Metamath Proof Explorer


Theorem ptbasfi

Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add X itself to the list because if A is empty we get ( fi(/) ) = (/) while B = { (/) } .) (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
ptbasfi.2 X=nAFn
Assertion ptbasfi AVF:ATopB=fiXrankA,uFkwXwk-1u

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 ptbasfi.2 X=nAFn
3 1 elpt sBhhFnAyAhyFymFinyAmhy=Fys=yAhy
4 df-3an hFnAyAhyFymFinyAmhy=FyhFnAyAhyFymFinyAmhy=Fy
5 simprr AVF:ATophFnAyAhyFymFinyAmhy=FyyAmhy=Fy
6 disjdif2 Am=Am=A
7 6 raleqdv Am=yAmhy=FyyAhy=Fy
8 7 biimpac yAmhy=FyAm=yAhy=Fy
9 ixpeq2 yAhy=FyyAhy=yAFy
10 8 9 syl yAmhy=FyAm=yAhy=yAFy
11 fveq2 n=yFn=Fy
12 11 unieqd n=yFn=Fy
13 12 cbvixpv nAFn=yAFy
14 2 13 eqtri X=yAFy
15 10 14 eqtr4di yAmhy=FyAm=yAhy=X
16 5 15 sylan AVF:ATophFnAyAhyFymFinyAmhy=FyAm=yAhy=X
17 ssv XV
18 iineq1 Am=nAmwXwn-1hn=nwXwn-1hn
19 0iin nwXwn-1hn=V
20 18 19 eqtrdi Am=nAmwXwn-1hn=V
21 17 20 sseqtrrid Am=XnAmwXwn-1hn
22 21 adantl AVF:ATophFnAyAhyFymFinyAmhy=FyAm=XnAmwXwn-1hn
23 df-ss XnAmwXwn-1hnXnAmwXwn-1hn=X
24 22 23 sylib AVF:ATophFnAyAhyFymFinyAmhy=FyAm=XnAmwXwn-1hn=X
25 16 24 eqtr4d AVF:ATophFnAyAhyFymFinyAmhy=FyAm=yAhy=XnAmwXwn-1hn
26 simplll AVF:ATophFnAyAhyFymFinyAmhy=FynAmAVF:ATop
27 inss1 AmA
28 simpr AVF:ATophFnAyAhyFymFinyAmhy=FynAmnAm
29 27 28 sselid AVF:ATophFnAyAhyFymFinyAmhy=FynAmnA
30 fveq2 y=nhy=hn
31 fveq2 y=nFy=Fn
32 30 31 eleq12d y=nhyFyhnFn
33 simprr AVF:ATophFnAyAhyFyyAhyFy
34 33 ad2antrr AVF:ATophFnAyAhyFymFinyAmhy=FynAmyAhyFy
35 32 34 29 rspcdva AVF:ATophFnAyAhyFymFinyAmhy=FynAmhnFn
36 14 ptpjpre1 AVF:ATopnAhnFnwXwn-1hn=yAify=nhnFy
37 26 29 35 36 syl12anc AVF:ATophFnAyAhyFymFinyAmhy=FynAmwXwn-1hn=yAify=nhnFy
38 37 adantlr AVF:ATophFnAyAhyFymFinyAmhy=FyAmnAmwXwn-1hn=yAify=nhnFy
39 38 iineq2dv AVF:ATophFnAyAhyFymFinyAmhy=FyAmnAmwXwn-1hn=nAmyAify=nhnFy
40 simpr AVF:ATophFnAyAhyFymFinyAmhy=FyAmAm
41 cnvimass wXwn-1hndomwXwn
42 eqid wXwn=wXwn
43 42 dmmptss domwXwnX
44 41 43 sstri wXwn-1hnX
45 44 14 sseqtri wXwn-1hnyAFy
46 45 rgenw nAmwXwn-1hnyAFy
47 r19.2z AmnAmwXwn-1hnyAFynAmwXwn-1hnyAFy
48 40 46 47 sylancl AVF:ATophFnAyAhyFymFinyAmhy=FyAmnAmwXwn-1hnyAFy
49 iinss nAmwXwn-1hnyAFynAmwXwn-1hnyAFy
50 48 49 syl AVF:ATophFnAyAhyFymFinyAmhy=FyAmnAmwXwn-1hnyAFy
51 50 14 sseqtrrdi AVF:ATophFnAyAhyFymFinyAmhy=FyAmnAmwXwn-1hnX
52 sseqin2 nAmwXwn-1hnXXnAmwXwn-1hn=nAmwXwn-1hn
53 51 52 sylib AVF:ATophFnAyAhyFymFinyAmhy=FyAmXnAmwXwn-1hn=nAmwXwn-1hn
54 33 ad2antrr AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAhyFy
