Metamath Proof Explorer


Theorem poimirlem3

Description: Lemma for poimir to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem4.1 φK
poimirlem4.2 φM0
poimirlem4.3 φM<N
poimirlem3.4 φT:1M0..^K
poimirlem3.5 φU:1M1-1 onto1M
Assertion poimirlem3 φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBTM+10UM+1M+10..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem4.1 φK
3 poimirlem4.2 φM0
4 poimirlem4.3 φM<N
5 poimirlem3.4 φT:1M0..^K
6 poimirlem3.5 φU:1M1-1 onto1M
7 5 ffnd φTFn1M
8 7 adantr φj0MTFn1M
9 1ex 1V
10 fnconstg 1VU1j×1FnU1j
11 9 10 ax-mp U1j×1FnU1j
12 c0ex 0V
13 fnconstg 0VUj+1M×0FnUj+1M
14 12 13 ax-mp Uj+1M×0FnUj+1M
15 11 14 pm3.2i U1j×1FnU1jUj+1M×0FnUj+1M
16 dff1o3 U:1M1-1 onto1MU:1Monto1MFunU-1
17 16 simprbi U:1M1-1 onto1MFunU-1
18 imain FunU-1U1jj+1M=U1jUj+1M
19 6 17 18 3syl φU1jj+1M=U1jUj+1M
20 elfznn0 j0Mj0
21 20 nn0red j0Mj
22 21 ltp1d j0Mj<j+1
23 fzdisj j<j+11jj+1M=
24 22 23 syl j0M1jj+1M=
25 24 imaeq2d j0MU1jj+1M=U
26 ima0 U=
27 25 26 eqtrdi j0MU1jj+1M=
28 19 27 sylan9req φj0MU1jUj+1M=
29 fnun U1j×1FnU1jUj+1M×0FnUj+1MU1jUj+1M=U1j×1Uj+1M×0FnU1jUj+1M
30 15 28 29 sylancr φj0MU1j×1Uj+1M×0FnU1jUj+1M
31 imaundi U1jj+1M=U1jUj+1M
32 nn0p1nn j0j+1
33 nnuz =1
34 32 33 eleqtrdi j0j+11
35 20 34 syl j0Mj+11
36 elfzuz3 j0MMj
37 fzsplit2 j+11Mj1M=1jj+1M
38 35 36 37 syl2anc j0M1M=1jj+1M
39 38 eqcomd j0M1jj+1M=1M
40 39 imaeq2d j0MU1jj+1M=U1M
41 f1ofo U:1M1-1 onto1MU:1Monto1M
42 foima U:1Monto1MU1M=1M
43 6 41 42 3syl φU1M=1M
44 40 43 sylan9eqr φj0MU1jj+1M=1M
45 31 44 eqtr3id φj0MU1jUj+1M=1M
46 45 fneq2d φj0MU1j×1Uj+1M×0FnU1jUj+1MU1j×1Uj+1M×0Fn1M
47 30 46 mpbid φj0MU1j×1Uj+1M×0Fn1M
48 ovexd φj0M1MV
49 inidm 1M1M=1M
50 eqidd φj0Mn1MTn=Tn
51 eqidd φj0Mn1MU1j×1Uj+1M×0n=U1j×1Uj+1M×0n
52 8 47 48 48 49 50 51 offval φj0MT+fU1j×1Uj+1M×0=n1MTn+U1j×1Uj+1M×0n
53 nn0p1nn M0M+1
54 3 53 syl φM+1
55 54 nnzd φM+1
56 uzid M+1M+1M+1
57 peano2uz M+1M+1M+1+1M+1
58 55 56 57 3syl φM+1+1M+1
59 3 nn0zd φM
60 1 nnzd φN
61 zltp1le MNM<NM+1N
62 peano2z MM+1
63 eluz M+1NNM+1M+1N
64 62 63 sylan MNNM+1M+1N
65 61 64 bitr4d MNM<NNM+1
66 59 60 65 syl2anc φM<NNM+1
67 4 66 mpbid φNM+1
68 fzsplit2 M+1+1M+1NM+1M+1N=M+1M+1M+1+1N
69 58 67 68 syl2anc φM+1N=M+1M+1M+1+1N
70 fzsn M+1M+1M+1=M+1
71 55 70 syl φM+1M+1=M+1
