Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
|
2 |
|
mp2pm2mp.q |
|
3 |
|
mp2pm2mp.l |
|
4 |
|
mp2pm2mp.m |
|
5 |
|
mp2pm2mp.e |
|
6 |
|
mp2pm2mp.y |
|
7 |
|
mp2pm2mp.i |
|
8 |
|
mp2pm2mplem2.p |
|
9 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem3 |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
8
|
ply1ring |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
ringcmn |
|
15 |
13 14
|
syl |
|
16 |
15
|
ad3antrrr |
|
17 |
16
|
3ad2ant1 |
|
18 |
|
simpl2 |
|
19 |
18
|
ad2antrr |
|
20 |
19
|
3ad2ant1 |
|
21 |
20
|
adantr |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
simpl2 |
|
25 |
|
simpl3 |
|
26 |
|
simpl3 |
|
27 |
26
|
ad2antrr |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
eqid |
|
30 |
29 3 2 23
|
coe1fvalcl |
|
31 |
28 30
|
sylan |
|
32 |
1 22 23 24 25 31
|
matecld |
|
33 |
|
simpr |
|
34 |
|
eqid |
|
35 |
22 8 6 4 34 5 10
|
ply1tmcl |
|
36 |
21 32 33 35
|
syl3anc |
|
37 |
36
|
ralrimiva |
|
38 |
|
simp1lr |
|
39 |
|
oveq |
|
40 |
39
|
oveq1d |
|
41 |
|
3simpa |
|
42 |
41
|
ad3antrrr |
|
43 |
|
eqid |
|
44 |
1 43
|
mat0op |
|
45 |
42 44
|
syl |
|
46 |
|
eqidd |
|
47 |
|
simprl |
|
48 |
|
simprr |
|
49 |
|
fvexd |
|
50 |
45 46 47 48 49
|
ovmpod |
|
51 |
50
|
adantr |
|
52 |
51
|
oveq1d |
|
53 |
18
|
ad3antrrr |
|
54 |
8
|
ply1sca |
|
55 |
53 54
|
syl |
|
56 |
55
|
fveq2d |
|
57 |
56
|
oveq1d |
|
58 |
8
|
ply1lmod |
|
59 |
58
|
3ad2ant2 |
|
60 |
59
|
ad4antr |
|
61 |
|
simpr |
|
62 |
8 6 34 5 10
|
ply1moncl |
|
63 |
53 61 62
|
syl2anc |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
10 64 4 65 11
|
lmod0vs |
|
67 |
60 63 66
|
syl2anc |
|
68 |
52 57 67
|
3eqtrd |
|
69 |
68
|
adantr |
|
70 |
40 69
|
sylan9eqr |
|
71 |
70
|
exp31 |
|
72 |
71
|
a2d |
|
73 |
72
|
ralimdva |
|
74 |
73
|
impancom |
|
75 |
74
|
3impib |
|
76 |
|
breq2 |
|
77 |
|
fveq2 |
|
78 |
77
|
oveqd |
|
79 |
|
oveq1 |
|
80 |
78 79
|
oveq12d |
|
81 |
80
|
eqeq1d |
|
82 |
76 81
|
imbi12d |
|
83 |
82
|
cbvralvw |
|
84 |
75 83
|
sylibr |
|
85 |
10 11 17 37 38 84
|
gsummptnn0fz |
|
86 |
85
|
fveq2d |
|
87 |
86
|
fveq1d |
|
88 |
|
simpllr |
|
89 |
88
|
3ad2ant1 |
|
90 |
36
|
expcom |
|
91 |
|
elfznn0 |
|
92 |
90 91
|
syl11 |
|
93 |
92
|
ralrimiv |
|
94 |
|
fzfid |
|
95 |
8 10 20 89 93 94
|
coe1fzgsumd |
|
96 |
87 95
|
eqtrd |
|
97 |
96
|
mpoeq3dva |
|
98 |
18
|
3ad2ant1 |
|
99 |
98
|
adantr |
|
100 |
|
simpl2 |
|
101 |
|
simpl3 |
|
102 |
26
|
3ad2ant1 |
|
103 |
102 91 30
|
syl2an |
|
104 |
1 22 23 100 101 103
|
matecld |
|
105 |
91
|
adantl |
|
106 |
43 22 8 6 4 34 5
|
coe1tm |
|
107 |
99 104 105 106
|
syl3anc |
|
108 |
|
eqeq1 |
|
109 |
108
|
ifbid |
|
110 |
109
|
adantl |
|
111 |
|
simpl1r |
|
112 |
|
ovex |
|
113 |
|
fvex |
|
114 |
112 113
|
ifex |
|
115 |
114
|
a1i |
|
116 |
107 110 111 115
|
fvmptd |
|
117 |
116
|
mpteq2dva |
|
118 |
117
|
oveq2d |
|
119 |
118
|
mpoeq3dva |
|
120 |
119
|
ad2antrr |
|
121 |
|
breq2 |
|
122 |
|
fveqeq2 |
|
123 |
121 122
|
imbi12d |
|
124 |
123
|
rspcva |
|
125 |
1 43
|
mat0op |
|
126 |
125
|
eqcomd |
|
127 |
126
|
3adant3 |
|
128 |
127
|
ad3antlr |
|
129 |
|
elfz2nn0 |
|
130 |
|
nn0re |
|
131 |
130
|
ad2antrr |
|
132 |
|
nn0re |
|