55 ssralv AmAyAhyFyyAmhyFy
56 27 55 ax-mp yAhyFyyAmhyFy
57 elssuni hyFyhyFy
58 iffalse ¬y=nify=nhnFy=Fy
59 58 sseq2d ¬y=nhyify=nhnFyhyFy
60 57 59 syl5ibrcom hyFy¬y=nhyify=nhnFy
61 ssid hyhy
62 iftrue y=nify=nhnFy=hn
63 62 30 eqtr4d y=nify=nhnFy=hy
64 61 63 sseqtrrid y=nhyify=nhnFy
65 60 64 pm2.61d2 hyFyhyify=nhnFy
66 65 ralrimivw hyFynAmhyify=nhnFy
67 ssiin hynAmify=nhnFynAmhyify=nhnFy
68 66 67 sylibr hyFyhynAmify=nhnFy
69 68 adantl yAmhyFyhynAmify=nhnFy
70 62 equcoms n=yify=nhnFy=hn
71 fveq2 n=yhn=hy
72 70 71 eqtrd n=yify=nhnFy=hy
73 72 sseq1d n=yify=nhnFyhyhyhy
74 73 rspcev yAmhyhynAmify=nhnFyhy
75 61 74 mpan2 yAmnAmify=nhnFyhy
76 iinss nAmify=nhnFyhynAmify=nhnFyhy
77 75 76 syl yAmnAmify=nhnFyhy
78 77 adantr yAmhyFynAmify=nhnFyhy
79 69 78 eqssd yAmhyFyhy=nAmify=nhnFy
80 79 ralimiaa yAmhyFyyAmhy=nAmify=nhnFy
81 54 56 80 3syl AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAmhy=nAmify=nhnFy
82 eldifn yAm¬ym
83 82 ad2antlr AmyAmnAm¬ym
84 inss2 Amm
85 simpr AmyAmnAmnAm
86 84 85 sselid AmyAmnAmnm
87 eleq1 y=nymnm
88 86 87 syl5ibrcom AmyAmnAmy=nym
89 83 88 mtod AmyAmnAm¬y=n
90 89 58 syl AmyAmnAmify=nhnFy=Fy
91 90 iineq2dv AmyAmnAmify=nhnFy=nAmFy
92 iinconst AmnAmFy=Fy
93 92 adantr AmyAmnAmFy=Fy
94 91 93 eqtr2d AmyAmFy=nAmify=nhnFy
95 eqeq1 hy=Fyhy=nAmify=nhnFyFy=nAmify=nhnFy
96 94 95 syl5ibrcom AmyAmhy=Fyhy=nAmify=nhnFy
97 96 ralimdva AmyAmhy=FyyAmhy=nAmify=nhnFy
98 5 97 mpan9 AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAmhy=nAmify=nhnFy
99 inundif AmAm=A
100 99 raleqi yAmAmhy=nAmify=nhnFyyAhy=nAmify=nhnFy
101 ralunb yAmAmhy=nAmify=nhnFyyAmhy=nAmify=nhnFyyAmhy=nAmify=nhnFy
102 100 101 bitr3i yAhy=nAmify=nhnFyyAmhy=nAmify=nhnFyyAmhy=nAmify=nhnFy
103 81 98 102 sylanbrc AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAhy=nAmify=nhnFy
104 ixpeq2 yAhy=nAmify=nhnFyyAhy=yAnAmify=nhnFy
105 103 104 syl AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAhy=yAnAmify=nhnFy
106 ixpiin AmyAnAmify=nhnFy=nAmyAify=nhnFy
107 106 adantl AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAnAmify=nhnFy=nAmyAify=nhnFy
108 105 107 eqtrd AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAhy=nAmyAify=nhnFy
109 39 53 108 3eqtr4rd AVF:ATophFnAyAhyFymFinyAmhy=FyAmyAhy=XnAmwXwn-1hn
110 25 109 pm2.61dane AVF:ATophFnAyAhyFymFinyAmhy=FyyAhy=XnAmwXwn-1hn
111 ixpexg nAFnVnAFnV
112 fvex FnV
113 112 uniex FnV
114 113 a1i nAFnV
115 111 114 mprg nAFnV
116 2 115 eqeltri XV
117 116 mptex wXwnV
118 117 cnvex wXwn-1V
119 118 imaex wXwn-1hnV
120 119 dfiin2 nAmwXwn-1hn=z|nAmz=wXwn-1hn
