Metamath Proof Explorer


Theorem mp2pm2mplem4

Description: Lemma 4 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
mp2pm2mplem2.p P=Poly1R
Assertion mp2pm2mplem4 NFinRRingOLK0IOdecompPMatK=coe1OK

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 mp2pm2mplem2.p P=Poly1R
9 1 2 3 4 5 6 7 8 mp2pm2mplem3 NFinRRingOLK0IOdecompPMatK=iN,jNcoe1Pk0icoe1Okj·˙kEYK
10 eqid BaseP=BaseP
11 eqid 0P=0P
12 8 ply1ring RRingPRing
13 12 3ad2ant2 NFinRRingOLPRing
14 ringcmn PRingPCMnd
15 13 14 syl NFinRRingOLPCMnd
16 15 ad3antrrr NFinRRingOLK0s0x0s<xcoe1Ox=0APCMnd
17 16 3ad2ant1 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNPCMnd
18 simpl2 NFinRRingOLK0RRing
19 18 ad2antrr NFinRRingOLK0s0x0s<xcoe1Ox=0ARRing
20 19 3ad2ant1 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNRRing
21 20 adantr NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0RRing
22 eqid BaseR=BaseR
23 eqid BaseA=BaseA
24 simpl2 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0iN
25 simpl3 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0jN
26 simpl3 NFinRRingOLK0OL
27 26 ad2antrr NFinRRingOLK0s0x0s<xcoe1Ox=0AOL
28 27 3ad2ant1 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNOL
29 eqid coe1O=coe1O
30 29 3 2 23 coe1fvalcl OLk0coe1OkBaseA
31 28 30 sylan NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0coe1OkBaseA
32 1 22 23 24 25 31 matecld NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0icoe1OkjBaseR
33 simpr NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0k0
34 eqid mulGrpP=mulGrpP
35 22 8 6 4 34 5 10 ply1tmcl RRingicoe1OkjBaseRk0icoe1Okj·˙kEYBaseP
36 21 32 33 35 syl3anc NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0icoe1Okj·˙kEYBaseP
37 36 ralrimiva NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0icoe1Okj·˙kEYBaseP
38 simp1lr NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNs0
39 oveq coe1Ox=0Aicoe1Oxj=i0Aj
40 39 oveq1d coe1Ox=0Aicoe1Oxj·˙xEY=i0Aj·˙xEY
41 3simpa NFinRRingOLNFinRRing
42 41 ad3antrrr NFinRRingOLK0s0iNjNNFinRRing
43 eqid 0R=0R
44 1 43 mat0op NFinRRing0A=aN,bN0R
45 42 44 syl NFinRRingOLK0s0iNjN0A=aN,bN0R
46 eqidd NFinRRingOLK0s0iNjNa=ib=j0R=0R
47 simprl NFinRRingOLK0s0iNjNiN
48 simprr NFinRRingOLK0s0iNjNjN
49 fvexd NFinRRingOLK0s0iNjN0RV
50 45 46 47 48 49 ovmpod NFinRRingOLK0s0iNjNi0Aj=0R
51 50 adantr NFinRRingOLK0s0iNjNx0i0Aj=0R
52 51 oveq1d NFinRRingOLK0s0iNjNx0i0Aj·˙xEY=0R·˙xEY
53 18 ad3antrrr NFinRRingOLK0s0iNjNx0RRing
54 8 ply1sca RRingR=ScalarP
55 53 54 syl NFinRRingOLK0s0iNjNx0R=ScalarP
56 55 fveq2d NFinRRingOLK0s0iNjNx00R=0ScalarP
57 56 oveq1d NFinRRingOLK0s0iNjNx00R·˙xEY=0ScalarP·˙xEY
58 8 ply1lmod RRingPLMod
59 58 3ad2ant2 NFinRRingOLPLMod
60 59 ad4antr NFinRRingOLK0s0iNjNx0PLMod
61 simpr NFinRRingOLK0s0iNjNx0x0
62 8 6 34 5 10 ply1moncl RRingx0xEYBaseP