72 71 uneq1d φM+1M+1M+1+1N=M+1M+1+1N
73 69 72 eqtrd φM+1N=M+1M+1+1N
74 73 xpeq1d φM+1N×0=M+1M+1+1N×0
75 xpundir M+1M+1+1N×0=M+1×0M+1+1N×0
76 ovex M+1V
77 76 12 xpsn M+1×0=M+10
78 77 uneq1i M+1×0M+1+1N×0=M+10M+1+1N×0
79 75 78 eqtri M+1M+1+1N×0=M+10M+1+1N×0
80 74 79 eqtrdi φM+1N×0=M+10M+1+1N×0
81 80 adantr φj0MM+1N×0=M+10M+1+1N×0
82 52 81 uneq12d φj0MT+fU1j×1Uj+1M×0M+1N×0=n1MTn+U1j×1Uj+1M×0nM+10M+1+1N×0
83 unass n1MTn+U1j×1Uj+1M×0nM+10M+1+1N×0=n1MTn+U1j×1Uj+1M×0nM+10M+1+1N×0
84 82 83 eqtr4di φj0MT+fU1j×1Uj+1M×0M+1N×0=n1MTn+U1j×1Uj+1M×0nM+10M+1+1N×0
85 3 nn0red φM
86 85 ltp1d φM<M+1
87 54 nnred φM+1
88 85 87 ltnled φM<M+1¬M+1M
89 86 88 mpbid φ¬M+1M
90 elfzle2 M+11MM+1M
91 89 90 nsyl φ¬M+11M
92 disjsn 1MM+1=¬M+11M
93 91 92 sylibr φ1MM+1=
94 eqid M+10=M+10
95 76 12 fsn M+10:M+10M+10=M+10
96 94 95 mpbir M+10:M+10
97 fun T:1M0..^KM+10:M+101MM+1=TM+10:1MM+10..^K0
98 96 97 mpanl2 T:1M0..^K1MM+1=TM+10:1MM+10..^K0
99 5 93 98 syl2anc φTM+10:1MM+10..^K0
100 1z 1
101 nn0uz 0=0
102 1m1e0 11=0
103 102 fveq2i 11=0
104 101 103 eqtr4i 0=11
105 3 104 eleqtrdi φM11
106 fzsuc2 1M111M+1=1MM+1
107 100 105 106 sylancr φ1M+1=1MM+1
108 107 eqcomd φ1MM+1=1M+1
109 lbfzo0 00..^KK
110 2 109 sylibr φ00..^K
111 110 snssd φ00..^K
112 ssequn2 00..^K0..^K0=0..^K
113 111 112 sylib φ0..^K0=0..^K
114 108 113 feq23d φTM+10:1MM+10..^K0TM+10:1M+10..^K
115 99 114 mpbid φTM+10:1M+10..^K
116 115 ffnd φTM+10Fn1M+1
117 116 adantr φj0MTM+10Fn1M+1
118 fnconstg 1VUM+1M+11j×1FnUM+1M+11j
119 9 118 ax-mp UM+1M+11j×1FnUM+1M+11j
120 fnconstg 0VUM+1M+1j+1M+1×0FnUM+1M+1j+1M+1
121 12 120 ax-mp UM+1M+1j+1M+1×0FnUM+1M+1j+1M+1
122 119 121 pm3.2i UM+1M+11j×1FnUM+1M+11jUM+1M+1j+1M+1×0FnUM+1M+1j+1M+1
123 76 76 f1osn M+1M+1:M+11-1 ontoM+1
124 f1oun U:1M1-1 onto1MM+1M+1:M+11-1 ontoM+11MM+1=1MM+1=UM+1M+1:1MM+11-1 onto1MM+1
125 123 124 mpanl2 U:1M1-1 onto1M1MM+1=1MM+1=UM+1M+1:1MM+11-1 onto1MM+1
126 6 93 93 125 syl12anc φUM+1M+1:1MM+11-1 onto1MM+1
127 dff1o3 UM+1M+1:1MM+11-1 onto1MM+1UM+1M+1:1MM+1onto1MM+1FunUM+1M+1-1
128 127 simprbi UM+1M+1:1MM+11-1 onto1MM+1FunUM+1M+1-1
129 imain FunUM+1M+1-1UM+1M+11jj+1M+1=UM+1M+11jUM+1M+1j+1M+1
130 126 128 129 3syl φUM+1M+11jj+1M+1=UM+1M+11jUM+1M+1j+1M+1
131 fzdisj j<j+11jj+1M+1=