121 inteq z|nAmz=wXwn-1hn=z|nAmz=wXwn-1hn=
122 120 121 eqtrid z|nAmz=wXwn-1hn=nAmwXwn-1hn=
123 int0 =V
124 122 123 eqtrdi z|nAmz=wXwn-1hn=nAmwXwn-1hn=V
125 124 ineq2d z|nAmz=wXwn-1hn=XnAmwXwn-1hn=XV
126 inv1 XV=X
127 125 126 eqtrdi z|nAmz=wXwn-1hn=XnAmwXwn-1hn=X
128 127 adantl AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hn=XnAmwXwn-1hn=X
129 snex XV
130 1 ptbas AVF:ATopBTopBases
131 1 2 ptpjpre2 AVF:ATopkAuFkwXwk-1uB
132 131 ralrimivva AVF:ATopkAuFkwXwk-1uB
133 eqid kA,uFkwXwk-1u=kA,uFkwXwk-1u
134 133 fmpox kAuFkwXwk-1uBkA,uFkwXwk-1u:kAk×FkB
135 132 134 sylib AVF:ATopkA,uFkwXwk-1u:kAk×FkB
136 135 frnd AVF:AToprankA,uFkwXwk-1uB
137 130 136 ssexd AVF:AToprankA,uFkwXwk-1uV
138 unexg XVrankA,uFkwXwk-1uVXrankA,uFkwXwk-1uV
139 129 137 138 sylancr AVF:ATopXrankA,uFkwXwk-1uV
140 ssfii XrankA,uFkwXwk-1uVXrankA,uFkwXwk-1ufiXrankA,uFkwXwk-1u
141 139 140 syl AVF:ATopXrankA,uFkwXwk-1ufiXrankA,uFkwXwk-1u
142 141 ad2antrr AVF:ATophFnAyAhyFymFinyAmhy=FyXrankA,uFkwXwk-1ufiXrankA,uFkwXwk-1u
143 ssun1 XXrankA,uFkwXwk-1u
144 116 snss XXrankA,uFkwXwk-1uXXrankA,uFkwXwk-1u
145 143 144 mpbir XXrankA,uFkwXwk-1u
146 145 a1i AVF:ATophFnAyAhyFymFinyAmhy=FyXXrankA,uFkwXwk-1u
147 142 146 sseldd AVF:ATophFnAyAhyFymFinyAmhy=FyXfiXrankA,uFkwXwk-1u
148 147 adantr AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hn=XfiXrankA,uFkwXwk-1u
149 128 148 eqeltrd AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hn=XnAmwXwn-1hnfiXrankA,uFkwXwk-1u
150 139 ad3antrrr AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnXrankA,uFkwXwk-1uV
151 nfv nAVF:ATophFnAyAhyFymFinyAmhy=Fy
152 nfcv _nA
153 nfcv _nFk
154 nfixp1 _nnAFn
155 2 154 nfcxfr _nX
156 nfcv _nwk
157 155 156 nfmpt _nwXwk
158 157 nfcnv _nwXwk-1
159 nfcv _nu
160 158 159 nfima _nwXwk-1u
161 152 153 160 nfmpo _nkA,uFkwXwk-1u
162 161 nfrn _nrankA,uFkwXwk-1u
163 162 nfcri nzrankA,uFkwXwk-1u
164 df-ov nkA,uFkwXwk-1uhn=kA,uFkwXwk-1unhn
165 119 a1i AVF:ATophFnAyAhyFymFinyAmhy=FynAmwXwn-1hnV
166 fveq2 k=nwk=wn
167 166 mpteq2dv k=nwXwk=wXwn
168 167 cnveqd k=nwXwk-1=wXwn-1
169 168 imaeq1d k=nwXwk-1u=wXwn-1u
170 imaeq2 u=hnwXwn-1u=wXwn-1hn
171 169 170 sylan9eq k=nu=hnwXwk-1u=wXwn-1hn
172 fveq2 k=nFk=Fn
173 171 172 133 ovmpox nAhnFnwXwn-1hnVnkA,uFkwXwk-1uhn=wXwn-1hn
174 29 35 165 173 syl3anc AVF:ATophFnAyAhyFymFinyAmhy=FynAmnkA,uFkwXwk-1uhn=wXwn-1hn
175 164 174 eqtr3id AVF:ATophFnAyAhyFymFinyAmhy=FynAmkA,uFkwXwk-1unhn=wXwn-1hn
176 135 ad3antrrr AVF:ATophFnAyAhyFymFinyAmhy=FynAmkA,uFkwXwk-1u:kAk×FkB
177 176 ffnd AVF:ATophFnAyAhyFymFinyAmhy=FynAmkA,uFkwXwk-1uFnkAk×Fk
