Metamath Proof Explorer


Theorem mertenslem1

Description: Lemma for mertens . (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses mertens.1 φj0Fj=A
mertens.2 φj0Kj=A
mertens.3 φj0A
mertens.4 φk0Gk=B
mertens.5 φk0B
mertens.6 φk0Hk=j=0kAGkj
mertens.7 φseq0+Kdom
mertens.8 φseq0+Gdom
mertens.9 φE+
mertens.10 T=z|n0s1z=kn+1Gk
mertens.11 ψsnskn+1Gk<E2j0Kj+1
mertens.12 φψt0mtKm<E2ssupT<+1
mertens.13 φ0supT<TTzwTwz
Assertion mertenslem1 φy0myj=0mAkm-j+1B<E

Proof

Step Hyp Ref Expression
1 mertens.1 φj0Fj=A
2 mertens.2 φj0Kj=A
3 mertens.3 φj0A
4 mertens.4 φk0Gk=B
5 mertens.5 φk0B
6 mertens.6 φk0Hk=j=0kAGkj
7 mertens.7 φseq0+Kdom
8 mertens.8 φseq0+Gdom
9 mertens.9 φE+
10 mertens.10 T=z|n0s1z=kn+1Gk
11 mertens.11 ψsnskn+1Gk<E2j0Kj+1
12 mertens.12 φψt0mtKm<E2ssupT<+1
13 mertens.13 φ0supT<TTzwTwz
14 12 simpld φψ
15 14 11 sylib φsnskn+1Gk<E2j0Kj+1
16 15 simpld φs
17 16 nnnn0d φs0
18 12 simprd φt0mtKm<E2ssupT<+1
19 18 simpld φt0
20 17 19 nn0addcld φs+t0
21 fzfid φms+t0mFin
22 simpl φms+tφ
23 elfznn0 j0mj0
24 22 23 3 syl2an φms+tj0mA
25 eqid m-j+1=m-j+1
26 fznn0sub j0mmj0
27 26 adantl φms+tj0mmj0
28 peano2nn0 mj0m-j+10
29 27 28 syl φms+tj0mm-j+10
30 29 nn0zd φms+tj0mm-j+1
31 simplll φms+tj0mkm-j+1φ
32 eluznn0 m-j+10km-j+1k0
33 29 32 sylan φms+tj0mkm-j+1k0
34 31 33 4 syl2anc φms+tj0mkm-j+1Gk=B
35 31 33 5 syl2anc φms+tj0mkm-j+1B
36 8 ad2antrr φms+tj0mseq0+Gdom
37 nn0uz 0=0
38 simpll φms+tj0mφ
39 4 5 eqeltrd φk0Gk
40 38 39 sylan φms+tj0mk0Gk
41 37 29 40 iserex φms+tj0mseq0+Gdomseqm-j+1+Gdom
42 36 41 mpbid φms+tj0mseqm-j+1+Gdom
43 25 30 34 35 42 isumcl φms+tj0mkm-j+1B
44 24 43 mulcld φms+tj0mAkm-j+1B
45 21 44 fsumcl φms+tj=0mAkm-j+1B
46 45 abscld φms+tj=0mAkm-j+1B
47 44 abscld φms+tj0mAkm-j+1B
48 21 47 fsumrecl φms+tj=0mAkm-j+1B
49 9 rpred φE
50 49 adantr φms+tE
51 21 44 fsumabs φms+tj=0mAkm-j+1Bj=0mAkm-j+1B
52 fzfid φms+t0msFin
53 17 adantr φms+ts0
54 53 nn0ge0d φms+t0s
55 eluzelz ms+tm
56 55 adantl φms+tm
57 56 zred φms+tm
58 53 nn0red φms+ts
59 57 58 subge02d φms+t0smsm
60 54 59 mpbid φms+tmsm
61 53 37 eleqtrdi φms+ts0
62 16 nnzd φs
63 uzid sss
64 62 63 syl φss
65 uzaddcl sst0s+ts
66 64 19 65 syl2anc φs+ts
