Metamath Proof Explorer


Theorem minveclem3b

Description: Lemma for minvec . The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses minvec.x X=BaseU
minvec.m -˙=-U
minvec.n N=normU
minvec.u φUCPreHil
minvec.y φYLSubSpU
minvec.w φU𝑠YCMetSp
minvec.a φAX
minvec.j J=TopOpenU
minvec.r R=ranyYNA-˙y
minvec.s S=supR<
minvec.d D=distUX×X
minvec.f F=ranr+yY|ADy2S2+r
Assertion minveclem3b φFfBasY

Proof

Step Hyp Ref Expression
1 minvec.x X=BaseU
2 minvec.m -˙=-U
3 minvec.n N=normU
4 minvec.u φUCPreHil
5 minvec.y φYLSubSpU
6 minvec.w φU𝑠YCMetSp
7 minvec.a φAX
8 minvec.j J=TopOpenU
9 minvec.r R=ranyYNA-˙y
10 minvec.s S=supR<
11 minvec.d D=distUX×X
12 minvec.f F=ranr+yY|ADy2S2+r
13 ssrab2 yY|ADy2S2+rY
14 5 adantr φr+YLSubSpU
15 elpw2g YLSubSpUyY|ADy2S2+r𝒫YyY|ADy2S2+rY
16 14 15 syl φr+yY|ADy2S2+r𝒫YyY|ADy2S2+rY
17 13 16 mpbiri φr+yY|ADy2S2+r𝒫Y
18 17 fmpttd φr+yY|ADy2S2+r:+𝒫Y
19 18 frnd φranr+yY|ADy2S2+r𝒫Y
20 12 19 eqsstrid φF𝒫Y
21 1rp 1+
22 eqid r+yY|ADy2S2+r=r+yY|ADy2S2+r
23 22 17 dmmptd φdomr+yY|ADy2S2+r=+
24 21 23 eleqtrrid φ1domr+yY|ADy2S2+r
25 24 ne0d φdomr+yY|ADy2S2+r
26 dm0rn0 domr+yY|ADy2S2+r=ranr+yY|ADy2S2+r=
27 12 eqeq1i F=ranr+yY|ADy2S2+r=
28 26 27 bitr4i domr+yY|ADy2S2+r=F=
29 28 necon3bii domr+yY|ADy2S2+rF
30 25 29 sylib φF
31 1 2 3 4 5 6 7 8 9 10 minveclem4c φS
32 31 resqcld φS2
33 ltaddrp S2r+S2<S2+r
34 32 33 sylan φr+S2<S2+r
35 32 adantr φr+S2
36 rpre r+r
37 36 adantl φr+r
38 35 37 readdcld φr+S2+r
39 38 recnd φr+S2+r
40 39 sqsqrtd φr+S2+r2=S2+r
41 34 40 breqtrrd φr+S2<S2+r2
42 1 2 3 4 5 6 7 8 9 minveclem1 φRRwR0w
43 42 simp1d φR
44 43 adantr φr+R
45 42 simp2d φR
46 45 adantr φr+R
47 0re 0
48 42 simp3d φwR0w
49 breq1 y=0yw0w
50 49 ralbidv y=0wRywwR0w
51 50 rspcev 0wR0wywRyw
52 47 48 51 sylancr φywRyw
53 52 adantr φr+ywRyw
54 infrecl RRywRywsupR<
55 44 46 53 54 syl3anc φr+supR<
56 10 55 eqeltrid φr+S
57 0red φr+0
58 56 sqge0d φr+0S2
59 57 35 38 58 34 lelttrd φr+0<S2+r
60 57 38 59 ltled φr+0S2+r
61 38 60 resqrtcld φr+S2+r
62 48 adantr φr+wR0w
63 infregelb RRywRyw00supR<wR0w
64 44 46 53 57 63 syl31anc φr+0supR<wR0w
65 62 64 mpbird φr+0supR<
66 65 10 breqtrrdi φr+0S
67 38 60 sqrtge0d φr+0S2+r
68 56 61 66 67 lt2sqd φr+S<S2+rS2<S2+r2
69 41 68 mpbird φr+S<S2+r
70 56 61 ltnled φr+S<S2+r¬S2+rS
71 69 70 mpbid φr+¬S2+rS
72 10 breq2i S2+rSS2+rsupR<
73 infregelb RRywRywS2+rS2+rsupR<wRS2+rw
74 44 46 53 61 73 syl31anc φr+S2+rsupR<wRS2+rw
