Metamath Proof Explorer


Theorem ablfaclem3

Description: Lemma for ablfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B=BaseG
ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
ablfac.1 φGAbel
ablfac.2 φBFin
ablfac.o O=odG
ablfac.a A=w|wB
ablfac.s S=pAxB|OxpppCntB
ablfac.w W=gSubGrpGsWordC|GdomDProdsGDProds=g
Assertion ablfaclem3 φWB

Proof

Step Hyp Ref Expression
1 ablfac.b B=BaseG
2 ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
3 ablfac.1 φGAbel
4 ablfac.2 φBFin
5 ablfac.o O=odG
6 ablfac.a A=w|wB
7 ablfac.s S=pAxB|OxpppCntB
8 ablfac.w W=gSubGrpGsWordC|GdomDProdsGDProds=g
9 fzfid φ1BFin
10 prmnn ww
11 10 3ad2ant2 φwwBw
12 prmz ww
13 ablgrp GAbelGGrp
14 1 grpbn0 GGrpB
15 3 13 14 3syl φB
16 hashnncl BFinBB
17 4 16 syl φBB
18 15 17 mpbird φB
19 dvdsle wBwBwB
20 12 18 19 syl2anr φwwBwB
21 20 3impia φwwBwB
22 18 nnzd φB
23 22 3ad2ant1 φwwBB
24 fznn Bw1BwwB
25 23 24 syl φwwBw1BwwB
26 11 21 25 mpbir2and φwwBw1B
27 26 rabssdv φw|wB1B
28 6 27 eqsstrid φA1B
29 9 28 ssfid φAFin
30 dfin5 WordCWSq=yWordC|yWSq
31 6 ssrab3 A
32 31 a1i φA
33 1 5 7 3 4 32 ablfac1b φGdomDProdS
34 1 fvexi BV
35 34 rabex xB|OxpppCntBV
36 35 7 dmmpti domS=A
37 36 a1i φdomS=A
38 33 37 dprdf2 φS:ASubGrpG
39 38 ffvelcdmda φqASqSubGrpG
40 1 2 3 4 5 6 7 8 ablfaclem1 SqSubGrpGWSq=sWordC|GdomDProdsGDProds=Sq
41 39 40 syl φqAWSq=sWordC|GdomDProdsGDProds=Sq
42 ssrab2 sWordC|GdomDProdsGDProds=SqWordC
43 41 42 eqsstrdi φqAWSqWordC
44 sseqin2 WSqWordCWordCWSq=WSq
45 43 44 sylib φqAWordCWSq=WSq
46 30 45 eqtr3id φqAyWordC|yWSq=WSq
47 46 41 eqtrd φqAyWordC|yWSq=sWordC|GdomDProdsGDProds=Sq
48 eqid BaseG𝑠Sq=BaseG𝑠Sq
49 eqid rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrp=rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrp
50 eqid G𝑠Sq=G𝑠Sq
51 50 subgabl GAbelSqSubGrpGG𝑠SqAbel
52 3 39 51 syl2an2r φqAG𝑠SqAbel
53 32 sselda φqAq
54 50 subgbas SqSubGrpGSq=BaseG𝑠Sq
55 39 54 syl φqASq=BaseG𝑠Sq
56 55 fveq2d φqASq=BaseG𝑠Sq
57 1 5 7 3 4 32 ablfac1a φqASq=qqpCntB
58 56 57 eqtr3d φqABaseG𝑠Sq=qqpCntB
59 58 oveq2d φqAqpCntBaseG𝑠Sq=qpCntqqpCntB
60 18 adantr φqAB
61 53 60 pccld φqAqpCntB0
62 61 nn0zd φqAqpCntB
63 pcid qqpCntBqpCntqqpCntB=qpCntB
64 53 62 63 syl2anc φqAqpCntqqpCntB=qpCntB
65 59 64 eqtrd φqAqpCntBaseG𝑠Sq=qpCntB
66 65 oveq2d φqAqqpCntBaseG𝑠Sq=qqpCntB
67 58 66 eqtr4d φqABaseG𝑠Sq=qqpCntBaseG𝑠Sq
68 50 subggrp SqSubGrpGG𝑠SqGrp
69 39 68 syl φqAG𝑠SqGrp
70 4 adantr φqABFin
71 1 subgss SqSubGrpGSqB
72 39 71 syl φqASqB
73 70 72 ssfid φqASqFin
74 55 73 eqeltrrd φqABaseG𝑠SqFin
75 48 pgpfi2 G𝑠SqGrpBaseG𝑠SqFinqpGrpG𝑠SqqBaseG𝑠Sq=qqpCntBaseG𝑠Sq
76 69 74 75 syl2anc φqAqpGrpG𝑠SqqBaseG𝑠Sq=qqpCntBaseG𝑠Sq
77 53 67 76 mpbir2and φqAqpGrpG𝑠Sq
78 48 49 52 77 74 pgpfac φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠Sq
79 ssrab2 rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpSubGrpG𝑠Sq
80 sswrd rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpSubGrpG𝑠SqWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpWordSubGrpG𝑠Sq
81 79 80 ax-mp WordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpWordSubGrpG𝑠Sq
82 81 sseli sWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpsWordSubGrpG𝑠Sq