132 22 131 syl j0M1jj+1M+1=
133 132 imaeq2d j0MUM+1M+11jj+1M+1=UM+1M+1
134 ima0 UM+1M+1=
135 133 134 eqtrdi j0MUM+1M+11jj+1M+1=
136 130 135 sylan9req φj0MUM+1M+11jUM+1M+1j+1M+1=
137 fnun UM+1M+11j×1FnUM+1M+11jUM+1M+1j+1M+1×0FnUM+1M+1j+1M+1UM+1M+11jUM+1M+1j+1M+1=UM+1M+11j×1UM+1M+1j+1M+1×0FnUM+1M+11jUM+1M+1j+1M+1
138 122 136 137 sylancr φj0MUM+1M+11j×1UM+1M+1j+1M+1×0FnUM+1M+11jUM+1M+1j+1M+1
139 f1ofo UM+1M+1:1MM+11-1 onto1MM+1UM+1M+1:1MM+1onto1MM+1
140 foima UM+1M+1:1MM+1onto1MM+1UM+1M+11MM+1=1MM+1
141 126 139 140 3syl φUM+1M+11MM+1=1MM+1
142 107 imaeq2d φUM+1M+11M+1=UM+1M+11MM+1
143 141 142 107 3eqtr4d φUM+1M+11M+1=1M+1
144 peano2uz MjM+1j
145 36 144 syl j0MM+1j
146 fzsplit2 j+11M+1j1M+1=1jj+1M+1
147 35 145 146 syl2anc j0M1M+1=1jj+1M+1
148 147 imaeq2d j0MUM+1M+11M+1=UM+1M+11jj+1M+1
149 143 148 sylan9req φj0M1M+1=UM+1M+11jj+1M+1
150 imaundi UM+1M+11jj+1M+1=UM+1M+11jUM+1M+1j+1M+1
151 149 150 eqtrdi φj0M1M+1=UM+1M+11jUM+1M+1j+1M+1
152 151 fneq2d φj0MUM+1M+11j×1UM+1M+1j+1M+1×0Fn1M+1UM+1M+11j×1UM+1M+1j+1M+1×0FnUM+1M+11jUM+1M+1j+1M+1
153 138 152 mpbird φj0MUM+1M+11j×1UM+1M+1j+1M+1×0Fn1M+1
154 ovexd φj0M1M+1V
155 inidm 1M+11M+1=1M+1
156 eqidd φj0Mn1M+1TM+10n=TM+10n
157 eqidd φj0Mn1M+1UM+1M+11j×1UM+1M+1j+1M+1×0n=UM+1M+11j×1UM+1M+1j+1M+1×0n
158 117 153 154 154 155 156 157 offval φj0MTM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0=n1M+1TM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n
159 imadmrn M+1×M+1domM+1×M+1=ranM+1×M+1
160 76 76 xpsn M+1×M+1=M+1M+1
161 160 imaeq1i M+1×M+1domM+1×M+1=M+1M+1domM+1×M+1
162 dmxpid domM+1×M+1=M+1
163 162 imaeq2i M+1M+1domM+1×M+1=M+1M+1M+1
164 161 163 eqtri M+1×M+1domM+1×M+1=M+1M+1M+1
165 rnxpid ranM+1×M+1=M+1
166 159 164 165 3eqtr3ri M+1=M+1M+1M+1
167 eluzp1p1 MjM+1j+1
168 eluzfz2 M+1j+1M+1j+1M+1
169 36 167 168 3syl j0MM+1j+1M+1
170 169 snssd j0MM+1j+1M+1
171 imass2 M+1j+1M+1M+1M+1M+1M+1M+1j+1M+1
172 170 171 syl j0MM+1M+1M+1M+1M+1j+1M+1
173 166 172 eqsstrid j0MM+1M+1M+1j+1M+1
174 76 snid M+1M+1
175 ssel M+1M+1M+1j+1M+1M+1M+1M+1M+1M+1j+1M+1
176 173 174 175 mpisyl j0MM+1M+1M+1j+1M+1
177 elun2 M+1M+1M+1j+1M+1M+1Uj+1M+1M+1M+1j+1M+1
178 176 177 syl j0MM+1Uj+1M+1M+1M+1j+1M+1
179 imaundir UM+1M+1j+1M+1=Uj+1M+1M+1M+1j+1M+1
180 178 179 eleqtrrdi j0MM+1UM+1M+1j+1M+1
