ11N11N
100 1 2 3 4 5 6 7 8 9 10 11 12 86 cvmliftlem7 φ11NQ1111NF-1G11N
101 1 2 3 4 5 6 7 8 9 10 11 12 86 99 100 cvmliftlem6 φ11NQ1:11N1NBFQ1=G11N1N
102 85 101 mpdan φQ1:11N1NBFQ1=G11N1N
103 102 simprd φFQ1=G11N1N
104 95 reseq2d φG11N1N=G01N
105 103 104 eqtrd φFQ1=G01N
106 98 105 jca φQ1L𝑡01NCnCFQ1=G01N
107 106 a1d φ11NQ1L𝑡01NCnCFQ1=G01N
108 elnnuz nn1
109 108 biimpi nn1
110 109 adantl φnn1
111 peano2fzr n1n+11Nn1N
112 111 ex n1n+11Nn1N
113 110 112 syl φnn+11Nn1N
114 113 imim1d φnn1Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nNn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
115 eqid L𝑡0n+1N=L𝑡0n+1N
116 0re 0
117 14 simplbi χnn+11N
118 117 adantl φχnn+11N
119 118 simprd φχn+11N
120 elfznn n+11Nn+1
121 119 120 syl φχn+1
122 121 nnred φχn+1
123 8 adantr φχN
124 122 123 nndivred φχn+1N
125 iccssre 0n+1N0n+1N
126 116 124 125 sylancr φχ0n+1N
127 117 simpld χn
128 127 adantl φχn
129 128 nnred φχn
130 129 123 nndivred φχnN
131 icccld 0nN0nNClsdtopGenran.
132 116 130 131 sylancr φχ0nNClsdtopGenran.
133 11 fveq2i ClsdL=ClsdtopGenran.
134 132 133 eleqtrrdi φχ0nNClsdL
135 ssun1 0nN0nNnNn+1N
136 116 a1i φχ0
137 128 nnnn0d φχn0
138 137 nn0ge0d φχ0n
139 123 nnred φχN
140 123 nngt0d φχ0<N
141 divge0 n0nN0<N0nN
142 129 138 139 140 141 syl22anc φχ0nN
143 129 ltp1d φχn<n+1
144 ltdiv1 nn+1N0<Nn<n+1nN<n+1N
145 129 122 139 140 144 syl112anc φχn<n+1nN<n+1N
146 143 145 mpbid φχnN<n+1N
147 130 124 146 ltled φχnNn+1N
148 elicc2 0n+1NnN0n+1NnN0nNnNn+1N
149 116 124 148 sylancr φχnN0n+1NnN0nNnNn+1N
150 130 142 147 149 mpbir3and φχnN0n+1N
151 iccsplit 0n+1NnN0n+1N0n+1N=0nNnNn+1N
152 136 124 150 151 syl3anc φχ0n+1N=0nNnNn+1N
153 135 152 sseqtrrid φχ0nN0n+1N
154 uniretop =topGenran.
155 11 unieqi L=topGenran.
156 154 155 eqtr4i =L
157 156 restcldi 0n+1N0nNClsdL0nN0n+1N0nNClsdL𝑡0n+1N
158 126 134 153 157 syl3anc φχ0nNClsdL𝑡0n+1N
159 icccld nNn+1NnNn+1NClsdtopGenran.
160 130 124 159 syl2anc φχnNn+1NClsdtopGenran.