75 9 raleqi wRS2+rwwranyYNA-˙yS2+rw
76 fvex NA-˙yV
77 76 rgenw yYNA-˙yV
78 eqid yYNA-˙y=yYNA-˙y
79 breq2 w=NA-˙yS2+rwS2+rNA-˙y
80 78 79 ralrnmptw yYNA-˙yVwranyYNA-˙yS2+rwyYS2+rNA-˙y
81 77 80 ax-mp wranyYNA-˙yS2+rwyYS2+rNA-˙y
82 75 81 bitri wRS2+rwyYS2+rNA-˙y
83 74 82 bitrdi φr+S2+rsupR<yYS2+rNA-˙y
84 72 83 bitrid φr+S2+rSyYS2+rNA-˙y
85 71 84 mtbid φr+¬yYS2+rNA-˙y
86 rexnal yY¬S2+rNA-˙y¬yYS2+rNA-˙y
87 85 86 sylibr φr+yY¬S2+rNA-˙y
88 61 adantr φr+yYS2+r
89 cphngp UCPreHilUNrmGrp
90 4 89 syl φUNrmGrp
91 ngpms UNrmGrpUMetSp
92 1 11 msmet UMetSpDMetX
93 90 91 92 3syl φDMetX
94 93 ad2antrr φr+yYDMetX
95 7 ad2antrr φr+yYAX
96 eqid LSubSpU=LSubSpU
97 1 96 lssss YLSubSpUYX
98 14 97 syl φr+YX
99 98 sselda φr+yYyX
100 metcl DMetXAXyXADy
101 94 95 99 100 syl3anc φr+yYADy
102 67 adantr φr+yY0S2+r
103 metge0 DMetXAXyX0ADy
104 94 95 99 103 syl3anc φr+yY0ADy
105 88 101 102 104 le2sqd φr+yYS2+rADyS2+r2ADy2
106 11 oveqi ADy=AdistUX×Xy
107 95 99 ovresd φr+yYAdistUX×Xy=AdistUy
108 106 107 eqtrid φr+yYADy=AdistUy
109 90 ad2antrr φr+yYUNrmGrp
110 eqid distU=distU
111 3 1 2 110 ngpds UNrmGrpAXyXAdistUy=NA-˙y
112 109 95 99 111 syl3anc φr+yYAdistUy=NA-˙y
113 108 112 eqtrd φr+yYADy=NA-˙y
114 113 breq2d φr+yYS2+rADyS2+rNA-˙y
115 40 adantr φr+yYS2+r2=S2+r
116 115 breq1d φr+yYS2+r2ADy2S2+rADy2
117 105 114 116 3bitr3d φr+yYS2+rNA-˙yS2+rADy2
118 117 notbid φr+yY¬S2+rNA-˙y¬S2+rADy2
119 38 adantr φr+yYS2+r
120 101 resqcld φr+yYADy2
121 119 120 letrid φr+yYS2+rADy2ADy2S2+r
122 121 ord φr+yY¬S2+rADy2ADy2S2+r
123 118 122 sylbid φr+yY¬S2+rNA-˙yADy2S2+r
124 123 reximdva φr+yY¬S2+rNA-˙yyYADy2S2+r
125 87 124 mpd φr+yYADy2S2+r
126 rabn0 yY|ADy2S2+ryYADy2S2+r
127 125 126 sylibr φr+yY|ADy2S2+r
128 127 necomd φr+yY|ADy2S2+r
129 128 neneqd φr+¬=yY|ADy2S2+r
130 129 nrexdv φ¬r+=yY|ADy2S2+r
131 12 eleq2i Franr+yY|ADy2S2+r
132 0ex V
133 22 elrnmpt Vranr+yY|ADy2S2+rr+=yY|ADy2S2+r
134 132 133 ax-mp ranr+yY|ADy2S2+rr+=yY|ADy2S2+r
135 131 134 bitri Fr+=yY|ADy2S2+r
136 130 135 sylnibr φ¬F
137 df-nel F¬F
138 136 137 sylibr φF
139 56 adantr φr+yYS
140 139 resqcld φr+yYS2
141 37 adantr φr+yYr
142 120 140 141 lesubadd2d φr+yYADy2S2rADy2S2+r
143 142 rabbidva φr+yY|ADy2S2r=yY|ADy2S2+r
144 143 mpteq2dva φr+yY|ADy2S2r=r+yY|ADy2S2+r
145 144 rneqd φranr+yY|ADy2S2r=ranr+yY|ADy2S2+r
146 12 145 eqtr4id φF=ranr+yY|ADy2S2r
147 146 eleq2d φuFuranr+yY|ADy2S2r
148 breq2 r=sADy2S2rADy2S2s
