Metamath Proof Explorer


Theorem mdetralt

Description: The determinant function is alternating regarding rows: if a matrix has two identical rows, its determinant is 0. Corollary 4.9 in Lang p. 515. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 23-Jul-2018)

Ref Expression
Hypotheses mdetralt.d D = N maDet R
mdetralt.a A = N Mat R
mdetralt.b B = Base A
mdetralt.z 0 ˙ = 0 R
mdetralt.r φ R CRing
mdetralt.x φ X B
mdetralt.i φ I N
mdetralt.j φ J N
mdetralt.ij φ I J
mdetralt.eq φ a N I X a = J X a
Assertion mdetralt φ D X = 0 ˙

Proof

Step Hyp Ref Expression
1 mdetralt.d D = N maDet R
2 mdetralt.a A = N Mat R
3 mdetralt.b B = Base A
4 mdetralt.z 0 ˙ = 0 R
5 mdetralt.r φ R CRing
6 mdetralt.x φ X B
7 mdetralt.i φ I N
8 mdetralt.j φ J N
9 mdetralt.ij φ I J
10 mdetralt.eq φ a N I X a = J X a
11 eqid Base SymGrp N = Base SymGrp N
12 eqid ℤRHom R = ℤRHom R
13 eqid pmSgn N = pmSgn N
14 eqid R = R
15 eqid mulGrp R = mulGrp R
16 1 2 3 11 12 13 14 15 mdetleib X B D X = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c
17 6 16 syl φ D X = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c
18 eqid Base R = Base R
19 eqid + R = + R
20 crngring R CRing R Ring
21 5 20 syl φ R Ring
22 ringcmn R Ring R CMnd
23 21 22 syl φ R CMnd
24 2 3 matrcl X B N Fin R V
25 6 24 syl φ N Fin R V
26 25 simpld φ N Fin
27 eqid SymGrp N = SymGrp N
28 27 11 symgbasfi N Fin Base SymGrp N Fin
29 26 28 syl φ Base SymGrp N Fin
30 21 adantr φ p Base SymGrp N R Ring
31 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
32 21 26 31 syl2anc φ ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
33 15 18 mgpbas Base R = Base mulGrp R
34 11 33 mhmf ℤRHom R pmSgn N SymGrp N MndHom mulGrp R ℤRHom R pmSgn N : Base SymGrp N Base R
35 32 34 syl φ ℤRHom R pmSgn N : Base SymGrp N Base R
36 35 ffvelrnda φ p Base SymGrp N ℤRHom R pmSgn N p Base R
37 15 crngmgp R CRing mulGrp R CMnd
38 5 37 syl φ mulGrp R CMnd
39 38 adantr φ p Base SymGrp N mulGrp R CMnd
40 26 adantr φ p Base SymGrp N N Fin
41 2 18 3 matbas2i X B X Base R N × N
42 6 41 syl φ X Base R N × N
43 elmapi X Base R N × N X : N × N Base R
44 42 43 syl φ X : N × N Base R
45 44 ad2antrr φ p Base SymGrp N c N X : N × N Base R
46 27 11 symgbasf1o p Base SymGrp N p : N 1-1 onto N
47 46 adantl φ p Base SymGrp N p : N 1-1 onto N
48 f1of p : N 1-1 onto N p : N N
49 47 48 syl φ p Base SymGrp N p : N N
50 49 ffvelrnda φ p Base SymGrp N c N p c N
51 simpr φ p Base SymGrp N c N c N
52 45 50 51 fovrnd φ p Base SymGrp N c N p c X c Base R
53 52 ralrimiva φ p Base SymGrp N c N p c X c Base R
54 33 39 40 53 gsummptcl φ p Base SymGrp N mulGrp R c N p c X c Base R
55 18 14 ringcl R Ring ℤRHom R pmSgn N p Base R mulGrp R c N p c X c Base R ℤRHom R pmSgn N p R mulGrp R c N p c X c Base R
56 30 36 54 55 syl3anc φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base R
57 disjdif pmEven N Base SymGrp N pmEven N =
58 57 a1i φ pmEven N Base SymGrp N pmEven N =
59 27 11 evpmss pmEven N Base SymGrp N