181 180 adantl φj0MM+1UM+1M+1j+1M+1
182 12 a1i φj0M0V
183 108 adantr φj0M1MM+1=1M+1
184 fveq2 n=M+1TM+10n=TM+10M+1
185 76 12 fnsn M+10FnM+1
186 fvun2 TFn1MM+10FnM+11MM+1=M+1M+1TM+10M+1=M+10M+1
187 185 186 mp3an2 TFn1M1MM+1=M+1M+1TM+10M+1=M+10M+1
188 174 187 mpanr2 TFn1M1MM+1=TM+10M+1=M+10M+1
189 7 93 188 syl2anc φTM+10M+1=M+10M+1
190 76 12 fvsn M+10M+1=0
191 189 190 eqtrdi φTM+10M+1=0
192 184 191 sylan9eqr φn=M+1TM+10n=0
193 192 adantlr φj0Mn=M+1TM+10n=0
194 fveq2 n=M+1UM+1M+11j×1UM+1M+1j+1M+1×0n=UM+1M+11j×1UM+1M+1j+1M+1×0M+1
195 fvun2 UM+1M+11j×1FnUM+1M+11jUM+1M+1j+1M+1×0FnUM+1M+1j+1M+1UM+1M+11jUM+1M+1j+1M+1=M+1UM+1M+1j+1M+1UM+1M+11j×1UM+1M+1j+1M+1×0M+1=UM+1M+1j+1M+1×0M+1
196 119 121 195 mp3an12 UM+1M+11jUM+1M+1j+1M+1=M+1UM+1M+1j+1M+1UM+1M+11j×1UM+1M+1j+1M+1×0M+1=UM+1M+1j+1M+1×0M+1
197 136 181 196 syl2anc φj0MUM+1M+11j×1UM+1M+1j+1M+1×0M+1=UM+1M+1j+1M+1×0M+1
198 12 fvconst2 M+1UM+1M+1j+1M+1UM+1M+1j+1M+1×0M+1=0
199 180 198 syl j0MUM+1M+1j+1M+1×0M+1=0
200 199 adantl φj0MUM+1M+1j+1M+1×0M+1=0
201 197 200 eqtrd φj0MUM+1M+11j×1UM+1M+1j+1M+1×0M+1=0
202 194 201 sylan9eqr φj0Mn=M+1UM+1M+11j×1UM+1M+1j+1M+1×0n=0
203 193 202 oveq12d φj0Mn=M+1TM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n=0+0
204 00id 0+0=0
205 203 204 eqtrdi φj0Mn=M+1TM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n=0
206 181 182 183 205 fmptapd φj0Mn1MTM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0nM+10=n1M+1TM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n
207 7 93 jca φTFn1M1MM+1=
208 fvun1 TFn1MM+10FnM+11MM+1=n1MTM+10n=Tn
209 185 208 mp3an2 TFn1M1MM+1=n1MTM+10n=Tn
210 209 anassrs TFn1M1MM+1=n1MTM+10n=Tn
211 207 210 sylan φn1MTM+10n=Tn
212 211 adantlr φj0Mn1MTM+10n=Tn
213 fvres n1MUM+1M+11j×1UM+1M+1j+1M+1×01Mn=UM+1M+11j×1UM+1M+1j+1M+1×0n
214 213 eqcomd n1MUM+1M+11j×1UM+1M+1j+1M+1×0n=UM+1M+11j×1UM+1M+1j+1M+1×01Mn
215 resundir UM+1M+11j×1UM+1M+1j+1M+1×01M=UM+1M+11j×11MUM+1M+1j+1M+1×01M
216 relxp RelU1j×1
217 dmxpss domU1j×1U1j
218 imassrn U1jranU
219 217 218 sstri domU1j×1ranU
220 f1of U:1M1-1 onto1MU:1M1M
221 frn U:1M1MranU1M
222 6 220 221 3syl φranU1M
223 219 222 sstrid φdomU1j×11M
224 relssres RelU1j×1domU1j×11MU1j×11M=U1j×1
225 216 223 224 sylancr φU1j×11M=U1j×1
