Metamath Proof Explorer


Theorem fourierdlem51

Description: X is in the periodic partition, when the considered interval is centered at X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem51.a φA
fourierdlem51.b φB
fourierdlem51.alt0 φA<0
fourierdlem51.bgt0 φ0<B
fourierdlem51.t T=BA
fourierdlem51.cfi φCFin
fourierdlem51.css φCAB
fourierdlem51.bc φBC
fourierdlem51.e E=xx+BxTT
fourierdlem51.x φX
fourierdlem51.exc φEXC
fourierdlem51.d D=A+XB+XyA+XB+X|ky+kTC
fourierdlem51.f F=ιf|fIsom<,<0D1D
fourierdlem51.h H=yA+XB+X|ky+kTC
Assertion fourierdlem51 φXranF

Proof

Step Hyp Ref Expression
1 fourierdlem51.a φA
2 fourierdlem51.b φB
3 fourierdlem51.alt0 φA<0
4 fourierdlem51.bgt0 φ0<B
5 fourierdlem51.t T=BA
6 fourierdlem51.cfi φCFin
7 fourierdlem51.css φCAB
8 fourierdlem51.bc φBC
9 fourierdlem51.e E=xx+BxTT
10 fourierdlem51.x φX
11 fourierdlem51.exc φEXC
12 fourierdlem51.d D=A+XB+XyA+XB+X|ky+kTC
13 fourierdlem51.f F=ιf|fIsom<,<0D1D
14 fourierdlem51.h H=yA+XB+X|ky+kTC
15 1 10 readdcld φA+X
16 2 10 readdcld φB+X
17 0red φ0
18 1 17 10 3 ltadd1dd φA+X<0+X
19 10 recnd φX
20 19 addlidd φ0+X=X
21 18 20 breqtrd φA+X<X
22 15 10 21 ltled φA+XX
23 17 2 10 4 ltadd1dd φ0+X<B+X
24 20 23 eqbrtrrd φX<B+X
25 10 16 24 ltled φXB+X
26 15 16 10 22 25 eliccd φXA+XB+X
27 2 10 resubcld φBX
28 2 1 resubcld φBA
29 5 28 eqeltrid φT
30 1 17 2 3 4 lttrd φA<B
31 1 2 posdifd φA<B0<BA
32 30 31 mpbid φ0<BA
33 5 eqcomi BA=T
34 33 a1i φBA=T
35 32 34 breqtrd φ0<T
36 35 gt0ne0d φT0
37 27 29 36 redivcld φBXT
38 37 flcld φBXT
39 9 a1i φE=xx+BxTT
40 id x=Xx=X
41 oveq2 x=XBx=BX
42 41 oveq1d x=XBxT=BXT
43 42 fveq2d x=XBxT=BXT
44 43 oveq1d x=XBxTT=BXTT
45 40 44 oveq12d x=Xx+BxTT=X+BXTT
46 45 adantl φx=Xx+BxTT=X+BXTT
47 38 zred φBXT
48 47 29 remulcld φBXTT
49 10 48 readdcld φX+BXTT
50 39 46 10 49 fvmptd φEX=X+BXTT
51 50 11 eqeltrrd φX+BXTTC
52 oveq1 k=BXTkT=BXTT
53 52 oveq2d k=BXTX+kT=X+BXTT
54 53 eleq1d k=BXTX+kTCX+BXTTC
55 54 rspcev BXTX+BXTTCkX+kTC
56 38 51 55 syl2anc φkX+kTC
57 oveq1 y=Xy+kT=X+kT
58 57 eleq1d y=Xy+kTCX+kTC
59 58 rexbidv y=Xky+kTCkX+kTC
60 59 elrab XyA+XB+X|ky+kTCXA+XB+XkX+kTC
61 26 56 60 sylanbrc φXyA+XB+X|ky+kTC
62 elun2 XyA+XB+X|ky+kTCXA+XB+XyA+XB+X|ky+kTC
63 61 62 syl φXA+XB+XyA+XB+X|ky+kTC
64 63 12 eleqtrrdi φXD
65 prfi A+XB+XFin
66 snfi A+XFin