67 eqid s=s
68 67 uztrn2 s+tsms+tms
69 66 68 sylan φms+tms
70 elfzuzb s0ms0ms
71 61 69 70 sylanbrc φms+ts0m
72 fznn0sub2 s0mms0m
73 71 72 syl φms+tms0m
74 elfzelz ms0mms
75 73 74 syl φms+tms
76 eluz msmmmsmsm
77 75 56 76 syl2anc φms+tmmsmsm
78 60 77 mpbird φms+tmms
79 fzss2 mms0ms0m
80 78 79 syl φms+t0ms0m
81 80 sselda φms+tj0msj0m
82 3 abscld φj0A
83 22 23 82 syl2an φms+tj0mA
84 43 abscld φms+tj0mkm-j+1B
85 83 84 remulcld φms+tj0mAkm-j+1B
86 81 85 syldan φms+tj0msAkm-j+1B
87 52 86 fsumrecl φms+tj=0msAkm-j+1B
88 fzfid φms+tm-s+1mFin
89 elfznn0 ms0mms0
90 73 89 syl φms+tms0
91 peano2nn0 ms0m-s+10
92 90 91 syl φms+tm-s+10
93 92 37 eleqtrdi φms+tm-s+10
94 fzss1 m-s+10m-s+1m0m
95 93 94 syl φms+tm-s+1m0m
96 95 sselda φms+tjm-s+1mj0m
97 96 85 syldan φms+tjm-s+1mAkm-j+1B
98 88 97 fsumrecl φms+tj=m-s+1mAkm-j+1B
99 9 rphalfcld φE2+
100 99 rpred φE2
101 100 adantr φms+tE2
102 elfznn0 j0msj0
103 22 102 82 syl2an φms+tj0msA
104 52 103 fsumrecl φms+tj=0msA
105 104 101 remulcld φms+tj=0msAE2
106 0zd φ0
107 eqidd φj0Kj=Kj
108 2 82 eqeltrd φj0Kj
109 37 106 107 108 7 isumrecl φj0Kj
110 3 absge0d φj00A
111 110 2 breqtrrd φj00Kj
112 37 106 107 108 7 111 isumge0 φ0j0Kj
113 109 112 ge0p1rpd φj0Kj+1+
114 113 adantr φms+tj0Kj+1+
115 105 114 rerpdivcld φms+tj=0msAE2j0Kj+1
116 99 113 rpdivcld φE2j0Kj+1+
117 116 rpred φE2j0Kj+1
118 117 ad2antrr φms+tj0msE2j0Kj+1
119 103 118 remulcld φms+tj0msAE2j0Kj+1
120 81 30 syldan φms+tj0msm-j+1
121 simplll φms+tj0mskm-j+1φ
122 81 29 syldan φms+tj0msm-j+10
123 122 32 sylan φms+tj0mskm-j+1k0
124 121 123 4 syl2anc φms+tj0mskm-j+1Gk=B
125 121 123 5 syl2anc φms+tj0mskm-j+1B
126 81 42 syldan φms+tj0msseqm-j+1+Gdom
127 25 120 124 125 126 isumcl φms+tj0mskm-j+1B
128 127 abscld φms+tj0mskm-j+1B
129 82 110 jca φj0A0A
130 22 102 129 syl2an φms+tj0msA0A
131 124 sumeq2dv φms+tj0mskm-j+1Gk=km-j+1B
132 131 fveq2d φms+tj0mskm-j+1Gk=km-j+1B
133 fvoveq1 n=mjn+1=m-j+1
134 133 sumeq1d n=mjkn+1Gk=km-j+1Gk
135 134 fveq2d n=mjkn+1Gk=km-j+1Gk
136 135 breq1d n=mjkn+1Gk<E2j0Kj+1km-j+1Gk<E2j0Kj+1
137 15 simprd φnskn+1Gk<E2j0Kj+1
138 137 ad2antrr φms+tj0msnskn+1Gk<E2j0Kj+1
139 elfzelz j0msj
140 139 adantl φms+tj0msj