63 53 61 62 syl2anc NFinRRingOLK0s0iNjNx0xEYBaseP
64 eqid ScalarP=ScalarP
65 eqid 0ScalarP=0ScalarP
66 10 64 4 65 11 lmod0vs PLModxEYBaseP0ScalarP·˙xEY=0P
67 60 63 66 syl2anc NFinRRingOLK0s0iNjNx00ScalarP·˙xEY=0P
68 52 57 67 3eqtrd NFinRRingOLK0s0iNjNx0i0Aj·˙xEY=0P
69 68 adantr NFinRRingOLK0s0iNjNx0s<xi0Aj·˙xEY=0P
70 40 69 sylan9eqr NFinRRingOLK0s0iNjNx0s<xcoe1Ox=0Aicoe1Oxj·˙xEY=0P
71 70 exp31 NFinRRingOLK0s0iNjNx0s<xcoe1Ox=0Aicoe1Oxj·˙xEY=0P
72 71 a2d NFinRRingOLK0s0iNjNx0s<xcoe1Ox=0As<xicoe1Oxj·˙xEY=0P
73 72 ralimdva NFinRRingOLK0s0iNjNx0s<xcoe1Ox=0Ax0s<xicoe1Oxj·˙xEY=0P
74 73 impancom NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNx0s<xicoe1Oxj·˙xEY=0P
75 74 3impib NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNx0s<xicoe1Oxj·˙xEY=0P
76 breq2 k=xs<ks<x
77 fveq2 k=xcoe1Ok=coe1Ox
78 77 oveqd k=xicoe1Okj=icoe1Oxj
79 oveq1 k=xkEY=xEY
80 78 79 oveq12d k=xicoe1Okj·˙kEY=icoe1Oxj·˙xEY
81 80 eqeq1d k=xicoe1Okj·˙kEY=0Picoe1Oxj·˙xEY=0P
82 76 81 imbi12d k=xs<kicoe1Okj·˙kEY=0Ps<xicoe1Oxj·˙xEY=0P
83 82 cbvralvw k0s<kicoe1Okj·˙kEY=0Px0s<xicoe1Oxj·˙xEY=0P
84 75 83 sylibr NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0s<kicoe1Okj·˙kEY=0P
85 10 11 17 37 38 84 gsummptnn0fz NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNPk0icoe1Okj·˙kEY=Pk=0sicoe1Okj·˙kEY
86 85 fveq2d NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNcoe1Pk0icoe1Okj·˙kEY=coe1Pk=0sicoe1Okj·˙kEY
87 86 fveq1d NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNcoe1Pk0icoe1Okj·˙kEYK=coe1Pk=0sicoe1Okj·˙kEYK
88 simpllr NFinRRingOLK0s0x0s<xcoe1Ox=0AK0
89 88 3ad2ant1 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNK0
90 36 expcom k0NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNicoe1Okj·˙kEYBaseP
91 elfznn0 k0sk0
92 90 91 syl11 NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0sicoe1Okj·˙kEYBaseP
93 92 ralrimiv NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0sicoe1Okj·˙kEYBaseP
94 fzfid NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjN0sFin
95 8 10 20 89 93 94 coe1fzgsumd NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNcoe1Pk=0sicoe1Okj·˙kEYK=Rk=0scoe1icoe1Okj·˙kEYK
96 87 95 eqtrd NFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNcoe1Pk0icoe1Okj·˙kEYK=Rk=0scoe1icoe1Okj·˙kEYK
97 96 mpoeq3dva NFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNcoe1Pk0icoe1Okj·˙kEYK=iN,jNRk=0scoe1icoe1Okj·˙kEYK
98 18 3ad2ant1 NFinRRingOLK0iNjNRRing
99 98 adantr NFinRRingOLK0iNjNk0sRRing
100 simpl2 NFinRRingOLK0iNjNk0siN
101 simpl3 NFinRRingOLK0iNjNk0sjN
102 26 3ad2ant1 NFinRRingOLK0iNjNOL
103 102 91 30 syl2an NFinRRingOLK0iNjNk0scoe1OkBaseA
104 1 22 23 100 101 103 matecld NFinRRingOLK0iNjNk0sicoe1OkjBaseR
105 91 adantl NFinRRingOLK0iNjNk0sk0