83 39 adantr φqAsWordSubGrpG𝑠SqSqSubGrpG
84 83 adantr φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsSqSubGrpG
85 50 subgdmdprd SqSubGrpGG𝑠SqdomDProdsGdomDProdsrans𝒫Sq
86 83 85 syl φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsGdomDProdsrans𝒫Sq
87 86 simprbda φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsGdomDProds
88 86 simplbda φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsrans𝒫Sq
89 50 84 87 88 subgdprd φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsG𝑠SqDProds=GDProds
90 55 ad2antrr φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsSq=BaseG𝑠Sq
91 90 eqcomd φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsBaseG𝑠Sq=Sq
92 89 91 eqeq12d φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqGDProds=Sq
93 92 biimpd φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqGDProds=Sq
94 93 87 jctild φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqGdomDProdsGDProds=Sq
95 94 expimpd φqAsWordSubGrpG𝑠SqG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqGdomDProdsGDProds=Sq
96 82 95 sylan2 φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqGdomDProdsGDProds=Sq
97 oveq2 r=yG𝑠Sq𝑠r=G𝑠Sq𝑠y
98 97 eleq1d r=yG𝑠Sq𝑠rCycGrpranpGrpG𝑠Sq𝑠yCycGrpranpGrp
99 98 cbvrabv rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrp=ySubGrpG𝑠Sq|G𝑠Sq𝑠yCycGrpranpGrp
100 50 subsubg SqSubGrpGySubGrpG𝑠SqySubGrpGySq
101 39 100 syl φqAySubGrpG𝑠SqySubGrpGySq
102 101 simprbda φqAySubGrpG𝑠SqySubGrpG
103 102 3adant3 φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpySubGrpG
104 39 3ad2ant1 φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpSqSubGrpG
105 101 simplbda φqAySubGrpG𝑠SqySq
106 105 3adant3 φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpySq
107 ressabs SqSubGrpGySqG𝑠Sq𝑠y=G𝑠y
108 104 106 107 syl2anc φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpG𝑠Sq𝑠y=G𝑠y
109 simp3 φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpG𝑠Sq𝑠yCycGrpranpGrp
110 108 109 eqeltrrd φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpG𝑠yCycGrpranpGrp
111 oveq2 r=yG𝑠r=G𝑠y
112 111 eleq1d r=yG𝑠rCycGrpranpGrpG𝑠yCycGrpranpGrp
113 112 2 elrab2 yCySubGrpGG𝑠yCycGrpranpGrp
114 103 110 113 sylanbrc φqAySubGrpG𝑠SqG𝑠Sq𝑠yCycGrpranpGrpyC
115 114 rabssdv φqAySubGrpG𝑠Sq|G𝑠Sq𝑠yCycGrpranpGrpC
116 99 115 eqsstrid φqArSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpC
117 sswrd rSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpCWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpWordC
118 116 117 syl φqAWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpWordC
119 118 sselda φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpsWordC
120 96 119 jctild φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqsWordCGdomDProdsGDProds=Sq
121 120 expimpd φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqsWordCGdomDProdsGDProds=Sq
122 121 reximdv2 φqAsWordrSubGrpG𝑠Sq|G𝑠Sq𝑠rCycGrpranpGrpG𝑠SqdomDProdsG𝑠SqDProds=BaseG𝑠SqsWordCGdomDProdsGDProds=Sq
123 78 122 mpd φqAsWordCGdomDProdsGDProds=Sq
124 rabn0 sWordC|GdomDProdsGDProds=SqsWordCGdomDProdsGDProds=Sq
125 123 124 sylibr φqAsWordC|GdomDProdsGDProds=Sq
126 47 125 eqnetrd φqAyWordC|yWSq