141 140 zred φms+tj0msj
142 55 ad2antlr φms+tj0msm
143 142 zred φms+tj0msm
144 62 ad2antrr φms+tj0mss
145 144 zred φms+tj0mss
146 elfzle2 j0msjms
147 146 adantl φms+tj0msjms
148 141 143 145 147 lesubd φms+tj0mssmj
149 142 140 zsubcld φms+tj0msmj
150 eluz smjmjssmj
151 144 149 150 syl2anc φms+tj0msmjssmj
152 148 151 mpbird φms+tj0msmjs
153 136 138 152 rspcdva φms+tj0mskm-j+1Gk<E2j0Kj+1
154 132 153 eqbrtrrd φms+tj0mskm-j+1B<E2j0Kj+1
155 128 118 154 ltled φms+tj0mskm-j+1BE2j0Kj+1
156 lemul2a km-j+1BE2j0Kj+1A0Akm-j+1BE2j0Kj+1Akm-j+1BAE2j0Kj+1
157 128 118 130 155 156 syl31anc φms+tj0msAkm-j+1BAE2j0Kj+1
158 52 86 119 157 fsumle φms+tj=0msAkm-j+1Bj=0msAE2j0Kj+1
159 104 recnd φms+tj=0msA
160 99 rpcnd φE2
161 160 adantr φms+tE2
162 peano2re j0Kjj0Kj+1
163 109 162 syl φj0Kj+1
164 163 recnd φj0Kj+1
165 164 adantr φms+tj0Kj+1
166 113 rpne0d φj0Kj+10
167 166 adantr φms+tj0Kj+10
168 159 161 165 167 divassd φms+tj=0msAE2j0Kj+1=j=0msAE2j0Kj+1
169 fveq2 n=jKn=Kj
170 169 cbvsumv n0Kn=j0Kj
171 170 oveq1i n0Kn+1=j0Kj+1
172 171 oveq2i E2n0Kn+1=E2j0Kj+1
173 172 116 eqeltrid φE2n0Kn+1+
174 173 rpcnd φE2n0Kn+1
175 174 adantr φms+tE2n0Kn+1
176 82 recnd φj0A
177 22 102 176 syl2an φms+tj0msA
178 52 175 177 fsummulc1 φms+tj=0msAE2n0Kn+1=j=0msAE2n0Kn+1
179 172 oveq2i j=0msAE2n0Kn+1=j=0msAE2j0Kj+1
180 172 oveq2i AE2n0Kn+1=AE2j0Kj+1
181 180 a1i j0msAE2n0Kn+1=AE2j0Kj+1
182 181 sumeq2i j=0msAE2n0Kn+1=j=0msAE2j0Kj+1
183 178 179 182 3eqtr3g φms+tj=0msAE2j0Kj+1=j=0msAE2j0Kj+1
184 168 183 eqtrd φms+tj=0msAE2j0Kj+1=j=0msAE2j0Kj+1
185 158 184 breqtrrd φms+tj=0msAkm-j+1Bj=0msAE2j0Kj+1
186 109 adantr φms+tj0Kj
187 163 adantr φms+tj0Kj+1
188 0zd φms+t0
189 fz0ssnn0 0ms0
190 189 a1i φms+t0ms0
191 2 adantlr φms+tj0Kj=A
192 82 adantlr φms+tj0A
193 110 adantlr φms+tj00A
194 7 adantr φms+tseq0+Kdom
195 37 188 52 190 191 192 193 194 isumless φms+tj=0msAj0A
196 2 sumeq2dv φj0Kj=j0A
197 196 adantr φms+tj0Kj=j0A
198 195 197 breqtrrd φms+tj=0msAj0Kj
199 109 ltp1d φj0Kj<j0Kj+1
200 199 adantr φms+tj0Kj<j0Kj+1
201 104 186 187 198 200 lelttrd φms+tj=0msA<j0Kj+1
202 99 rpregt0d φE20<E2
203 202 adantr φms+tE20<E2
204 ltmul1 j=0msAj0Kj+1E20<E2j=0msA<j0Kj+1j=0msAE2<j0Kj+1E2