60 undif pmEven N Base SymGrp N pmEven N Base SymGrp N pmEven N = Base SymGrp N
61 59 60 mpbi pmEven N Base SymGrp N pmEven N = Base SymGrp N
62 61 eqcomi Base SymGrp N = pmEven N Base SymGrp N pmEven N
63 62 a1i φ Base SymGrp N = pmEven N Base SymGrp N pmEven N
64 eqid p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c
65 18 19 23 29 56 58 63 64 gsummptfidmsplitres φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N + R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N
66 resmpt pmEven N Base SymGrp N p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N = p pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c
67 59 66 ax-mp p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N = p pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c
68 21 adantr φ p pmEven N R Ring
69 26 adantr φ p pmEven N N Fin
70 simpr φ p pmEven N p pmEven N
71 eqid 1 R = 1 R
72 12 13 71 zrhpsgnevpm R Ring N Fin p pmEven N ℤRHom R pmSgn N p = 1 R
73 68 69 70 72 syl3anc φ p pmEven N ℤRHom R pmSgn N p = 1 R
74 73 oveq1d φ p pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = 1 R R mulGrp R c N p c X c
75 59 sseli p pmEven N p Base SymGrp N
76 75 54 sylan2 φ p pmEven N mulGrp R c N p c X c Base R
77 18 14 71 ringlidm R Ring mulGrp R c N p c X c Base R 1 R R mulGrp R c N p c X c = mulGrp R c N p c X c
78 68 76 77 syl2anc φ p pmEven N 1 R R mulGrp R c N p c X c = mulGrp R c N p c X c
79 74 78 eqtrd φ p pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = mulGrp R c N p c X c
80 79 mpteq2dva φ p pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = p pmEven N mulGrp R c N p c X c
81 67 80 eqtrid φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N = p pmEven N mulGrp R c N p c X c
82 81 oveq2d φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N = R p pmEven N mulGrp R c N p c X c
83 difss Base SymGrp N pmEven N Base SymGrp N
84 resmpt Base SymGrp N pmEven N Base SymGrp N p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c
85 83 84 ax-mp p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c
86 21 adantr φ p Base SymGrp N pmEven N R Ring
87 26 adantr φ p Base SymGrp N pmEven N N Fin
88 simpr φ p Base SymGrp N pmEven N p Base SymGrp N pmEven N
89 eqid inv g R = inv g R
90 12 13 71 11 89 zrhpsgnodpm R Ring N Fin p Base SymGrp N pmEven N ℤRHom R pmSgn N p = inv g R 1 R
91 86 87 88 90 syl3anc φ p Base SymGrp N pmEven N ℤRHom R pmSgn N p = inv g R 1 R
92 91 oveq1d φ p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = inv g R 1 R R mulGrp R c N p c X c
93 eldifi p Base SymGrp N pmEven N p Base SymGrp N
94 93 54 sylan2 φ p Base SymGrp N pmEven N mulGrp R c N p c X c Base R
95 18 14 71 89 86 94 ringnegl φ p Base SymGrp N pmEven N inv g R 1 R R mulGrp R c N p c X c = inv g R mulGrp R c N p c X c
96 92 95 eqtrd φ p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = inv g R mulGrp R c N p c X c
97 96 mpteq2dva φ p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = p Base SymGrp N pmEven N inv g R mulGrp R c N p c X c