67 fvres xyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx=Ex
68 67 adantl φxyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx=Ex
69 oveq1 y=xy+kT=x+kT
70 69 eleq1d y=xy+kTCx+kTC
71 70 rexbidv y=xky+kTCkx+kTC
72 71 elrab xyA+XB+X|ky+kTCxA+XB+Xkx+kTC
73 72 simprbi xyA+XB+X|ky+kTCkx+kTC
74 73 adantl φxyA+XB+X|ky+kTCkx+kTC
75 nfv kφ
76 nfre1 kky+kTC
77 nfcv _kA+XB+X
78 76 77 nfrabw _kyA+XB+X|ky+kTC
79 78 nfcri kxyA+XB+X|ky+kTC
80 75 79 nfan kφxyA+XB+X|ky+kTC
81 nfv kExC
82 simpl φxyA+XB+X|ky+kTCφ
83 15 rexrd φA+X*
84 iocssre A+X*B+XA+XB+X
85 83 16 84 syl2anc φA+XB+X
86 85 adantr φxyA+XB+X|ky+kTCA+XB+X
87 elrabi xyA+XB+X|ky+kTCxA+XB+X
88 87 adantl φxyA+XB+X|ky+kTCxA+XB+X
89 86 88 sseldd φxyA+XB+X|ky+kTCx
90 simpr φxx
91 2 adantr φxB
92 91 90 resubcld φxBx
93 29 adantr φxT
94 36 adantr φxT0
95 92 93 94 redivcld φxBxT
96 95 flcld φxBxT
97 96 zred φxBxT
98 97 93 remulcld φxBxTT
99 90 98 readdcld φxx+BxTT
100 9 fvmpt2 xx+BxTTEx=x+BxTT
101 90 99 100 syl2anc φxEx=x+BxTT
102 101 ad2antrr φxkx+kT=AEx=x+BxTT
103 simpl φxkx+kT=Aφxk
104 96 ad2antrr φxkx+kT=ABxT
105 simpr φx+kT=Ax+kT=A
106 1 rexrd φA*
107 2 rexrd φB*
108 1 2 30 ltled φAB
109 lbicc2 A*B*ABAAB
110 106 107 108 109 syl3anc φAAB
111 110 adantr φx+kT=AAAB
112 105 111 eqeltrd φx+kT=Ax+kTAB
113 112 ad4ant14 φxkx+kT=Ax+kTAB
114 103 104 113 jca31 φxkx+kT=AφxkBxTx+kTAB
115 iocssicc ABAB
116 1 2 30 5 9 fourierdlem4 φE:AB
117 116 ffvelcdmda φxExAB
118 115 117 sselid φxExAB
119 101 118 eqeltrrd φxx+BxTTAB
120 119 ad2antrr φxkx+kT=Ax+BxTTAB
121 106 adantr φxA*
122 91 rexrd φxB*
123 iocgtlb A*B*ExABA<Ex
124 121 122 117 123 syl3anc φxA<Ex
125 124 ad2antrr φxkx+kT=AA<Ex
126 id x+kT=Ax+kT=A
127 126 eqcomd x+kT=AA=x+kT
128 127 adantl φxkx+kT=AA=x+kT
129 125 128 102 3brtr3d φxkx+kT=Ax+kT<x+BxTT
130 zre kk
131 130 adantl φkk
132 29 adantr φkT
133 131 132 remulcld φkkT
134 133 adantlr φxkkT
135 134 adantr φxkx+kT=AkT
136 98 ad2antrr φxkx+kT=ABxTT
137 simpllr φxkx+kT=Ax
138 135 136 137 ltadd2d φxkx+kT=AkT<BxTTx+kT<x+BxTT
139 129 138 mpbird φxkx+kT=AkT<BxTT
140 130 ad2antlr φxkx+kT=Ak
141 97 ad2antrr φxkx+kT=ABxT
142 29 35 elrpd φT+
143 142 ad3antrrr φxkx+kT=AT+
144 140 141 143 ltmul1d φxkx+kT=Ak<BxTkT<BxTT
145 139 144 mpbird φxkx+kT=Ak<BxT
146 fvex BxTV
147 eleq1 j=BxTjBxT