205 104 187 203 204 syl3anc φms+tj=0msA<j0Kj+1j=0msAE2<j0Kj+1E2
206 201 205 mpbid φms+tj=0msAE2<j0Kj+1E2
207 113 rpregt0d φj0Kj+10<j0Kj+1
208 207 adantr φms+tj0Kj+10<j0Kj+1
209 ltdivmul j=0msAE2E2j0Kj+10<j0Kj+1j=0msAE2j0Kj+1<E2j=0msAE2<j0Kj+1E2
210 105 101 208 209 syl3anc φms+tj=0msAE2j0Kj+1<E2j=0msAE2<j0Kj+1E2
211 206 210 mpbird φms+tj=0msAE2j0Kj+1<E2
212 87 115 101 185 211 lelttrd φms+tj=0msAkm-j+1B<E2
213 13 simprd φTTzwTwz
214 suprcl TTzwTwzsupT<
215 213 214 syl φsupT<
216 100 215 remulcld φE2supT<
217 13 simpld φ0supT<
218 215 217 ge0p1rpd φsupT<+1+
219 216 218 rerpdivcld φE2supT<supT<+1
220 219 adantr φms+tE2supT<supT<+1
221 16 nnrpd φs+
222 99 221 rpdivcld φE2s+
223 222 218 rpdivcld φE2ssupT<+1+
224 223 rpred φE2ssupT<+1
225 224 215 remulcld φE2ssupT<+1supT<
226 225 ad2antrr φms+tjm-s+1mE2ssupT<+1supT<
227 simpll φms+tjm-s+1mφ
228 96 23 syl φms+tjm-s+1mj0
229 227 228 82 syl2anc φms+tjm-s+1mA
230 224 ad2antrr φms+tjm-s+1mE2ssupT<+1
231 227 228 2 syl2anc φms+tjm-s+1mKj=A
232 fveq2 m=jKm=Kj
233 232 breq1d m=jKm<E2ssupT<+1Kj<E2ssupT<+1
234 18 simprd φmtKm<E2ssupT<+1
235 234 ad2antrr φms+tjm-s+1mmtKm<E2ssupT<+1
236 elfzuz jm-s+1mjm-s+1
237 eluzle ms+ts+tm
238 237 adantl φms+ts+tm
239 19 nn0zd φt
240 239 adantr φms+tt
241 240 zred φms+tt
242 58 241 57 leaddsub2d φms+ts+tmtms
243 238 242 mpbid φms+ttms
244 eluz tmsmsttms
245 240 75 244 syl2anc φms+tmsttms
246 243 245 mpbird φms+tmst
247 peano2uz mstm-s+1t
248 246 247 syl φms+tm-s+1t
249 uztrn jm-s+1m-s+1tjt
250 236 248 249 syl2anr φms+tjm-s+1mjt
251 233 235 250 rspcdva φms+tjm-s+1mKj<E2ssupT<+1
252 231 251 eqbrtrrd φms+tjm-s+1mA<E2ssupT<+1
253 229 230 252 ltled φms+tjm-s+1mAE2ssupT<+1
254 213 ad2antrr φms+tjm-s+1mTTzwTwz
255 57 adantr φms+tjm-s+1mm
256 peano2zm ss1
257 62 256 syl φs1
258 257 zred φs1
259 258 ad2antrr φms+tjm-s+1ms1
260 228 nn0red φms+tjm-s+1mj
261 56 zcnd φms+tm
262 58 recnd φms+ts
263 1cnd φms+t1
264 261 262 263 subsubd φms+tms1=m-s+1
265 264 adantr φms+tjm-s+1mms1=m-s+1
266 elfzle1 jm-s+1mm-s+1j
267 266 adantl φms+tjm-s+1mm-s+1j
268 265 267 eqbrtrd φms+tjm-s+1mms1j
269 255 259 260 268 subled φms+tjm-s+1mmjs1