161 160 133 eleqtrrdi φχnNn+1NClsdL
162 ssun2 nNn+1N0nNnNn+1N
163 162 152 sseqtrrid φχnNn+1N0n+1N
164 156 restcldi 0n+1NnNn+1NClsdLnNn+1N0n+1NnNn+1NClsdL𝑡0n+1N
165 126 161 163 164 syl3anc φχnNn+1NClsdL𝑡0n+1N
166 retop topGenran.Top
167 11 166 eqeltri LTop
168 156 restuni LTop0n+1N0n+1N=L𝑡0n+1N
169 167 126 168 sylancr φχ0n+1N=L𝑡0n+1N
170 152 169 eqtr3d φχ0nNnNn+1N=L𝑡0n+1N
171 14 simprbi χk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
172 171 adantl φχk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
173 172 simpld φχk=1nQkL𝑡0nNCnC
174 eqid L𝑡0nN=L𝑡0nN
175 174 2 cnf k=1nQkL𝑡0nNCnCk=1nQk:L𝑡0nNB
176 173 175 syl φχk=1nQk:L𝑡0nNB
177 iccssre 0nN0nN
178 116 130 177 sylancr φχ0nN
179 156 restuni LTop0nN0nN=L𝑡0nN
180 167 178 179 sylancr φχ0nN=L𝑡0nN
181 180 feq2d φχk=1nQk:0nNBk=1nQk:L𝑡0nNB
182 176 181 mpbird φχk=1nQk:0nNB
183 eqid n+1-1Nn+1N=n+1-1Nn+1N
184 simpr φn+11Nn+11N
185 1 2 3 4 5 6 7 8 9 10 11 12 183 cvmliftlem7 φn+11NQn+1-1n+1-1NF-1Gn+1-1N
186 1 2 3 4 5 6 7 8 9 10 11 12 183 184 185 cvmliftlem6 φn+11NQn+1:n+1-1Nn+1NBFQn+1=Gn+1-1Nn+1N
187 119 186 syldan φχQn+1:n+1-1Nn+1NBFQn+1=Gn+1-1Nn+1N
188 187 simpld φχQn+1:n+1-1Nn+1NB
189 128 nncnd φχn
190 ax-1cn 1
191 pncan n1n+1-1=n
192 189 190 191 sylancl φχn+1-1=n
193 192 oveq1d φχn+1-1N=nN
194 193 oveq1d φχn+1-1Nn+1N=nNn+1N
195 194 feq2d φχQn+1:n+1-1Nn+1NBQn+1:nNn+1NB
196 188 195 mpbid φχQn+1:nNn+1NB
197 176 ffund φχFunk=1nQk
198 128 109 syl φχn1
199 eluzfz2 n1n1n
200 198 199 syl φχn1n
201 fveq2 k=nQk=Qn
202 201 ssiun2s n1nQnk=1nQk
203 200 202 syl φχQnk=1nQk
204 peano2rem nn1
205 129 204 syl φχn1
206 205 123 nndivred φχn1N
207 206 rexrd φχn1N*
208 130 rexrd φχnN*
209 129 ltm1d φχn1<n
210 ltdiv1 n1nN0<Nn1<nn1N<nN
211 205 129 139 140 210 syl112anc φχn1<nn1N<nN
212 209 211 mpbid φχn1N<nN
213 206 130 212 ltled φχn1NnN
214 ubicc2 n1N*nN*n1NnNnNn1NnN
215 207 208 213 214 syl3anc φχnNn1NnN
216 198 119 111 syl2anc φχn1N
217 eqid n1NnN=n1NnN
218 simpr φn1Nn1N
219 1 2 3 4 5 6 7 8 9 10 11 12 217 cvmliftlem7 φn1NQn1n1NF-1Gn1N
220 1 2 3 4 5 6 7 8 9 10 11 12 217 218 219 cvmliftlem6 φn1NQn:n1NnNBFQn=Gn1NnN
221 216 220 syldan φχQn:n1NnNBFQn=Gn1NnN
222 221 simpld φχQn:n1NnNB
223 222 fdmd φχdomQn=n1NnN
224 215 223 eleqtrrd φχnNdomQn