98 ringgrp R Ring R Grp
99 21 98 syl φ R Grp
100 18 89 grpinvf R Grp inv g R : Base R Base R
101 99 100 syl φ inv g R : Base R Base R
102 101 94 cofmpt φ inv g R p Base SymGrp N pmEven N mulGrp R c N p c X c = p Base SymGrp N pmEven N inv g R mulGrp R c N p c X c
103 97 102 eqtr4d φ p Base SymGrp N pmEven N ℤRHom R pmSgn N p R mulGrp R c N p c X c = inv g R p Base SymGrp N pmEven N mulGrp R c N p c X c
104 85 103 eqtrid φ p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = inv g R p Base SymGrp N pmEven N mulGrp R c N p c X c
105 104 oveq2d φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = R inv g R p Base SymGrp N pmEven N mulGrp R c N p c X c
106 ringabl R Ring R Abel
107 21 106 syl φ R Abel
108 difssd φ Base SymGrp N pmEven N Base SymGrp N
109 29 108 ssfid φ Base SymGrp N pmEven N Fin
110 eqid p Base SymGrp N pmEven N mulGrp R c N p c X c = p Base SymGrp N pmEven N mulGrp R c N p c X c
111 18 4 89 107 109 94 110 gsummptfidminv φ R inv g R p Base SymGrp N pmEven N mulGrp R c N p c X c = inv g R R p Base SymGrp N pmEven N mulGrp R c N p c X c
112 94 ralrimiva φ p Base SymGrp N pmEven N mulGrp R c N p c X c Base R
113 7 8 prssd φ I J N
114 pr2nelem I N J N I J I J 2 𝑜
115 7 8 9 114 syl3anc φ I J 2 𝑜
116 eqid pmTrsp N = pmTrsp N
117 eqid ran pmTrsp N = ran pmTrsp N
118 116 117 pmtrrn N Fin I J N I J 2 𝑜 pmTrsp N I J ran pmTrsp N
119 26 113 115 118 syl3anc φ pmTrsp N I J ran pmTrsp N
120 27 11 117 pmtrodpm N Fin pmTrsp N I J ran pmTrsp N pmTrsp N I J Base SymGrp N pmEven N
121 26 119 120 syl2anc φ pmTrsp N I J Base SymGrp N pmEven N
122 27 11 evpmodpmf1o N Fin pmTrsp N I J Base SymGrp N pmEven N q pmEven N pmTrsp N I J + SymGrp N q : pmEven N 1-1 onto Base SymGrp N pmEven N
123 26 121 122 syl2anc φ q pmEven N pmTrsp N I J + SymGrp N q : pmEven N 1-1 onto Base SymGrp N pmEven N
124 18 23 109 112 110 123 gsummptfif1o φ R p Base SymGrp N pmEven N mulGrp R c N p c X c = R p Base SymGrp N pmEven N mulGrp R c N p c X c q pmEven N pmTrsp N I J + SymGrp N q
125 eleq1w p = q p pmEven N q pmEven N
126 125 anbi2d p = q φ p pmEven N φ q pmEven N
127 oveq2 p = q pmTrsp N I J + SymGrp N p = pmTrsp N I J + SymGrp N q
128 127 eleq1d p = q pmTrsp N I J + SymGrp N p Base SymGrp N pmEven N pmTrsp N I J + SymGrp N q Base SymGrp N pmEven N
129 126 128 imbi12d p = q φ p pmEven N pmTrsp N I J + SymGrp N p Base SymGrp N pmEven N φ q pmEven N pmTrsp N I J + SymGrp N q Base SymGrp N pmEven N
130 27 symggrp N Fin SymGrp N Grp
131 26 130 syl φ SymGrp N Grp
132 131 adantr φ p pmEven N SymGrp N Grp
133 117 27 11 symgtrf ran pmTrsp N Base SymGrp N
134 119 adantr φ p pmEven N pmTrsp N I J ran pmTrsp N
135 133 134 sselid φ p pmEven N pmTrsp N I J Base SymGrp N
136 75 adantl φ p pmEven N p Base SymGrp N
137 eqid + SymGrp N = + SymGrp N
138 11 137 grpcl SymGrp N Grp pmTrsp N I J Base SymGrp N p Base SymGrp N pmTrsp N I J + SymGrp N p Base SymGrp N