106 43 22 8 6 4 34 5 coe1tm RRingicoe1OkjBaseRk0coe1icoe1Okj·˙kEY=l0ifl=kicoe1Okj0R
107 99 104 105 106 syl3anc NFinRRingOLK0iNjNk0scoe1icoe1Okj·˙kEY=l0ifl=kicoe1Okj0R
108 eqeq1 l=Kl=kK=k
109 108 ifbid l=Kifl=kicoe1Okj0R=ifK=kicoe1Okj0R
110 109 adantl NFinRRingOLK0iNjNk0sl=Kifl=kicoe1Okj0R=ifK=kicoe1Okj0R
111 simpl1r NFinRRingOLK0iNjNk0sK0
112 ovex icoe1OkjV
113 fvex 0RV
114 112 113 ifex ifK=kicoe1Okj0RV
115 114 a1i NFinRRingOLK0iNjNk0sifK=kicoe1Okj0RV
116 107 110 111 115 fvmptd NFinRRingOLK0iNjNk0scoe1icoe1Okj·˙kEYK=ifK=kicoe1Okj0R
117 116 mpteq2dva NFinRRingOLK0iNjNk0scoe1icoe1Okj·˙kEYK=k0sifK=kicoe1Okj0R
118 117 oveq2d NFinRRingOLK0iNjNRk=0scoe1icoe1Okj·˙kEYK=Rk=0sifK=kicoe1Okj0R
119 118 mpoeq3dva NFinRRingOLK0iN,jNRk=0scoe1icoe1Okj·˙kEYK=iN,jNRk=0sifK=kicoe1Okj0R
120 119 ad2antrr NFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0scoe1icoe1Okj·˙kEYK=iN,jNRk=0sifK=kicoe1Okj0R
121 breq2 x=Ks<xs<K
122 fveqeq2 x=Kcoe1Ox=0Acoe1OK=0A
123 121 122 imbi12d x=Ks<xcoe1Ox=0As<Kcoe1OK=0A
124 123 rspcva K0x0s<xcoe1Ox=0As<Kcoe1OK=0A
125 1 43 mat0op NFinRRing0A=iN,jN0R
126 125 eqcomd NFinRRingiN,jN0R=0A
127 126 3adant3 NFinRRingOLiN,jN0R=0A
128 127 ad3antlr K0NFinRRingOLs0s<Kcoe1OK=0AiN,jN0R=0A
129 elfz2nn0 k0sk0s0ks
130 nn0re k0k
131 130 ad2antrr k0s0K0k
132 nn0re s0s
133 132 ad2antlr k0s0K0s
134 nn0re K0K
135 134 adantl k0s0K0K
136 lelttr ksKkss<Kk<K
137 131 133 135 136 syl3anc k0s0K0kss<Kk<K
138 animorr k0s0K0k<KK<kk<K
139 df-ne Kk¬K=k
140 130 adantr k0s0k
141 lttri2 KkKkK<kk<K
142 134 140 141 syl2anr k0s0K0KkK<kk<K
143 142 adantr k0s0K0k<KKkK<kk<K
144 139 143 bitr3id k0s0K0k<K¬K=kK<kk<K
145 138 144 mpbird k0s0K0k<K¬K=k
146 145 ex k0s0K0k<K¬K=k
147 137 146 syld k0s0K0kss<K¬K=k
148 147 exp4b k0s0K0kss<K¬K=k
149 148 com24 k0s0s<KksK0¬K=k
150 149 expimpd k0s0s<KksK0¬K=k
151 150 com23 k0kss0s<KK0¬K=k
152 151 imp k0kss0s<KK0¬K=k
153 152 3adant2 k0s0kss0s<KK0¬K=k
154 129 153 sylbi k0ss0s<KK0¬K=k
155 154 com13 K0s0s<Kk0s¬K=k
156 155 adantr K0NFinRRingOLs0s<Kk0s¬K=k
157 156 imp K0NFinRRingOLs0s<Kk0s¬K=k
158 157 adantr K0NFinRRingOLs0s<Kcoe1OK=0Ak0s¬K=k
159 158 3ad2ant1 K0NFinRRingOLs0s<Kcoe1OK=0AiNjNk0s¬K=k
160 159 imp K0NFinRRingOLs0s<Kcoe1OK=0AiNjNk0s¬K=k
161 160 iffalsed K0NFinRRingOLs0s<Kcoe1OK=0AiNjNk0sifK=kicoe1Okj0R=0R
162 161 mpteq2dva K0NFinRRingOLs0s<Kcoe1OK=0AiNjNk0sifK=kicoe1Okj0R=k0s0R
163 162 oveq2d K0NFinRRingOLs0s<Kcoe1OK=0AiNjNRk=0sifK=kicoe1Okj0R=Rk=0s0R
164 ringmnd RRingRMnd
165 164 3ad2ant2 NFinRRingOLRMnd
166 ovex 0sV
167 43 gsumz RMnd0sVRk=0s0R=0R
168 165 166 167 sylancl NFinRRingOLRk=0s0R=0R
169 168 ad3antlr K0NFinRRingOLs0s<Kcoe1OK=0ARk=0s0R=0R
170 169 3ad2ant1 K0NFinRRingOLs0s<Kcoe1OK=0AiNjNRk=0s0R=0R
171 163 170 eqtrd K0NFinRRingOLs0s<Kcoe1OK=0AiNjNRk=0sifK=kicoe1Okj0R=0R