226 225 adantr φj0MU1j×11M=U1j×1
227 imassrn M+1M+11jranM+1M+1
228 76 rnsnop ranM+1M+1=M+1
229 227 228 sseqtri M+1M+11jM+1
230 ssrin M+1M+11jM+1M+1M+11j1MM+11M
231 229 230 ax-mp M+1M+11j1MM+11M
232 incom M+11M=1MM+1
233 232 93 eqtrid φM+11M=
234 231 233 sseqtrid φM+1M+11j1M
235 ss0 M+1M+11j1MM+1M+11j1M=
236 234 235 syl φM+1M+11j1M=
237 fnconstg 1VM+1M+11j×1FnM+1M+11j
238 fnresdisj M+1M+11j×1FnM+1M+11jM+1M+11j1M=M+1M+11j×11M=
239 9 237 238 mp2b M+1M+11j1M=M+1M+11j×11M=
240 236 239 sylib φM+1M+11j×11M=
241 240 adantr φj0MM+1M+11j×11M=
242 226 241 uneq12d φj0MU1j×11MM+1M+11j×11M=U1j×1
243 imaundir UM+1M+11j=U1jM+1M+11j
244 243 xpeq1i UM+1M+11j×1=U1jM+1M+11j×1
245 xpundir U1jM+1M+11j×1=U1j×1M+1M+11j×1
246 244 245 eqtri UM+1M+11j×1=U1j×1M+1M+11j×1
247 246 reseq1i UM+1M+11j×11M=U1j×1M+1M+11j×11M
248 resundir U1j×1M+1M+11j×11M=U1j×11MM+1M+11j×11M
249 247 248 eqtr2i U1j×11MM+1M+11j×11M=UM+1M+11j×11M
250 un0 U1j×1=U1j×1
251 242 249 250 3eqtr3g φj0MUM+1M+11j×11M=U1j×1
252 f1odm U:1M1-1 onto1MdomU=1M
253 6 252 syl φdomU=1M
254 253 ineq2d φj+1M+1domU=j+1M+11M
255 254 reseq2d φUj+1M+1domU=Uj+1M+11M
256 f1orel U:1M1-1 onto1MRelU
257 resindm RelUUj+1M+1domU=Uj+1M+1
258 6 256 257 3syl φUj+1M+1domU=Uj+1M+1
259 255 258 eqtr3d φUj+1M+11M=Uj+1M+1
260 38 ineq2d j0Mj+1M+11M=j+1M+11jj+1M
261 fzssp1 j+1Mj+1M+1
262 sseqin2 j+1Mj+1M+1j+1M+1j+1M=j+1M
263 261 262 mpbi j+1M+1j+1M=j+1M
264 263 a1i j0Mj+1M+1j+1M=j+1M
265 incom j+1M+11j=1jj+1M+1
266 265 132 eqtrid j0Mj+1M+11j=
267 264 266 uneq12d j0Mj+1M+1j+1Mj+1M+11j=j+1M
268 uncom j+1M+1j+1Mj+1M+11j=j+1M+11jj+1M+1j+1M
269 indi j+1M+11jj+1M=j+1M+11jj+1M+1j+1M
270 268 269 eqtr4i j+1M+1j+1Mj+1M+11j=j+1M+11jj+1M
271 un0 j+1M=j+1M
272 267 270 271 3eqtr3g j0Mj+1M+11jj+1M=j+1M
273 260 272 eqtrd j0Mj+1M+11M=j+1M
274 273 reseq2d j0MUj+1M+11M=Uj+1M
275 259 274 sylan9req φj0MUj+1M+1=Uj+1M
276 275 rneqd φj0MranUj+1M+1=ranUj+1M
277 df-ima Uj+1M+1=ranUj+1M+1
278 df-ima Uj+1M=ranUj+1M
279 276 277 278 3eqtr4g φj0MUj+1M+1=Uj+1M
280 279 xpeq1d φj0MUj+1M+1×0=Uj+1M×0
281 280 reseq1d φj0MUj+1M+1×01M=Uj+1M×01M
282 relxp RelUj+1M×0
283 dmxpss domUj+1M×0Uj+1M
284 imassrn Uj+1MranU
285 283 284 sstri domUj+1M×0ranU
286 285 222 sstrid φdomUj+1M×01M
287 relssres RelUj+1M×0domUj+1M×01MUj+1M×01M=Uj+1M×0