133 |
132
|
ad2antlr |
|
134 |
|
nn0re |
|
135 |
134
|
adantl |
|
136 |
|
lelttr |
|
137 |
131 133 135 136
|
syl3anc |
|
138 |
|
animorr |
|
139 |
|
df-ne |
|
140 |
130
|
adantr |
|
141 |
|
lttri2 |
|
142 |
134 140 141
|
syl2anr |
|
143 |
142
|
adantr |
|
144 |
139 143
|
bitr3id |
|
145 |
138 144
|
mpbird |
|
146 |
145
|
ex |
|
147 |
137 146
|
syld |
|
148 |
147
|
exp4b |
|
149 |
148
|
com24 |
|
150 |
149
|
expimpd |
|
151 |
150
|
com23 |
|
152 |
151
|
imp |
|
153 |
152
|
3adant2 |
|
154 |
129 153
|
sylbi |
|
155 |
154
|
com13 |
|
156 |
155
|
adantr |
|
157 |
156
|
imp |
|
158 |
157
|
adantr |
|
159 |
158
|
3ad2ant1 |
|
160 |
159
|
imp |
|
161 |
160
|
iffalsed |
|
162 |
161
|
mpteq2dva |
|
163 |
162
|
oveq2d |
|
164 |
|
ringmnd |
|
165 |
164
|
3ad2ant2 |
|
166 |
|
ovex |
|
167 |
43
|
gsumz |
|
168 |
165 166 167
|
sylancl |
|
169 |
168
|
ad3antlr |
|
170 |
169
|
3ad2ant1 |
|
171 |
163 170
|
eqtrd |
|
172 |
171
|
mpoeq3dva |
|
173 |
|
simpr |
|
174 |
128 172 173
|
3eqtr4d |
|
175 |
174
|
ex |
|
176 |
175
|
expr |
|
177 |
176
|
a2d |
|
178 |
177
|
exp31 |
|
179 |
178
|
com14 |
|
180 |
124 179
|
syl |
|
181 |
180
|
ex |
|
182 |
181
|
com25 |
|
183 |
182
|
pm2.43i |
|
184 |
183
|
impcom |
|
185 |
184
|
imp31 |
|
186 |
185
|
com12 |
|
187 |
165
|
ad3antrrr |
|
188 |
187
|
adantl |
|
189 |
188
|
3ad2ant1 |
|
190 |
|
ovexd |
|
191 |
|
lenlt |
|
192 |
134 132 191
|
syl2an |
|
193 |
|
simpll |
|
194 |
|
simplr |
|
195 |
|
simpr |
|
196 |
|
elfz2nn0 |
|
197 |
193 194 195 196
|
syl3anbrc |
|
198 |
197
|
ex |
|
199 |
192 198
|
sylbird |
|
200 |
199
|
ad4ant23 |
|
201 |
200
|
impcom |
|
202 |
201
|
3ad2ant1 |
|
203 |
|
eqcom |
|
204 |
|
ifbi |
|
205 |
203 204
|
ax-mp |
|
206 |
205
|
mpteq2i |
|
207 |
|
simpl2 |
|
208 |
|
simpl3 |
|
209 |
27
|
adantl |
|
210 |
209
|
3ad2ant1 |
|
211 |
210 30
|
sylan |
|
212 |
1 22 23 207 208 211
|
matecld |
|
213 |
91 212
|
sylan2 |
|
214 |
213
|
ralrimiva |
|
215 |
43 189 190 202 206 214
|
gsummpt1n0 |
|
216 |
215
|
mpoeq3dva |
|
217 |
|
csbov |
|
218 |
|
csbfv |
|
219 |
218
|
a1i |
|
220 |
219
|
oveqd |
|
221 |
217 220
|
eqtrid |
|
222 |
221
|
ad2antlr |
|
223 |
222
|
mpoeq3dv |
|
224 |
|
oveq12 |
|
225 |
224
|
adantl |
|
226 |
|
simprl |
|
227 |
|
simprr |
|
228 |
|
ovexd |
|
229 |
223 225 226 227 228
|
ovmpod |
|
230 |
229
|
ralrimivva |
|
231 |
|
simpl1 |
|
232 |
218
|
oveqi |
|
233 |
217 232
|
eqtri |
|
234 |
|
simp2 |
|
235 |
|
simp3 |
|
236 |
29 3 2 23
|
coe1fvalcl |
|
237 |
236
|
3ad2antl3 |
|
238 |
237
|
3ad2ant1 |
|
239 |
1 22 23 234 235 238
|
matecld |
|
240 |
233 239
|
eqeltrid |
|
241 |
1 22 23 231 18 240
|
matbas2d |
|
242 |
1 23
|
eqmat |
|
243 |
241 237 242
|
syl2anc |
|
244 |
230 243
|
mpbird |
|
245 |
244
|
ad2antrr |
|
246 |
245
|
adantl |
|
247 |
216 246
|
eqtrd |
|
248 |
247
|
ex |
|
249 |
186 248
|
pm2.61i |
|
250 |
97 120 249
|
3eqtrd |
|
251 |
|
eqid |
|
252 |
29 3 2 251
|
coe1sfi |
|
253 |
26 252
|
syl |
|
254 |
29 3 2 251 23
|
coe1fsupp |
|
255 |
|
elrabi |
|
256 |
26 254 255
|
3syl |
|
257 |
|
fvex |
|
258 |
|
fsuppmapnn0ub |
|
259 |
256 257 258
|
sylancl |
|
260 |
253 259
|
mpd |
|
261 |
250 260
|
r19.29a |
|
262 |
9 261
|
eqtrd |
|