270 96 26 syl φms+tjm-s+1mmj0
271 270 37 eleqtrdi φms+tjm-s+1mmj0
272 257 ad2antrr φms+tjm-s+1ms1
273 elfz5 mj0s1mj0s1mjs1
274 271 272 273 syl2anc φms+tjm-s+1mmj0s1mjs1
275 269 274 mpbird φms+tjm-s+1mmj0s1
276 simplll φms+tjm-s+1mkm-j+1φ
277 96 29 syldan φms+tjm-s+1mm-j+10
278 277 32 sylan φms+tjm-s+1mkm-j+1k0
279 276 278 4 syl2anc φms+tjm-s+1mkm-j+1Gk=B
280 279 sumeq2dv φms+tjm-s+1mkm-j+1Gk=km-j+1B
281 280 eqcomd φms+tjm-s+1mkm-j+1B=km-j+1Gk
282 281 fveq2d φms+tjm-s+1mkm-j+1B=km-j+1Gk
283 135 rspceeqv mj0s1km-j+1B=km-j+1Gkn0s1km-j+1B=kn+1Gk
284 275 282 283 syl2anc φms+tjm-s+1mn0s1km-j+1B=kn+1Gk
285 fvex km-j+1BV
286 eqeq1 z=km-j+1Bz=kn+1Gkkm-j+1B=kn+1Gk
287 286 rexbidv z=km-j+1Bn0s1z=kn+1Gkn0s1km-j+1B=kn+1Gk
288 285 287 10 elab2 km-j+1BTn0s1km-j+1B=kn+1Gk
289 284 288 sylibr φms+tjm-s+1mkm-j+1BT
290 suprub TTzwTwzkm-j+1BTkm-j+1BsupT<
291 254 289 290 syl2anc φms+tjm-s+1mkm-j+1BsupT<
292 227 228 129 syl2anc φms+tjm-s+1mA0A
293 96 84 syldan φms+tjm-s+1mkm-j+1B
294 43 absge0d φms+tj0m0km-j+1B
295 96 294 syldan φms+tjm-s+1m0km-j+1B
296 293 295 jca φms+tjm-s+1mkm-j+1B0km-j+1B
297 215 ad2antrr φms+tjm-s+1msupT<
298 lemul12a A0AE2ssupT<+1km-j+1B0km-j+1BsupT<AE2ssupT<+1km-j+1BsupT<Akm-j+1BE2ssupT<+1supT<
299 292 230 296 297 298 syl22anc φms+tjm-s+1mAE2ssupT<+1km-j+1BsupT<Akm-j+1BE2ssupT<+1supT<
300 253 291 299 mp2and φms+tjm-s+1mAkm-j+1BE2ssupT<+1supT<
301 88 97 226 300 fsumle φms+tj=m-s+1mAkm-j+1Bj=m-s+1mE2ssupT<+1supT<
302 225 recnd φE2ssupT<+1supT<
303 302 adantr φms+tE2ssupT<+1supT<
304 fsumconst m-s+1mFinE2ssupT<+1supT<j=m-s+1mE2ssupT<+1supT<=m-s+1mE2ssupT<+1supT<
305 88 303 304 syl2anc φms+tj=m-s+1mE2ssupT<+1supT<=m-s+1mE2ssupT<+1supT<
306 1zzd φms+t1
307 62 adantr φms+ts
308 fzen 1sms1s1+m-ss+m-s
309 306 307 75 308 syl3anc φms+t1s1+m-ss+m-s
310 ax-1cn 1
311 75 zcnd φms+tms
312 addcom 1ms1+m-s=m-s+1
313 310 311 312 sylancr φms+t1+m-s=m-s+1
314 262 261 pncan3d φms+ts+m-s=m
315 313 314 oveq12d φms+t1+m-ss+m-s=m-s+1m
316 309 315 breqtrd φms+t1sm-s+1m
317 fzfid φms+t1sFin
318 hashen 1sFinm-s+1mFin1s=m-s+1m1sm-s+1m
319 317 88 318 syl2anc φms+t1s=m-s+1m1sm-s+1m
320 316 319 mpbird φms+t1s=m-s+1m
321 hashfz1 s01s=s