139 132 135 136 138 syl3anc φ p pmEven N pmTrsp N I J + SymGrp N p Base SymGrp N
140 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
141 27 13 140 psgnghm2 N Fin pmSgn N SymGrp N GrpHom mulGrp fld 𝑠 1 1
142 26 141 syl φ pmSgn N SymGrp N GrpHom mulGrp fld 𝑠 1 1
143 142 adantr φ p pmEven N pmSgn N SymGrp N GrpHom mulGrp fld 𝑠 1 1
144 prex 1 1 V
145 eqid mulGrp fld = mulGrp fld
146 cnfldmul × = fld
147 145 146 mgpplusg × = + mulGrp fld
148 140 147 ressplusg 1 1 V × = + mulGrp fld 𝑠 1 1
149 144 148 ax-mp × = + mulGrp fld 𝑠 1 1
150 11 137 149 ghmlin pmSgn N SymGrp N GrpHom mulGrp fld 𝑠 1 1 pmTrsp N I J Base SymGrp N p Base SymGrp N pmSgn N pmTrsp N I J + SymGrp N p = pmSgn N pmTrsp N I J pmSgn N p
151 143 135 136 150 syl3anc φ p pmEven N pmSgn N pmTrsp N I J + SymGrp N p = pmSgn N pmTrsp N I J pmSgn N p
152 27 117 13 psgnpmtr pmTrsp N I J ran pmTrsp N pmSgn N pmTrsp N I J = 1
153 134 152 syl φ p pmEven N pmSgn N pmTrsp N I J = 1
154 27 11 13 psgnevpm N Fin p pmEven N pmSgn N p = 1
155 26 154 sylan φ p pmEven N pmSgn N p = 1
156 153 155 oveq12d φ p pmEven N pmSgn N pmTrsp N I J pmSgn N p = -1 1
157 neg1cn 1
158 157 mulid1i -1 1 = 1
159 156 158 eqtrdi φ p pmEven N pmSgn N pmTrsp N I J pmSgn N p = 1
160 151 159 eqtrd φ p pmEven N pmSgn N pmTrsp N I J + SymGrp N p = 1
161 27 11 13 psgnodpmr N Fin pmTrsp N I J + SymGrp N p Base SymGrp N pmSgn N pmTrsp N I J + SymGrp N p = 1 pmTrsp N I J + SymGrp N p Base SymGrp N pmEven N
162 69 139 160 161 syl3anc φ p pmEven N pmTrsp N I J + SymGrp N p Base SymGrp N pmEven N
163 129 162 chvarvv φ q pmEven N pmTrsp N I J + SymGrp N q Base SymGrp N pmEven N
164 eqidd φ q pmEven N pmTrsp N I J + SymGrp N q = q pmEven N pmTrsp N I J + SymGrp N q
165 eqidd φ p Base SymGrp N pmEven N mulGrp R c N p c X c = p Base SymGrp N pmEven N mulGrp R c N p c X c
166 fveq1 p = pmTrsp N I J + SymGrp N q p c = pmTrsp N I J + SymGrp N q c
167 166 oveq1d p = pmTrsp N I J + SymGrp N q p c X c = pmTrsp N I J + SymGrp N q c X c
168 167 mpteq2dv p = pmTrsp N I J + SymGrp N q c N p c X c = c N pmTrsp N I J + SymGrp N q c X c
169 168 oveq2d p = pmTrsp N I J + SymGrp N q mulGrp R c N p c X c = mulGrp R c N pmTrsp N I J + SymGrp N q c X c
170 163 164 165 169 fmptco φ p Base SymGrp N pmEven N mulGrp R c N p c X c q pmEven N pmTrsp N I J + SymGrp N q = q pmEven N mulGrp R c N pmTrsp N I J + SymGrp N q c X c
171 oveq2 q = p pmTrsp N I J + SymGrp N q = pmTrsp N I J + SymGrp N p
172 171 fveq1d q = p pmTrsp N I J + SymGrp N q c = pmTrsp N I J + SymGrp N p c
173 172 oveq1d q = p pmTrsp N I J + SymGrp N q c X c = pmTrsp N I J + SymGrp N p c X c
174 173 mpteq2dv q = p c N pmTrsp N I J + SymGrp N q c X c = c N pmTrsp N I J + SymGrp N p c X c
175 174 oveq2d q = p mulGrp R c N pmTrsp N I J + SymGrp N q c X c = mulGrp R c N pmTrsp N I J + SymGrp N p c X c
176 175 cbvmptv q pmEven N mulGrp R c N pmTrsp N I J + SymGrp N q c X c = p pmEven N mulGrp R c N pmTrsp N I J + SymGrp N p c X c