127 rabn0 yWordC|yWSqyWordCyWSq
128 126 127 sylib φqAyWordCyWSq
129 128 ralrimiva φqAyWordCyWSq
130 eleq1 y=fqyWSqfqWSq
131 130 ac6sfi AFinqAyWordCyWSqff:AWordCqAfqWSq
132 29 129 131 syl2anc φff:AWordCqAfqWSq
133 sneq q=yq=y
134 fveq2 q=yfq=fy
135 134 dmeqd q=ydomfq=domfy
136 133 135 xpeq12d q=yq×domfq=y×domfy
137 136 cbviunv qAq×domfq=yAy×domfy
138 snfi yFin
139 simprl φf:AWordCqAfqWSqf:AWordC
140 139 ffvelcdmda φf:AWordCqAfqWSqyAfyWordC
141 wrdf fyWordCfy:0..^fyC
142 fdm fy:0..^fyCdomfy=0..^fy
143 140 141 142 3syl φf:AWordCqAfqWSqyAdomfy=0..^fy
144 fzofi 0..^fyFin
145 143 144 eqeltrdi φf:AWordCqAfqWSqyAdomfyFin
146 xpfi yFindomfyFiny×domfyFin
147 138 145 146 sylancr φf:AWordCqAfqWSqyAy×domfyFin
148 147 ralrimiva φf:AWordCqAfqWSqyAy×domfyFin
149 iunfi AFinyAy×domfyFinyAy×domfyFin
150 29 148 149 syl2an2r φf:AWordCqAfqWSqyAy×domfyFin
151 137 150 eqeltrid φf:AWordCqAfqWSqqAq×domfqFin
152 hashcl qAq×domfqFinqAq×domfq0
153 hashfzo0 qAq×domfq00..^qAq×domfq=qAq×domfq
154 151 152 153 3syl φf:AWordCqAfqWSq0..^qAq×domfq=qAq×domfq
155 fzofi 0..^qAq×domfqFin
156 hashen 0..^qAq×domfqFinqAq×domfqFin0..^qAq×domfq=qAq×domfq0..^qAq×domfqqAq×domfq
157 155 151 156 sylancr φf:AWordCqAfqWSq0..^qAq×domfq=qAq×domfq0..^qAq×domfqqAq×domfq
158 154 157 mpbid φf:AWordCqAfqWSq0..^qAq×domfqqAq×domfq
159 bren 0..^qAq×domfqqAq×domfqhh:0..^qAq×domfq1-1 ontoqAq×domfq
160 158 159 sylib φf:AWordCqAfqWSqhh:0..^qAq×domfq1-1 ontoqAq×domfq
161 3 adantr φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqGAbel
162 4 adantr φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqBFin
163 breq1 w=awBaB
164 163 cbvrabv w|wB=a|aB
165 6 164 eqtri A=a|aB
166 fveq2 x=cOx=Oc
167 166 breq1d x=cOxpppCntBOcpppCntB
168 167 cbvrabv xB|OxpppCntB=cB|OcpppCntB
169 id p=bp=b
170 oveq1 p=bppCntB=bpCntB
171 169 170 oveq12d p=bpppCntB=bbpCntB
172 171 breq2d p=bOcpppCntBOcbbpCntB
173 172 rabbidv p=bcB|OcpppCntB=cB|OcbbpCntB
174 168 173 eqtrid p=bxB|OxpppCntB=cB|OcbbpCntB
175 174 cbvmptv pAxB|OxpppCntB=bAcB|OcbbpCntB
176 7 175 eqtri S=bAcB|OcbbpCntB
177 breq2 s=tGdomDProdsGdomDProdt
178 oveq2 s=tGDProds=GDProdt
179 178 eqeq1d s=tGDProds=gGDProdt=g
180 177 179 anbi12d s=tGdomDProdsGDProds=gGdomDProdtGDProdt=g
181 180 cbvrabv sWordC|GdomDProdsGDProds=g=tWordC|GdomDProdtGDProdt=g
182 181 mpteq2i gSubGrpGsWordC|GdomDProdsGDProds=g=gSubGrpGtWordC|GdomDProdtGDProdt=g
183 8 182 eqtri W=gSubGrpGtWordC|GdomDProdtGDProdt=g
184 simprll φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqf:AWordC
185 simprlr φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqqAfqWSq
186 2fveq3 q=yWSq=WSy
187 134 186 eleq12d q=yfqWSqfyWSy
188 187 cbvralvw qAfqWSqyAfyWSy
189 185 188 sylib φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqyAfyWSy
190 simprr φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqh:0..^qAq×domfq1-1 ontoqAq×domfq
191 1 2 161 162 5 165 176 183 184 189 137 190 ablfaclem2 φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqWB
192 191 expr φf:AWordCqAfqWSqh:0..^qAq×domfq1-1 ontoqAq×domfqWB
193 192 exlimdv φf:AWordCqAfqWSqhh:0..^qAq×domfq1-1 ontoqAq×domfqWB
194 160 193 mpd φf:AWordCqAfqWSqWB
195 132 194 exlimddv φWB