148 147 anbi2d j=BxTφxkjφxkBxT
149 148 anbi1d j=BxTφxkjx+kTABφxkBxTx+kTAB
150 oveq1 j=BxTjT=BxTT
151 150 oveq2d j=BxTx+jT=x+BxTT
152 151 eleq1d j=BxTx+jTABx+BxTTAB
153 149 152 anbi12d j=BxTφxkjx+kTABx+jTABφxkBxTx+kTABx+BxTTAB
154 breq2 j=BxTk<jk<BxT
155 153 154 anbi12d j=BxTφxkjx+kTABx+jTABk<jφxkBxTx+kTABx+BxTTABk<BxT
156 eqeq1 j=BxTj=k+1BxT=k+1
157 155 156 imbi12d j=BxTφxkjx+kTABx+jTABk<jj=k+1φxkBxTx+kTABx+BxTTABk<BxTBxT=k+1
158 eleq1 i=kik
159 158 anbi2d i=kφxiφxk
160 159 anbi1d i=kφxijφxkj
161 oveq1 i=kiT=kT
162 161 oveq2d i=kx+iT=x+kT
163 162 eleq1d i=kx+iTABx+kTAB
164 160 163 anbi12d i=kφxijx+iTABφxkjx+kTAB
165 164 anbi1d i=kφxijx+iTABx+jTABφxkjx+kTABx+jTAB
166 breq1 i=ki<jk<j
167 165 166 anbi12d i=kφxijx+iTABx+jTABi<jφxkjx+kTABx+jTABk<j
168 oveq1 i=ki+1=k+1
169 168 eqeq2d i=kj=i+1j=k+1
170 167 169 imbi12d i=kφxijx+iTABx+jTABi<jj=i+1φxkjx+kTABx+jTABk<jj=k+1
171 simp-6l φxijx+iTABx+jTABi<jφ
172 171 1 syl φxijx+iTABx+jTABi<jA
173 171 2 syl φxijx+iTABx+jTABi<jB
174 171 30 syl φxijx+iTABx+jTABi<jA<B
175 simp-6r φxijx+iTABx+jTABi<jx
176 simp-5r φxijx+iTABx+jTABi<ji
177 simp-4r φxijx+iTABx+jTABi<jj
178 simpr φxijx+iTABx+jTABi<ji<j
179 simpllr φxijx+iTABx+jTABi<jx+iTAB
180 simplr φxijx+iTABx+jTABi<jx+jTAB
181 172 173 174 5 175 176 177 178 179 180 fourierdlem6 φxijx+iTABx+jTABi<jj=i+1
182 170 181 chvarvv φxkjx+kTABx+jTABk<jj=k+1
183 146 157 182 vtocl φxkBxTx+kTABx+BxTTABk<BxTBxT=k+1
184 114 120 145 183 syl21anc φxkx+kT=ABxT=k+1
185 184 oveq1d φxkx+kT=ABxTT=k+1T
186 185 oveq2d φxkx+kT=Ax+BxTT=x+k+1T
187 131 recnd φkk
188 29 recnd φT
189 188 adantr φkT
190 187 189 adddirp1d φkk+1T=kT+T
191 190 oveq2d φkx+k+1T=x+kT+T
192 191 adantlr φxkx+k+1T=x+kT+T
193 192 adantr φxkx+kT=Ax+k+1T=x+kT+T
194 90 recnd φxx
195 194 adantr φxkx
196 134 recnd φxkkT
197 188 ad2antrr φxkT
198 195 196 197 addassd φxkx+kT+T=x+kT+T
199 198 eqcomd φxkx+kT+T=x+kT+T
200 199 adantr φxkx+kT=Ax+kT+T=x+kT+T
201 oveq1 x+kT=Ax+kT+T=A+T
202 201 adantl φxkx+kT=Ax+kT+T=A+T
203 2 recnd φB
204 1 recnd φA
205 203 204 188 subaddd φBA=TA+T=B
206 34 205 mpbid φA+T=B
207 206 ad3antrrr φxkx+kT=AA+T=B
208 202 207 eqtrd φxkx+kT=Ax+kT+T=B
209 193 200 208 3eqtrd φxkx+kT=Ax+k+1T=B
210 102 186 209 3eqtrd φxkx+kT=AEx=B
211 8 ad3antrrr φxkx+kT=ABC
212 210 211 eqeltrd φxkx+kT=AExC