225 funssfv Funk=1nQkQnk=1nQknNdomQnk=1nQknN=QnnN
226 197 203 224 225 syl3anc φχk=1nQknN=QnnN
227 192 fveq2d φχQn+1-1=Qn
228 227 193 fveq12d φχQn+1-1n+1-1N=QnnN
229 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem9 φn+11NQn+1n+1-1N=Qn+1-1n+1-1N
230 119 229 syldan φχQn+1n+1-1N=Qn+1-1n+1-1N
231 193 fveq2d φχQn+1n+1-1N=Qn+1nN
232 230 231 eqtr3d φχQn+1-1n+1-1N=Qn+1nN
233 226 228 232 3eqtr2d φχk=1nQknN=Qn+1nN
234 233 opeq2d φχnNk=1nQknN=nNQn+1nN
235 234 sneqd φχnNk=1nQknN=nNQn+1nN
236 182 ffnd φχk=1nQkFn0nN
237 0xr 0*
238 237 a1i φχ0*
239 ubicc2 0*nN*0nNnN0nN
240 238 208 142 239 syl3anc φχnN0nN
241 fnressn k=1nQkFn0nNnN0nNk=1nQknN=nNk=1nQknN
242 236 240 241 syl2anc φχk=1nQknN=nNk=1nQknN
243 196 ffnd φχQn+1FnnNn+1N
244 124 rexrd φχn+1N*
245 lbicc2 nN*n+1N*nNn+1NnNnNn+1N
246 208 244 147 245 syl3anc φχnNnNn+1N
247 fnressn Qn+1FnnNn+1NnNnNn+1NQn+1nN=nNQn+1nN
248 243 246 247 syl2anc φχQn+1nN=nNQn+1nN
249 235 242 248 3eqtr4d φχk=1nQknN=Qn+1nN
250 df-icc .=x*,y*z*|xzzy
251 xrmaxle 0*nN*z*if0nNnN0z0znNz
252 xrlemin z*nN*n+1N*zifnNn+1NnNn+1NznNzn+1N
253 250 251 252 ixxin 0*nN*nN*n+1N*0nNnNn+1N=if0nNnN0ifnNn+1NnNn+1N
254 238 208 208 244 253 syl22anc φχ0nNnNn+1N=if0nNnN0ifnNn+1NnNn+1N
255 142 iftrued φχif0nNnN0=nN
256 147 iftrued φχifnNn+1NnNn+1N=nN
257 255 256 oveq12d φχif0nNnN0ifnNn+1NnNn+1N=nNnN
258 iccid nN*nNnN=nN
259 208 258 syl φχnNnN=nN
260 254 257 259 3eqtrd φχ0nNnNn+1N=nN
261 260 reseq2d φχk=1nQk0nNnNn+1N=k=1nQknN
262 260 reseq2d φχQn+10nNnNn+1N=Qn+1nN
263 249 261 262 3eqtr4d φχk=1nQk0nNnNn+1N=Qn+10nNnNn+1N
264 fresaun k=1nQk:0nNBQn+1:nNn+1NBk=1nQk0nNnNn+1N=Qn+10nNnNn+1Nk=1nQkQn+1:0nNnNn+1NB
265 182 196 263 264 syl3anc φχk=1nQkQn+1:0nNnNn+1NB
266 fzsuc n11n+1=1nn+1
267 198 266 syl φχ1n+1=1nn+1
268 267 iuneq1d φχk=1n+1Qk=k1nn+1Qk
269 iunxun k1nn+1Qk=k=1nQkkn+1Qk
270 ovex n+1V
271 fveq2 k=n+1Qk=Qn+1
272 270 271 iunxsn kn+1Qk=Qn+1
273 272 uneq2i k=1nQkkn+1Qk=k=1nQkQn+1
274 269 273 eqtri k1nn+1Qk=k=1nQkQn+1
275 268 274 eqtr2di φχk=1nQkQn+1=k=1n+1Qk
276 275 feq1d φχk=1nQkQn+1:0nNnNn+1NBk=1n+1Qk:0nNnNn+1NB
277 265 276 mpbid φχk=1n+1Qk:0nNnNn+1NB
278 170 feq2d φχk=1n+1Qk:0nNnNn+1NBk=1n+1Qk:L𝑡0n+1NB
279 277 278 mpbid φχk=1n+1Qk:L𝑡0n+1NB