149 148 rabbidv r=syY|ADy2S2r=yY|ADy2S2s
150 149 cbvmptv r+yY|ADy2S2r=s+yY|ADy2S2s
151 150 elrnmpt uVuranr+yY|ADy2S2rs+u=yY|ADy2S2s
152 151 elv uranr+yY|ADy2S2rs+u=yY|ADy2S2s
153 147 152 bitrdi φuFs+u=yY|ADy2S2s
154 146 eleq2d φvFvranr+yY|ADy2S2r
155 breq2 r=tADy2S2rADy2S2t
156 155 rabbidv r=tyY|ADy2S2r=yY|ADy2S2t
157 156 cbvmptv r+yY|ADy2S2r=t+yY|ADy2S2t
158 157 elrnmpt vVvranr+yY|ADy2S2rt+v=yY|ADy2S2t
159 158 elv vranr+yY|ADy2S2rt+v=yY|ADy2S2t
160 154 159 bitrdi φvFt+v=yY|ADy2S2t
161 153 160 anbi12d φuFvFs+u=yY|ADy2S2st+v=yY|ADy2S2t
162 reeanv s+t+u=yY|ADy2S2sv=yY|ADy2S2ts+u=yY|ADy2S2st+v=yY|ADy2S2t
163 93 ad2antrr φs+t+yYDMetX
164 7 ad2antrr φs+t+yYAX
165 5 97 syl φYX
166 165 adantr φs+t+YX
167 166 sselda φs+t+yYyX
168 163 164 167 100 syl3anc φs+t+yYADy
169 168 resqcld φs+t+yYADy2
170 32 ad2antrr φs+t+yYS2
171 169 170 resubcld φs+t+yYADy2S2
172 simplrl φs+t+yYs+
173 172 rpred φs+t+yYs
174 simplrr φs+t+yYt+
175 174 rpred φs+t+yYt
176 lemin ADy2S2stADy2S2ifststADy2S2sADy2S2t
177 171 173 175 176 syl3anc φs+t+yYADy2S2ifststADy2S2sADy2S2t
178 177 rabbidva φs+t+yY|ADy2S2ifstst=yY|ADy2S2sADy2S2t
179 ifcl s+t+ifstst+
180 5 adantr φs+t+YLSubSpU
181 rabexg YLSubSpUyY|ADy2S2ifststV
182 180 181 syl φs+t+yY|ADy2S2ifststV
183 eqid r+yY|ADy2S2r=r+yY|ADy2S2r
184 breq2 r=ifststADy2S2rADy2S2ifstst
185 184 rabbidv r=ifststyY|ADy2S2r=yY|ADy2S2ifstst
186 183 185 elrnmpt1s ifstst+yY|ADy2S2ifststVyY|ADy2S2ifststranr+yY|ADy2S2r
187 179 182 186 syl2an2 φs+t+yY|ADy2S2ifststranr+yY|ADy2S2r
188 146 adantr φs+t+F=ranr+yY|ADy2S2r
189 187 188 eleqtrrd φs+t+yY|ADy2S2ifststF
190 178 189 eqeltrrd φs+t+yY|ADy2S2sADy2S2tF
191 ineq12 u=yY|ADy2S2sv=yY|ADy2S2tuv=yY|ADy2S2syY|ADy2S2t
192 inrab yY|ADy2S2syY|ADy2S2t=yY|ADy2S2sADy2S2t
193 191 192 eqtrdi u=yY|ADy2S2sv=yY|ADy2S2tuv=yY|ADy2S2sADy2S2t
194 193 eleq1d u=yY|ADy2S2sv=yY|ADy2S2tuvFyY|ADy2S2sADy2S2tF
195 190 194 syl5ibrcom φs+t+u=yY|ADy2S2sv=yY|ADy2S2tuvF
196 vex uV
197 196 inex1 uvV
198 197 pwid uv𝒫uv
199 inelcm uvFuv𝒫uvF𝒫uv
200 198 199 mpan2 uvFF𝒫uv
201 195 200 syl6 φs+t+u=yY|ADy2S2sv=yY|ADy2S2tF𝒫uv
202 201 rexlimdvva φs+t+u=yY|ADy2S2sv=yY|ADy2S2tF𝒫uv
203 162 202 biimtrrid φs+u=yY|ADy2S2st+v=yY|ADy2S2tF𝒫uv
204 161 203 sylbid φuFvFF𝒫uv
205 204 ralrimivv φuFvFF𝒫uv
206 30 138 205 3jca φFFuFvFF𝒫uv
207 isfbas YLSubSpUFfBasYF𝒫YFFuFvFF𝒫uv
208 5 207 syl φFfBasYF𝒫YFFuFvFF𝒫uv
209 20 206 208 mpbir2and φFfBasY