213 212 3adantl3 φxkx+kTCx+kT=AExC
214 simpl1 φxkx+kTC¬x+kT=Aφx
215 simpl2 φxkx+kTC¬x+kT=Ak
216 7 sselda φx+kTCx+kTAB
217 216 adantlr φxx+kTCx+kTAB
218 217 3adant2 φxkx+kTCx+kTAB
219 218 adantr φxkx+kTC¬x+kT=Ax+kTAB
220 neqne ¬x+kT=Ax+kTA
221 220 adantl φxkx+kTC¬x+kT=Ax+kTA
222 1 adantr φxA
223 214 222 syl φxkx+kTC¬x+kT=AA
224 214 91 syl φxkx+kTC¬x+kT=AB
225 simplr φxkx
226 225 134 readdcld φxkx+kT
227 226 rexrd φxkx+kT*
228 214 215 227 syl2anc φxkx+kTC¬x+kT=Ax+kT*
229 223 224 228 eliccelioc φxkx+kTC¬x+kT=Ax+kTABx+kTABx+kTA
230 219 221 229 mpbir2and φxkx+kTC¬x+kT=Ax+kTAB
231 101 ad2antrr φxkx+kTABEx=x+BxTT
232 1 ad3antrrr φxkx+kTABA
233 2 ad3antrrr φxkx+kTABB
234 30 ad3antrrr φxkx+kTABA<B
235 simpllr φxkx+kTABx
236 96 ad2antrr φxkx+kTABBxT
237 simplr φxkx+kTABk
238 101 117 eqeltrrd φxx+BxTTAB
239 238 ad2antrr φxkx+kTABx+BxTTAB
240 simpr φxkx+kTABx+kTAB
241 232 233 234 5 235 236 237 239 240 fourierdlem35 φxkx+kTABBxT=k
242 241 oveq1d φxkx+kTABBxTT=kT
243 242 oveq2d φxkx+kTABx+BxTT=x+kT
244 231 243 eqtrd φxkx+kTABEx=x+kT
245 214 215 230 244 syl21anc φxkx+kTC¬x+kT=AEx=x+kT
246 simpl3 φxkx+kTC¬x+kT=Ax+kTC
247 245 246 eqeltrd φxkx+kTC¬x+kT=AExC
248 213 247 pm2.61dan φxkx+kTCExC
249 248 3exp φxkx+kTCExC
250 82 89 249 syl2anc φxyA+XB+X|ky+kTCkx+kTCExC
251 80 81 250 rexlimd φxyA+XB+X|ky+kTCkx+kTCExC
252 74 251 mpd φxyA+XB+X|ky+kTCExC
253 68 252 eqeltrd φxyA+XB+X|ky+kTCEyA+XB+X|ky+kTCxC
254 eqid xyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx=xyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx
255 253 254 fmptd φxyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx:yA+XB+X|ky+kTCC
256 iocssre A*BAB
257 106 2 256 syl2anc φAB
258 116 257 fssd φE:
259 ssrab2 yA+XB+X|ky+kTCA+XB+X
260 259 85 sstrid φyA+XB+X|ky+kTC
261 258 260 fssresd φEyA+XB+X|ky+kTC:yA+XB+X|ky+kTC
262 261 feqmptd φEyA+XB+X|ky+kTC=xyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx
263 262 feq1d φEyA+XB+X|ky+kTC:yA+XB+X|ky+kTCCxyA+XB+X|ky+kTCEyA+XB+X|ky+kTCx:yA+XB+X|ky+kTCC
264 255 263 mpbird φEyA+XB+X|ky+kTC:yA+XB+X|ky+kTCC
265 simplll φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzφ
266 id wyA+XB+X|ky+kTCwyA+XB+X|ky+kTC
267 266 14 eleqtrrdi wyA+XB+X|ky+kTCwH
268 267 ad3antlr φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzwH
269 265 268 jca φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzφwH
270 id zyA+XB+X|ky+kTCzyA+XB+X|ky+kTC
271 270 14 eleqtrrdi zyA+XB+X|ky+kTCzH
272 271 ad2antlr φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzzH
273 fvres zyA+XB+X|ky+kTCEyA+XB+X|ky+kTCz=Ez
274 273 eqcomd zyA+XB+X|ky+kTCEz=EyA+XB+X|ky+kTCz
275 274 ad2antlr φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEz=EyA+XB+X|ky+kTCz
276 id EyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCz
277 276 eqcomd EyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEyA+XB+X|ky+kTCz=EyA+XB+X|ky+kTCw
278 277 adantl φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEyA+XB+X|ky+kTCz=EyA+XB+X|ky+kTCw
279 fvres wyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=Ew
280 279 ad3antlr φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEyA+XB+X|ky+kTCw=Ew
281 275 278 280 3eqtrd φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzEz=Ew
282 1 ad3antrrr φwHzHEz=EwA
283 2 ad3antrrr φwHzHEz=EwB
284 30 ad3antrrr φwHzHEz=EwA<B
285 10 ad3antrrr φwHzHEz=EwX
286 simpllr φwHzHEz=EwwH
287 simplr φwHzHEz=EwzH
288 simpr φwHzHEz=EwEz=Ew
289 282 283 284 285 14 5 9 286 287 288 fourierdlem19 φwHzHEz=Ew¬w<z
290 288 eqcomd φwHzHEz=EwEw=Ez
291 282 283 284 285 14 5 9 287 286 290 fourierdlem19 φwHzHEz=Ew¬z<w
292 14 260 eqsstrid φH
293 292 sselda φwHw
294 293 ad2antrr φwHzHEz=Eww
295 292 adantr φwHH
296 295 sselda φwHzHz
297 296 adantr φwHzHEz=Ewz
298 294 297 lttri3d φwHzHEz=Eww=z¬w<z¬z<w
299 289 291 298 mpbir2and φwHzHEz=Eww=z
300 269 272 281 299 syl21anc φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzw=z
301 300 ex φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzw=z
302 301 ralrimiva φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzw=z
303 302 ralrimiva φwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzw=z
304 dff13 EyA+XB+X|ky+kTC:yA+XB+X|ky+kTC1-1CEyA+XB+X|ky+kTC:yA+XB+X|ky+kTCCwyA+XB+X|ky+kTCzyA+XB+X|ky+kTCEyA+XB+X|ky+kTCw=EyA+XB+X|ky+kTCzw=z
305 264 303 304 sylanbrc φEyA+XB+X|ky+kTC:yA+XB+X|ky+kTC1-1C
306 f1fi CFinEyA+XB+X|ky+kTC:yA+XB+X|ky+kTC1-1CyA+XB+X|ky+kTCFin
307 6 305 306 syl2anc φyA+XB+X|ky+kTCFin
308 unfi A+XFinyA+XB+X|ky+kTCFinA+XyA+XB+X|ky+kTCFin
309 66 307 308 sylancr φA+XyA+XB+X|ky+kTCFin
310 simpl φxyA+XB+X|ky+kTCφ
311 elrabi xyA+XB+X|ky+kTCxA+XB+X