177 176 a1i φ q pmEven N mulGrp R c N pmTrsp N I J + SymGrp N q c X c = p pmEven N mulGrp R c N pmTrsp N I J + SymGrp N p c X c
178 135 adantr φ p pmEven N c N pmTrsp N I J Base SymGrp N
179 136 adantr φ p pmEven N c N p Base SymGrp N
180 27 11 137 symgov pmTrsp N I J Base SymGrp N p Base SymGrp N pmTrsp N I J + SymGrp N p = pmTrsp N I J p
181 178 179 180 syl2anc φ p pmEven N c N pmTrsp N I J + SymGrp N p = pmTrsp N I J p
182 181 fveq1d φ p pmEven N c N pmTrsp N I J + SymGrp N p c = pmTrsp N I J p c
183 75 49 sylan2 φ p pmEven N p : N N
184 fvco3 p : N N c N pmTrsp N I J p c = pmTrsp N I J p c
185 183 184 sylan φ p pmEven N c N pmTrsp N I J p c = pmTrsp N I J p c
186 182 185 eqtrd φ p pmEven N c N pmTrsp N I J + SymGrp N p c = pmTrsp N I J p c
187 186 oveq1d φ p pmEven N c N pmTrsp N I J + SymGrp N p c X c = pmTrsp N I J p c X c
188 116 pmtrprfv N Fin I N J N I J pmTrsp N I J I = J
189 26 7 8 9 188 syl13anc φ pmTrsp N I J I = J
190 189 ad2antrr φ p pmEven N c N pmTrsp N I J I = J
191 190 oveq1d φ p pmEven N c N pmTrsp N I J I X c = J X c
192 oveq2 a = c I X a = I X c
193 oveq2 a = c J X a = J X c
194 192 193 eqeq12d a = c I X a = J X a I X c = J X c
195 10 ad2antrr φ p pmEven N c N a N I X a = J X a
196 simpr φ p pmEven N c N c N
197 194 195 196 rspcdva φ p pmEven N c N I X c = J X c
198 191 197 eqtr4d φ p pmEven N c N pmTrsp N I J I X c = I X c
199 fveq2 p c = I pmTrsp N I J p c = pmTrsp N I J I
200 199 oveq1d p c = I pmTrsp N I J p c X c = pmTrsp N I J I X c
201 oveq1 p c = I p c X c = I X c
202 200 201 eqeq12d p c = I pmTrsp N I J p c X c = p c X c pmTrsp N I J I X c = I X c
203 198 202 syl5ibrcom φ p pmEven N c N p c = I pmTrsp N I J p c X c = p c X c
204 prcom I J = J I
205 204 fveq2i pmTrsp N I J = pmTrsp N J I
206 205 fveq1i pmTrsp N I J J = pmTrsp N J I J
207 9 necomd φ J I
208 116 pmtrprfv N Fin J N I N J I pmTrsp N J I J = I
209 26 8 7 207 208 syl13anc φ pmTrsp N J I J = I
210 206 209 eqtrid φ pmTrsp N I J J = I
211 210 oveq1d φ pmTrsp N I J J X c = I X c
212 211 ad2antrr φ p pmEven N c N pmTrsp N I J J X c = I X c
213 212 197 eqtrd φ p pmEven N c N pmTrsp N I J J X c = J X c
214 fveq2 p c = J pmTrsp N I J p c = pmTrsp N I J J
215 214 oveq1d p c = J pmTrsp N I J p c X c = pmTrsp N I J J X c
216 oveq1 p c = J p c X c = J X c
217 215 216 eqeq12d p c = J pmTrsp N I J p c X c = p c X c pmTrsp N I J J X c = J X c
218 213 217 syl5ibrcom φ p pmEven N c N p c = J pmTrsp N I J p c X c = p c X c
219 218 a1dd φ p pmEven N c N p c = J p c I pmTrsp N I J p c X c = p c X c
220 neanior p c J p c I ¬ p c = J p c = I
221 elpri p c I J p c = I p c = J
222 221 orcomd p c I J p c = J p c = I
223 222 con3i ¬ p c = J p c = I ¬ p c I J
224 220 223 sylbi p c J p c I ¬ p c I J
225 224 3adant1 φ p pmEven N c N p c J p c I ¬ p c I J
226 116 pmtrmvd N Fin I J N I J 2 𝑜 dom pmTrsp N I J I = I J
227 26 113 115 226 syl3anc φ dom pmTrsp N I J I = I J
228 227 ad2antrr φ p pmEven N c N dom pmTrsp N I J I = I J