322 53 321 syl φms+t1s=s
323 320 322 eqtr3d φms+tm-s+1m=s
324 323 oveq1d φms+tm-s+1mE2ssupT<+1supT<=sE2ssupT<+1supT<
325 215 recnd φsupT<
326 218 rpcnne0d φsupT<+1supT<+10
327 div23 E2supT<supT<+1supT<+10E2supT<supT<+1=E2supT<+1supT<
328 160 325 326 327 syl3anc φE2supT<supT<+1=E2supT<+1supT<
329 62 zcnd φs
330 222 rpcnd φE2s
331 divass sE2ssupT<+1supT<+10sE2ssupT<+1=sE2ssupT<+1
332 329 330 326 331 syl3anc φsE2ssupT<+1=sE2ssupT<+1
333 16 nnne0d φs0
334 160 329 333 divcan2d φsE2s=E2
335 334 oveq1d φsE2ssupT<+1=E2supT<+1
336 332 335 eqtr3d φsE2ssupT<+1=E2supT<+1
337 336 oveq1d φsE2ssupT<+1supT<=E2supT<+1supT<
338 223 rpcnd φE2ssupT<+1
339 329 338 325 mulassd φsE2ssupT<+1supT<=sE2ssupT<+1supT<
340 328 337 339 3eqtr2rd φsE2ssupT<+1supT<=E2supT<supT<+1
341 340 adantr φms+tsE2ssupT<+1supT<=E2supT<supT<+1
342 305 324 341 3eqtrd φms+tj=m-s+1mE2ssupT<+1supT<=E2supT<supT<+1
343 301 342 breqtrd φms+tj=m-s+1mAkm-j+1BE2supT<supT<+1
344 peano2re supT<supT<+1
345 215 344 syl φsupT<+1
346 215 ltp1d φsupT<<supT<+1
347 215 345 99 346 ltmul2dd φE2supT<<E2supT<+1
348 216 100 218 ltdivmul2d φE2supT<supT<+1<E2E2supT<<E2supT<+1
349 347 348 mpbird φE2supT<supT<+1<E2
350 349 adantr φms+tE2supT<supT<+1<E2
351 98 220 101 343 350 lelttrd φms+tj=m-s+1mAkm-j+1B<E2
352 87 98 101 101 212 351 lt2addd φms+tj=0msAkm-j+1B+j=m-s+1mAkm-j+1B<E2+E2
353 24 43 absmuld φms+tj0mAkm-j+1B=Akm-j+1B
354 353 sumeq2dv φms+tj=0mAkm-j+1B=j=0mAkm-j+1B
355 75 zred φms+tms
356 355 ltp1d φms+tms<m-s+1
357 fzdisj ms<m-s+10msm-s+1m=
358 356 357 syl φms+t0msm-s+1m=
359 fzsplit ms0m0m=0msm-s+1m
360 73 359 syl φms+t0m=0msm-s+1m
361 85 recnd φms+tj0mAkm-j+1B
362 358 360 21 361 fsumsplit φms+tj=0mAkm-j+1B=j=0msAkm-j+1B+j=m-s+1mAkm-j+1B
363 354 362 eqtr2d φms+tj=0msAkm-j+1B+j=m-s+1mAkm-j+1B=j=0mAkm-j+1B
364 9 rpcnd φE
365 364 adantr φms+tE
366 365 2halvesd φms+tE2+E2=E
367 352 363 366 3brtr3d φms+tj=0mAkm-j+1B<E
368 46 48 50 51 367 lelttrd φms+tj=0mAkm-j+1B<E
369 368 ralrimiva φms+tj=0mAkm-j+1B<E
370 fveq2 y=s+ty=s+t
371 370 raleqdv y=s+tmyj=0mAkm-j+1B<Ems+tj=0mAkm-j+1B<E
372 371 rspcev s+t0ms+tj=0mAkm-j+1B<Ey0myj=0mAkm-j+1B<E
373 20 369 372 syl2anc φy0myj=0mAkm-j+1B<E