172 171 mpoeq3dva K0NFinRRingOLs0s<Kcoe1OK=0AiN,jNRk=0sifK=kicoe1Okj0R=iN,jN0R
173 simpr K0NFinRRingOLs0s<Kcoe1OK=0Acoe1OK=0A
174 128 172 173 3eqtr4d K0NFinRRingOLs0s<Kcoe1OK=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
175 174 ex K0NFinRRingOLs0s<Kcoe1OK=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
176 175 expr K0NFinRRingOLs0s<Kcoe1OK=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
177 176 a2d K0NFinRRingOLs0s<Kcoe1OK=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
178 177 exp31 K0NFinRRingOLs0s<Kcoe1OK=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
179 178 com14 s<Kcoe1OK=0ANFinRRingOLs0K0s<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
180 124 179 syl K0x0s<xcoe1Ox=0ANFinRRingOLs0K0s<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
181 180 ex K0x0s<xcoe1Ox=0ANFinRRingOLs0K0s<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
182 181 com25 K0K0NFinRRingOLs0x0s<xcoe1Ox=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
183 182 pm2.43i K0NFinRRingOLs0x0s<xcoe1Ox=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
184 183 impcom NFinRRingOLK0s0x0s<xcoe1Ox=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
185 184 imp31 NFinRRingOLK0s0x0s<xcoe1Ox=0As<KiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
186 185 com12 s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
187 165 ad3antrrr NFinRRingOLK0s0x0s<xcoe1Ox=0ARMnd
188 187 adantl ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0ARMnd
189 188 3ad2ant1 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNRMnd
190 ovexd ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjN0sV
191 lenlt KsKs¬s<K
192 134 132 191 syl2an K0s0Ks¬s<K
193 simpll K0s0KsK0
194 simplr K0s0Kss0
195 simpr K0s0KsKs
196 elfz2nn0 K0sK0s0Ks
197 193 194 195 196 syl3anbrc K0s0KsK0s
198 197 ex K0s0KsK0s
199 192 198 sylbird K0s0¬s<KK0s
200 199 ad4ant23 NFinRRingOLK0s0x0s<xcoe1Ox=0A¬s<KK0s
201 200 impcom ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AK0s
202 201 3ad2ant1 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNK0s
203 eqcom K=kk=K
204 ifbi K=kk=KifK=kicoe1Okj0R=ifk=Kicoe1Okj0R
205 203 204 ax-mp ifK=kicoe1Okj0R=ifk=Kicoe1Okj0R
206 205 mpteq2i k0sifK=kicoe1Okj0R=k0sifk=Kicoe1Okj0R
207 simpl2 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0iN
208 simpl3 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0jN
209 27 adantl ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AOL
210 209 3ad2ant1 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNOL
211 210 30 sylan ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0coe1OkBaseA
212 1 22 23 207 208 211 matecld ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0icoe1OkjBaseR
213 91 212 sylan2 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0sicoe1OkjBaseR