288 282 286 287 sylancr φUj+1M×01M=Uj+1M×0
289 288 adantr φj0MUj+1M×01M=Uj+1M×0
290 281 289 eqtrd φj0MUj+1M+1×01M=Uj+1M×0
291 imassrn M+1M+1j+1M+1ranM+1M+1
292 291 228 sseqtri M+1M+1j+1M+1M+1
293 ssrin M+1M+1j+1M+1M+1M+1M+1j+1M+11MM+11M
294 292 293 ax-mp M+1M+1j+1M+11MM+11M
295 294 233 sseqtrid φM+1M+1j+1M+11M
296 ss0 M+1M+1j+1M+11MM+1M+1j+1M+11M=
297 295 296 syl φM+1M+1j+1M+11M=
298 fnconstg 0VM+1M+1j+1M+1×0FnM+1M+1j+1M+1
299 fnresdisj M+1M+1j+1M+1×0FnM+1M+1j+1M+1M+1M+1j+1M+11M=M+1M+1j+1M+1×01M=
300 12 298 299 mp2b M+1M+1j+1M+11M=M+1M+1j+1M+1×01M=
301 297 300 sylib φM+1M+1j+1M+1×01M=
302 301 adantr φj0MM+1M+1j+1M+1×01M=
303 290 302 uneq12d φj0MUj+1M+1×01MM+1M+1j+1M+1×01M=Uj+1M×0
304 179 xpeq1i UM+1M+1j+1M+1×0=Uj+1M+1M+1M+1j+1M+1×0
305 xpundir Uj+1M+1M+1M+1j+1M+1×0=Uj+1M+1×0M+1M+1j+1M+1×0
306 304 305 eqtri UM+1M+1j+1M+1×0=Uj+1M+1×0M+1M+1j+1M+1×0
307 306 reseq1i UM+1M+1j+1M+1×01M=Uj+1M+1×0M+1M+1j+1M+1×01M
308 resundir Uj+1M+1×0M+1M+1j+1M+1×01M=Uj+1M+1×01MM+1M+1j+1M+1×01M
309 307 308 eqtr2i Uj+1M+1×01MM+1M+1j+1M+1×01M=UM+1M+1j+1M+1×01M
310 un0 Uj+1M×0=Uj+1M×0
311 303 309 310 3eqtr3g φj0MUM+1M+1j+1M+1×01M=Uj+1M×0
312 251 311 uneq12d φj0MUM+1M+11j×11MUM+1M+1j+1M+1×01M=U1j×1Uj+1M×0
313 215 312 eqtrid φj0MUM+1M+11j×1UM+1M+1j+1M+1×01M=U1j×1Uj+1M×0
314 313 fveq1d φj0MUM+1M+11j×1UM+1M+1j+1M+1×01Mn=U1j×1Uj+1M×0n
315 214 314 sylan9eqr φj0Mn1MUM+1M+11j×1UM+1M+1j+1M+1×0n=U1j×1Uj+1M×0n
316 212 315 oveq12d φj0Mn1MTM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n=Tn+U1j×1Uj+1M×0n
317 316 mpteq2dva φj0Mn1MTM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0n=n1MTn+U1j×1Uj+1M×0n
318 317 uneq1d φj0Mn1MTM+10n+UM+1M+11j×1UM+1M+1j+1M+1×0nM+10=n1MTn+U1j×1Uj+1M×0nM+10
319 158 206 318 3eqtr2d φj0MTM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0=n1MTn+U1j×1Uj+1M×0nM+10
320 319 uneq1d φj0MTM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0=n1MTn+U1j×1Uj+1M×0nM+10M+1+1N×0
321 84 320 eqtr4d φj0MT+fU1j×1Uj+1M×0M+1N×0=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0
322 321 csbeq1d φj0MT+fU1j×1Uj+1M×0M+1N×0/pB=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pB
323 322 eqeq2d φj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pB