280 275 reseq1d φχk=1nQkQn+10nN=k=1n+1Qk0nN
281 fresaunres1 k=1nQk:0nNBQn+1:nNn+1NBk=1nQk0nNnNn+1N=Qn+10nNnNn+1Nk=1nQkQn+10nN=k=1nQk
282 182 196 263 281 syl3anc φχk=1nQkQn+10nN=k=1nQk
283 280 282 eqtr3d φχk=1n+1Qk0nN=k=1nQk
284 167 a1i φχLTop
285 ovex 0n+1NV
286 285 a1i φχ0n+1NV
287 restabs LTop0nN0n+1N0n+1NVL𝑡0n+1N𝑡0nN=L𝑡0nN
288 284 153 286 287 syl3anc φχL𝑡0n+1N𝑡0nN=L𝑡0nN
289 288 oveq1d φχL𝑡0n+1N𝑡0nNCnC=L𝑡0nNCnC
290 173 283 289 3eltr4d φχk=1n+1Qk0nNL𝑡0n+1N𝑡0nNCnC
291 1 2 3 4 5 6 7 8 9 10 11 12 183 cvmliftlem8 φn+11NQn+1L𝑡n+1-1Nn+1NCnC
292 119 291 syldan φχQn+1L𝑡n+1-1Nn+1NCnC
293 194 oveq2d φχL𝑡n+1-1Nn+1N=L𝑡nNn+1N
294 293 oveq1d φχL𝑡n+1-1Nn+1NCnC=L𝑡nNn+1NCnC
295 292 294 eleqtrd φχQn+1L𝑡nNn+1NCnC
296 275 reseq1d φχk=1nQkQn+1nNn+1N=k=1n+1QknNn+1N
297 fresaunres2 k=1nQk:0nNBQn+1:nNn+1NBk=1nQk0nNnNn+1N=Qn+10nNnNn+1Nk=1nQkQn+1nNn+1N=Qn+1
298 182 196 263 297 syl3anc φχk=1nQkQn+1nNn+1N=Qn+1
299 296 298 eqtr3d φχk=1n+1QknNn+1N=Qn+1
300 restabs LTopnNn+1N0n+1N0n+1NVL𝑡0n+1N𝑡nNn+1N=L𝑡nNn+1N
301 284 163 286 300 syl3anc φχL𝑡0n+1N𝑡nNn+1N=L𝑡nNn+1N
302 301 oveq1d φχL𝑡0n+1N𝑡nNn+1NCnC=L𝑡nNn+1NCnC
303 295 299 302 3eltr4d φχk=1n+1QknNn+1NL𝑡0n+1N𝑡nNn+1NCnC
304 115 2 158 165 170 279 290 303 paste φχk=1n+1QkL𝑡0n+1NCnC
305 152 reseq2d φχG0n+1N=G0nNnNn+1N
306 172 simprd φχFk=1nQk=G0nN
307 187 simprd φχFQn+1=Gn+1-1Nn+1N
308 194 reseq2d φχGn+1-1Nn+1N=GnNn+1N
309 307 308 eqtrd φχFQn+1=GnNn+1N
310 306 309 uneq12d φχFk=1nQkFQn+1=G0nNGnNn+1N
311 coundi Fk=1nQkQn+1=Fk=1nQkFQn+1
312 resundi G0nNnNn+1N=G0nNGnNn+1N
313 310 311 312 3eqtr4g φχFk=1nQkQn+1=G0nNnNn+1N
314 275 coeq2d φχFk=1nQkQn+1=Fk=1n+1Qk
315 305 313 314 3eqtr2rd φχFk=1n+1Qk=G0n+1N
316 304 315 jca φχk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
317 14 316 sylan2br φnn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nNk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
318 317 expr φnn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nNk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
319 114 318 animpimp2impd nφn1Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nNφn+11Nk=1n+1QkL𝑡0n+1NCnCFk=1n+1Qk=G0n+1N
320 40 54 68 83 107 319 nnind NφN1NKL𝑡0NNCnCFK=G0NN
321 8 320 mpcom φN1NKL𝑡0NNCnCFK=G0NN
322 18 321 mpd φKL𝑡0NNCnCFK=G0NN