214 213 ralrimiva ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNk0sicoe1OkjBaseR
215 43 189 190 202 206 214 gsummpt1n0 ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiNjNRk=0sifK=kicoe1Okj0R=K/kicoe1Okj
216 215 mpoeq3dva ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0sifK=kicoe1Okj0R=iN,jNK/kicoe1Okj
217 csbov K/kicoe1Okj=iK/kcoe1Okj
218 csbfv K/kcoe1Ok=coe1OK
219 218 a1i K0K/kcoe1Ok=coe1OK
220 219 oveqd K0iK/kcoe1Okj=icoe1OKj
221 217 220 eqtrid K0K/kicoe1Okj=icoe1OKj
222 221 ad2antlr NFinRRingOLK0aNbNK/kicoe1Okj=icoe1OKj
223 222 mpoeq3dv NFinRRingOLK0aNbNiN,jNK/kicoe1Okj=iN,jNicoe1OKj
224 oveq12 i=aj=bicoe1OKj=acoe1OKb
225 224 adantl NFinRRingOLK0aNbNi=aj=bicoe1OKj=acoe1OKb
226 simprl NFinRRingOLK0aNbNaN
227 simprr NFinRRingOLK0aNbNbN
228 ovexd NFinRRingOLK0aNbNacoe1OKbV
229 223 225 226 227 228 ovmpod NFinRRingOLK0aNbNaiN,jNK/kicoe1Okjb=acoe1OKb
230 229 ralrimivva NFinRRingOLK0aNbNaiN,jNK/kicoe1Okjb=acoe1OKb
231 simpl1 NFinRRingOLK0NFin
232 218 oveqi iK/kcoe1Okj=icoe1OKj
233 217 232 eqtri K/kicoe1Okj=icoe1OKj
234 simp2 NFinRRingOLK0iNjNiN
235 simp3 NFinRRingOLK0iNjNjN
236 29 3 2 23 coe1fvalcl OLK0coe1OKBaseA
237 236 3ad2antl3 NFinRRingOLK0coe1OKBaseA
238 237 3ad2ant1 NFinRRingOLK0iNjNcoe1OKBaseA
239 1 22 23 234 235 238 matecld NFinRRingOLK0iNjNicoe1OKjBaseR
240 233 239 eqeltrid NFinRRingOLK0iNjNK/kicoe1OkjBaseR
241 1 22 23 231 18 240 matbas2d NFinRRingOLK0iN,jNK/kicoe1OkjBaseA
242 1 23 eqmat iN,jNK/kicoe1OkjBaseAcoe1OKBaseAiN,jNK/kicoe1Okj=coe1OKaNbNaiN,jNK/kicoe1Okjb=acoe1OKb
243 241 237 242 syl2anc NFinRRingOLK0iN,jNK/kicoe1Okj=coe1OKaNbNaiN,jNK/kicoe1Okjb=acoe1OKb
244 230 243 mpbird NFinRRingOLK0iN,jNK/kicoe1Okj=coe1OK
245 244 ad2antrr NFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNK/kicoe1Okj=coe1OK
246 245 adantl ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNK/kicoe1Okj=coe1OK
247 216 246 eqtrd ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
248 247 ex ¬s<KNFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
249 186 248 pm2.61i NFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNRk=0sifK=kicoe1Okj0R=coe1OK
250 97 120 249 3eqtrd NFinRRingOLK0s0x0s<xcoe1Ox=0AiN,jNcoe1Pk0icoe1Okj·˙kEYK=coe1OK
251 eqid 0A=0A
252 29 3 2 251 coe1sfi OLfinSupp0Acoe1O
253 26 252 syl NFinRRingOLK0finSupp0Acoe1O
254 29 3 2 251 23 coe1fsupp OLcoe1OxBaseA0|finSupp0Ax
255 elrabi coe1OxBaseA0|finSupp0Axcoe1OBaseA0
256 26 254 255 3syl NFinRRingOLK0coe1OBaseA0
257 fvex 0AV
258 fsuppmapnn0ub coe1OBaseA00AVfinSupp0Acoe1Os0x0s<xcoe1Ox=0A
259 256 257 258 sylancl NFinRRingOLK0finSupp0Acoe1Os0x0s<xcoe1Ox=0A
260 253 259 mpd NFinRRingOLK0s0x0s<xcoe1Ox=0A
261 250 260 r19.29a NFinRRingOLK0iN,jNcoe1Pk0icoe1Okj·˙kEYK=coe1OK
262 9 261 eqtrd NFinRRingOLK0IOdecompPMatK=coe1OK