312 311 adantl φxyA+XB+X|ky+kTCxA+XB+X
313 71 elrab xyA+XB+X|ky+kTCxA+XB+Xkx+kTC
314 313 simprbi xyA+XB+X|ky+kTCkx+kTC
315 314 adantl φxyA+XB+X|ky+kTCkx+kTC
316 velsn xA+Xx=A+X
317 elun1 xA+XxA+XyA+XB+X|ky+kTC
318 316 317 sylbir x=A+XxA+XyA+XB+X|ky+kTC
319 318 adantl φxA+XB+Xkx+kTCx=A+XxA+XyA+XB+X|ky+kTC
320 83 ad2antrr φxA+XB+X¬x=A+XA+X*
321 16 rexrd φB+X*
322 321 ad2antrr φxA+XB+X¬x=A+XB+X*
323 15 16 iccssred φA+XB+X
324 323 sselda φxA+XB+Xx
325 324 rexrd φxA+XB+Xx*
326 325 adantr φxA+XB+X¬x=A+Xx*
327 15 ad2antrr φxA+XB+X¬x=A+XA+X
328 324 adantr φxA+XB+X¬x=A+Xx
329 83 adantr φxA+XB+XA+X*
330 321 adantr φxA+XB+XB+X*
331 simpr φxA+XB+XxA+XB+X
332 iccgelb A+X*B+X*xA+XB+XA+Xx
333 329 330 331 332 syl3anc φxA+XB+XA+Xx
334 333 adantr φxA+XB+X¬x=A+XA+Xx
335 neqne ¬x=A+XxA+X
336 335 adantl φxA+XB+X¬x=A+XxA+X
337 327 328 334 336 leneltd φxA+XB+X¬x=A+XA+X<x
338 iccleub A+X*B+X*xA+XB+XxB+X
339 329 330 331 338 syl3anc φxA+XB+XxB+X
340 339 adantr φxA+XB+X¬x=A+XxB+X
341 320 322 326 337 340 eliocd φxA+XB+X¬x=A+XxA+XB+X
342 341 adantlr φxA+XB+Xkx+kTC¬x=A+XxA+XB+X
343 simplr φxA+XB+Xkx+kTC¬x=A+Xkx+kTC
344 342 343 72 sylanbrc φxA+XB+Xkx+kTC¬x=A+XxyA+XB+X|ky+kTC
345 elun2 xyA+XB+X|ky+kTCxA+XyA+XB+X|ky+kTC
346 344 345 syl φxA+XB+Xkx+kTC¬x=A+XxA+XyA+XB+X|ky+kTC
347 319 346 pm2.61dan φxA+XB+Xkx+kTCxA+XyA+XB+X|ky+kTC
348 310 312 315 347 syl21anc φxyA+XB+X|ky+kTCxA+XyA+XB+X|ky+kTC
349 348 ralrimiva φxyA+XB+X|ky+kTCxA+XyA+XB+X|ky+kTC
350 dfss3 yA+XB+X|ky+kTCA+XyA+XB+X|ky+kTCxyA+XB+X|ky+kTCxA+XyA+XB+X|ky+kTC
351 349 350 sylibr φyA+XB+X|ky+kTCA+XyA+XB+X|ky+kTC
352 ssfi A+XyA+XB+X|ky+kTCFinyA+XB+X|ky+kTCA+XyA+XB+X|ky+kTCyA+XB+X|ky+kTCFin
353 309 351 352 syl2anc φyA+XB+X|ky+kTCFin
354 unfi A+XB+XFinyA+XB+X|ky+kTCFinA+XB+XyA+XB+X|ky+kTCFin
355 65 353 354 sylancr φA+XB+XyA+XB+X|ky+kTCFin
356 12 355 eqeltrid φDFin
357 prssi A+XB+XA+XB+X
358 15 16 357 syl2anc φA+XB+X
359 ssrab2 yA+XB+X|ky+kTCA+XB+X
360 359 323 sstrid φyA+XB+X|ky+kTC
361 358 360 unssd φA+XB+XyA+XB+X|ky+kTC
362 12 361 eqsstrid φD
363 eqid D1=D1
364 356 362 13 363 fourierdlem36 φFIsom<,<0D1D
365 isof1o FIsom<,<0D1DF:0D11-1 ontoD
366 f1ofo F:0D11-1 ontoDF:0D1ontoD
367 365 366 syl FIsom<,<0D1DF:0D1ontoD
368 forn F:0D1ontoDranF=D
369 364 367 368 3syl φranF=D
370 64 369 eleqtrrd φXranF