Metamath Proof Explorer


Theorem filnetlem4

Description: Lemma for filnet . (Contributed by Jeff Hankins, 15-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H=nFn×n
filnet.d D=xy|xHyH1sty1stx
Assertion filnetlem4 FFilXdDirRelff:domdXF=XFilMapfrantaild

Proof

Step Hyp Ref Expression
1 filnet.h H=nFn×n
2 filnet.d D=xy|xHyH1sty1stx
3 1 2 filnetlem3 H=DFFilXHF×XDDirRel
4 3 simpri FFilXHF×XDDirRel
5 4 simprd FFilXDDirRel
6 f2ndres 2ndF×X:F×XX
7 4 simpld FFilXHF×X
8 fssres2 2ndF×X:F×XXHF×X2ndH:HX
9 6 7 8 sylancr FFilX2ndH:HX
10 filtop FFilXXF
11 xpexg FFilXXFF×XV
12 10 11 mpdan FFilXF×XV
13 12 7 ssexd FFilXHV
14 9 13 fexd FFilX2ndHV
15 3 simpli H=D
16 dirdm DDirReldomD=D
17 5 16 syl FFilXdomD=D
18 15 17 eqtr4id FFilXH=domD
19 18 feq2d FFilX2ndH:HX2ndH:domDX
20 9 19 mpbid FFilX2ndH:domDX
21 eqid domD=domD
22 21 tailf DDirReltailD:domD𝒫domD
23 5 22 syl FFilXtailD:domD𝒫domD
24 18 feq2d FFilXtailD:H𝒫domDtailD:domD𝒫domD
25 23 24 mpbird FFilXtailD:H𝒫domD
26 25 adantr FFilXtXtailD:H𝒫domD
27 ffn tailD:H𝒫domDtailDFnH
28 imaeq2 d=tailDf2ndHd=2ndHtailDf
29 28 sseq1d d=tailDf2ndHdt2ndHtailDft
30 29 rexrn tailDFnHdrantailD2ndHdtfH2ndHtailDft
31 26 27 30 3syl FFilXtXdrantailD2ndHdtfH2ndHtailDft
32 fo2nd 2nd:VontoV
33 fofn 2nd:VontoV2ndFnV
34 32 33 ax-mp 2ndFnV
35 ssv HV
36 fnssres 2ndFnVHV2ndHFnH
37 34 35 36 mp2an 2ndHFnH
38 fnfun 2ndHFnHFun2ndH
39 37 38 ax-mp Fun2ndH
40 26 ffvelcdmda FFilXtXfHtailDf𝒫domD
41 40 elpwid FFilXtXfHtailDfdomD
42 18 ad2antrr FFilXtXfHH=domD
43 41 42 sseqtrrd FFilXtXfHtailDfH
44 37 fndmi dom2ndH=H
45 43 44 sseqtrrdi FFilXtXfHtailDfdom2ndH
46 funimass4 Fun2ndHtailDfdom2ndH2ndHtailDftdtailDf2ndHdt
47 39 45 46 sylancr FFilXtXfH2ndHtailDftdtailDf2ndHdt
48 5 ad2antrr FFilXtXfHDDirRel
49 simpr FFilXtXfHfH
50 49 42 eleqtrd FFilXtXfHfdomD
51 vex dV
52 51 a1i FFilXtXfHdV
53 21 eltail DDirRelfdomDdVdtailDffDd
54 48 50 52 53 syl3anc FFilXtXfHdtailDffDd
55 49 biantrurd FFilXtXfHdHfHdH
56 55 anbi1d FFilXtXfHdH1std1stffHdH1std1stf
57 vex fV
58 1 2 57 51 filnetlem1 fDdfHdH1std1stf
59 56 58 bitr4di FFilXtXfHdH1std1stffDd
60 54 59 bitr4d FFilXtXfHdtailDfdH1std1stf
61 60 imbi1d FFilXtXfHdtailDf2ndHdtdH1std1stf2ndHdt
62 fvres dH2ndHd=2ndd
63 62 eleq1d dH2ndHdt2nddt
64 63 adantr dH1std1stf2ndHdt2nddt
65 64 pm5.74i dH1std1stf2ndHdtdH1std1stf2nddt
66 impexp dH1std1stf2nddtdH1std1stf2nddt
67 65 66 bitri dH1std1stf2ndHdtdH1std1stf2nddt
68 61 67 bitrdi FFilXtXfHdtailDf2ndHdtdH1std1stf2nddt
69 68 ralbidv2 FFilXtXfHdtailDf2ndHdtdH1std1stf2nddt
70 47 69 bitrd FFilXtXfH2ndHtailDftdH1std1stf2nddt
71 70 rexbidva FFilXtXfH2ndHtailDftfHdH1std1stf2nddt
72 vex kV
73 vex vV
74 72 73 op1std d=kv1std=k
75 74 sseq1d d=kv1std1stfk1stf
76 72 73 op2ndd d=kv2ndd=v
77 76 eleq1d d=kv2nddtvt
78 75 77 imbi12d d=kv1std1stf2nddtk1stfvt
79 78 raliunxp dkFk×k1std1stf2nddtkFvkk1stfvt
80 sneq n=kn=k
81 id n=kn=k
82 80 81 xpeq12d n=kn×n=k×k
83 82 cbviunv nFn×n=kFk×k
84 1 83 eqtri H=kFk×k
85 84 raleqi dH1std1stf2nddtdkFk×k1std1stf2nddt
86 dfss3 ktvkvt
87 86 imbi2i k1stfktk1stfvkvt
88 r19.21v vkk1stfvtk1stfvkvt
89 87 88 bitr4i k1stfktvkk1stfvt
90 89 ralbii kFk1stfktkFvkk1stfvt
91 79 85 90 3bitr4i dH1std1stf2nddtkFk1stfkt