229 228 3ad2ant1 φ p pmEven N c N p c J p c I dom pmTrsp N I J I = I J
230 225 229 neleqtrrd φ p pmEven N c N p c J p c I ¬ p c dom pmTrsp N I J I
231 116 pmtrf N Fin I J N I J 2 𝑜 pmTrsp N I J : N N
232 26 113 115 231 syl3anc φ pmTrsp N I J : N N
233 232 ffnd φ pmTrsp N I J Fn N
234 233 ad2antrr φ p pmEven N c N pmTrsp N I J Fn N
235 183 ffvelrnda φ p pmEven N c N p c N
236 fnelnfp pmTrsp N I J Fn N p c N p c dom pmTrsp N I J I pmTrsp N I J p c p c
237 234 235 236 syl2anc φ p pmEven N c N p c dom pmTrsp N I J I pmTrsp N I J p c p c
238 237 3ad2ant1 φ p pmEven N c N p c J p c I p c dom pmTrsp N I J I pmTrsp N I J p c p c
239 238 necon2bbid φ p pmEven N c N p c J p c I pmTrsp N I J p c = p c ¬ p c dom pmTrsp N I J I
240 230 239 mpbird φ p pmEven N c N p c J p c I pmTrsp N I J p c = p c
241 240 oveq1d φ p pmEven N c N p c J p c I pmTrsp N I J p c X c = p c X c
242 241 3exp φ p pmEven N c N p c J p c I pmTrsp N I J p c X c = p c X c
243 219 242 pm2.61dne φ p pmEven N c N p c I pmTrsp N I J p c X c = p c X c
244 203 243 pm2.61dne φ p pmEven N c N pmTrsp N I J p c X c = p c X c
245 187 244 eqtrd φ p pmEven N c N pmTrsp N I J + SymGrp N p c X c = p c X c
246 245 mpteq2dva φ p pmEven N c N pmTrsp N I J + SymGrp N p c X c = c N p c X c
247 246 oveq2d φ p pmEven N mulGrp R c N pmTrsp N I J + SymGrp N p c X c = mulGrp R c N p c X c
248 247 mpteq2dva φ p pmEven N mulGrp R c N pmTrsp N I J + SymGrp N p c X c = p pmEven N mulGrp R c N p c X c
249 170 177 248 3eqtrd φ p Base SymGrp N pmEven N mulGrp R c N p c X c q pmEven N pmTrsp N I J + SymGrp N q = p pmEven N mulGrp R c N p c X c
250 249 oveq2d φ R p Base SymGrp N pmEven N mulGrp R c N p c X c q pmEven N pmTrsp N I J + SymGrp N q = R p pmEven N mulGrp R c N p c X c
251 124 250 eqtrd φ R p Base SymGrp N pmEven N mulGrp R c N p c X c = R p pmEven N mulGrp R c N p c X c
252 251 fveq2d φ inv g R R p Base SymGrp N pmEven N mulGrp R c N p c X c = inv g R R p pmEven N mulGrp R c N p c X c
253 105 111 252 3eqtrd φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = inv g R R p pmEven N mulGrp R c N p c X c
254 82 253 oveq12d φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N + R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = R p pmEven N mulGrp R c N p c X c + R inv g R R p pmEven N mulGrp R c N p c X c
255 59 a1i φ pmEven N Base SymGrp N
256 29 255 ssfid φ pmEven N Fin
257 76 ralrimiva φ p pmEven N mulGrp R c N p c X c Base R
258 18 23 256 257 gsummptcl φ R p pmEven N mulGrp R c N p c X c Base R
259 18 19 4 89 grprinv R Grp R p pmEven N mulGrp R c N p c X c Base R R p pmEven N mulGrp R c N p c X c + R inv g R R p pmEven N mulGrp R c N p c X c = 0 ˙
260 99 258 259 syl2anc φ R p pmEven N mulGrp R c N p c X c + R inv g R R p pmEven N mulGrp R c N p c X c = 0 ˙
261 254 260 eqtrd φ R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c pmEven N + R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R c N p c X c Base SymGrp N pmEven N = 0 ˙
262 17 65 261 3eqtrd φ D X = 0 ˙