324 323 rexbidva φj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pB
325 324 ralbidv φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBi0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pB
326 325 biimpd φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBi0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pB
327 f1ofn U:1M1-1 onto1MUFn1M
328 6 327 syl φUFn1M
329 76 76 fnsn M+1M+1FnM+1
330 fvun2 UFn1MM+1M+1FnM+11MM+1=M+1M+1UM+1M+1M+1=M+1M+1M+1
331 329 330 mp3an2 UFn1M1MM+1=M+1M+1UM+1M+1M+1=M+1M+1M+1
332 174 331 mpanr2 UFn1M1MM+1=UM+1M+1M+1=M+1M+1M+1
333 328 93 332 syl2anc φUM+1M+1M+1=M+1M+1M+1
334 76 76 fvsn M+1M+1M+1=M+1
335 333 334 eqtrdi φUM+1M+1M+1=M+1
336 191 335 jca φTM+10M+1=0UM+1M+1M+1=M+1
337 326 336 jctird φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBi0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1
338 3anass i0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1i0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1
339 337 338 syl6ibr φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBi0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1
340 5 96 jctir φT:1M0..^KM+10:M+10
341 340 93 97 syl2anc φTM+10:1MM+10..^K0
342 341 114 mpbid φTM+10:1M+10..^K
343 ovex 0..^KV
344 ovex 1M+1V
345 343 344 elmap TM+100..^K1M+1TM+10:1M+10..^K
346 342 345 sylibr φTM+100..^K1M+1
347 ovex 1MV
348 f1oexrnex U:1M1-1 onto1M1MVUV
349 6 347 348 sylancl φUV
350 snex M+1M+1V
351 unexg UVM+1M+1VUM+1M+1V
352 349 350 351 sylancl φUM+1M+1V
353 f1oeq1 f=UM+1M+1f:1M+11-1 onto1M+1UM+1M+1:1M+11-1 onto1M+1
354 353 elabg UM+1M+1VUM+1M+1f|f:1M+11-1 onto1M+1UM+1M+1:1M+11-1 onto1M+1
355 352 354 syl φUM+1M+1f|f:1M+11-1 onto1M+1UM+1M+1:1M+11-1 onto1M+1
356 f1oeq23 1M+1=1MM+11M+1=1MM+1UM+1M+1:1M+11-1 onto1M+1UM+1M+1:1MM+11-1 onto1MM+1
357 107 107 356 syl2anc φUM+1M+1:1M+11-1 onto1M+1UM+1M+1:1MM+11-1 onto1MM+1
358 355 357 bitrd φUM+1M+1f|f:1M+11-1 onto1M+1UM+1M+1:1MM+11-1 onto1MM+1
359 126 358 mpbird φUM+1M+1f|f:1M+11-1 onto1M+1
360 346 359 opelxpd φTM+10UM+1M+10..^K1M+1×f|f:1M+11-1 onto1M+1
361 339 360 jctild φi0Mj0Mi=T+fU1j×1Uj+1M×0M+1N×0/pBTM+10UM+1M+10..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=TM+10+fUM+1M+11j×1UM+1M+1j+1M+1×0M+1+1N×0/pBTM+10M+1=0UM+1M+1M+1=M+1