92 91 rexbii fHdH1std1stf2nddtfHkFk1stfkt
93 1 rexeqi fHkFk1stfktfnFn×nkFk1stfkt
94 vex nV
95 vex mV
96 94 95 op1std f=nm1stf=n
97 96 sseq2d f=nmk1stfkn
98 97 imbi1d f=nmk1stfktknkt
99 98 ralbidv f=nmkFk1stfktkFknkt
100 99 rexiunxp fnFn×nkFk1stfktnFmnkFknkt
101 92 93 100 3bitri fHdH1std1stf2nddtnFmnkFknkt
102 fileln0 FFilXnFn
103 102 adantlr FFilXtXnFn
104 r19.9rzv nkFknktmnkFknkt
105 103 104 syl FFilXtXnFkFknktmnkFknkt
106 ssid nn
107 sseq1 k=nknnn
108 sseq1 k=nktnt
109 107 108 imbi12d k=nknktnnnt
110 109 rspcv nFkFknktnnnt
111 106 110 mpii nFkFknktnt
112 111 adantl FFilXtXnFkFknktnt
113 sstr2 knntkt
114 113 com12 ntknkt
115 114 ralrimivw ntkFknkt
116 112 115 impbid1 FFilXtXnFkFknktnt
117 105 116 bitr3d FFilXtXnFmnkFknktnt
118 117 rexbidva FFilXtXnFmnkFknktnFnt
119 101 118 bitrid FFilXtXfHdH1std1stf2nddtnFnt
120 31 71 119 3bitrd FFilXtXdrantailD2ndHdtnFnt
121 120 pm5.32da FFilXtXdrantailD2ndHdttXnFnt
122 filn0 FFilXF
123 94 snnz n
124 102 123 jctil FFilXnFnn
125 neanior nn¬n=n=
126 124 125 sylib FFilXnF¬n=n=
127 ss0b n×nn×n=
128 xpeq0 n×n=n=n=
129 127 128 bitri n×nn=n=
130 126 129 sylnibr FFilXnF¬n×n
131 130 ralrimiva FFilXnF¬n×n
132 r19.2z FnF¬n×nnF¬n×n
133 122 131 132 syl2anc FFilXnF¬n×n
134 rexnal nF¬n×n¬nFn×n
135 133 134 sylib FFilX¬nFn×n
136 1 sseq1i HnFn×n
137 ss0b HH=
138 iunss nFn×nnFn×n
139 136 137 138 3bitr3i H=nFn×n
140 139 necon3abii H¬nFn×n
141 135 140 sylibr FFilXH
142 dmresi domIH=H
143 1 2 filnetlem2 IHDDH×H
144 143 simpli IHD
145 dmss IHDdomIHdomD
146 144 145 ax-mp domIHdomD
147 142 146 eqsstrri HdomD
148 143 simpri DH×H
149 dmss DH×HdomDdomH×H
150 148 149 ax-mp domDdomH×H
151 dmxpid domH×H=H
152 150 151 sseqtri domDH
153 147 152 eqssi H=domD
154 153 tailfb DDirRelHrantailDfBasH
155 5 141 154 syl2anc FFilXrantailDfBasH
156 elfm XFrantailDfBasH2ndH:HXtXFilMap2ndHrantailDtXdrantailD2ndHdt
157 10 155 9 156 syl3anc FFilXtXFilMap2ndHrantailDtXdrantailD2ndHdt
158 filfbas FFilXFfBasX
159 elfg FfBasXtXfilGenFtXnFnt
160 158 159 syl FFilXtXfilGenFtXnFnt
161 121 157 160 3bitr4d FFilXtXFilMap2ndHrantailDtXfilGenF
162 161 eqrdv FFilXXFilMap2ndHrantailD=XfilGenF
163 fgfil FFilXXfilGenF=F
164 162 163 eqtr2d FFilXF=XFilMap2ndHrantailD
165 20 164 jca FFilX2ndH:domDXF=XFilMap2ndHrantailD
166 feq1 f=2ndHf:domDX2ndH:domDX
167 oveq2 f=2ndHXFilMapf=XFilMap2ndH
168 167 fveq1d f=2ndHXFilMapfrantailD=XFilMap2ndHrantailD
169 168 eqeq2d f=2ndHF=XFilMapfrantailDF=XFilMap2ndHrantailD
170 166 169 anbi12d f=2ndHf:domDXF=XFilMapfrantailD2ndH:domDXF=XFilMap2ndHrantailD
171 170 spcegv 2ndHV2ndH:domDXF=XFilMap2ndHrantailDff:domDXF=XFilMapfrantailD
172 14 165 171 sylc FFilXff:domDXF=XFilMapfrantailD
173 dmeq d=Ddomd=domD
174 173 feq2d d=Df:domdXf:domDX
175 fveq2 d=Dtaild=tailD
176 175 rneqd d=Drantaild=rantailD
177 176 fveq2d d=DXFilMapfrantaild=XFilMapfrantailD
178 177 eqeq2d d=DF=XFilMapfrantaildF=XFilMapfrantailD
179 174 178 anbi12d d=Df:domdXF=XFilMapfrantaildf:domDXF=XFilMapfrantailD
180 179 exbidv d=Dff:domdXF=XFilMapfrantaildff:domDXF=XFilMapfrantailD
181 180 rspcev DDirRelff:domDXF=XFilMapfrantailDdDirRelff:domdXF=XFilMapfrantaild
182 5 172 181 syl2anc FFilXdDirRelff:domdXF=XFilMapfrantaild