178 opeliunxp nhnnAn×FnnAhnFn
179 29 35 178 sylanbrc AVF:ATophFnAyAhyFymFinyAmhy=FynAmnhnnAn×Fn
180 sneq n=kn=k
181 fveq2 n=kFn=Fk
182 180 181 xpeq12d n=kn×Fn=k×Fk
183 182 cbviunv nAn×Fn=kAk×Fk
184 179 183 eleqtrdi AVF:ATophFnAyAhyFymFinyAmhy=FynAmnhnkAk×Fk
185 fnfvelrn kA,uFkwXwk-1uFnkAk×FknhnkAk×FkkA,uFkwXwk-1unhnrankA,uFkwXwk-1u
186 177 184 185 syl2anc AVF:ATophFnAyAhyFymFinyAmhy=FynAmkA,uFkwXwk-1unhnrankA,uFkwXwk-1u
187 175 186 eqeltrrd AVF:ATophFnAyAhyFymFinyAmhy=FynAmwXwn-1hnrankA,uFkwXwk-1u
188 eleq1 z=wXwn-1hnzrankA,uFkwXwk-1uwXwn-1hnrankA,uFkwXwk-1u
189 187 188 syl5ibrcom AVF:ATophFnAyAhyFymFinyAmhy=FynAmz=wXwn-1hnzrankA,uFkwXwk-1u
190 189 ex AVF:ATophFnAyAhyFymFinyAmhy=FynAmz=wXwn-1hnzrankA,uFkwXwk-1u
191 151 163 190 rexlimd AVF:ATophFnAyAhyFymFinyAmhy=FynAmz=wXwn-1hnzrankA,uFkwXwk-1u
192 191 abssdv AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnrankA,uFkwXwk-1u
193 ssun2 rankA,uFkwXwk-1uXrankA,uFkwXwk-1u
194 192 193 sstrdi AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnXrankA,uFkwXwk-1u
195 194 adantr AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnz|nAmz=wXwn-1hnXrankA,uFkwXwk-1u
196 simpr AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnz|nAmz=wXwn-1hn
197 simplrl AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnmFin
198 ssfi mFinAmmAmFin
199 197 84 198 sylancl AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnAmFin
200 abrexfi AmFinz|nAmz=wXwn-1hnFin
201 199 200 syl AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnz|nAmz=wXwn-1hnFin
202 elfir XrankA,uFkwXwk-1uVz|nAmz=wXwn-1hnXrankA,uFkwXwk-1uz|nAmz=wXwn-1hnz|nAmz=wXwn-1hnFinz|nAmz=wXwn-1hnfiXrankA,uFkwXwk-1u
203 150 195 196 201 202 syl13anc AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnz|nAmz=wXwn-1hnfiXrankA,uFkwXwk-1u
204 120 203 eqeltrid AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnnAmwXwn-1hnfiXrankA,uFkwXwk-1u
205 elssuni nAmwXwn-1hnfiXrankA,uFkwXwk-1unAmwXwn-1hnfiXrankA,uFkwXwk-1u
206 204 205 syl AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnnAmwXwn-1hnfiXrankA,uFkwXwk-1u
207 fiuni XrankA,uFkwXwk-1uVXrankA,uFkwXwk-1u=fiXrankA,uFkwXwk-1u
208 139 207 syl AVF:ATopXrankA,uFkwXwk-1u=fiXrankA,uFkwXwk-1u
209 116 pwid X𝒫X
210 209 a1i AVF:ATopX𝒫X
211 210 snssd AVF:ATopX𝒫X
212 1 ptuni2 AVF:ATopnAFn=B
213 2 212 eqtrid AVF:ATopX=B
214 eqimss2 X=BBX
215 213 214 syl AVF:ATopBX
216 sspwuni B𝒫XBX
217 215 216 sylibr AVF:ATopB𝒫X
218 136 217 sstrd AVF:AToprankA,uFkwXwk-1u𝒫X
219 211 218 unssd AVF:ATopXrankA,uFkwXwk-1u𝒫X
220 sspwuni XrankA,uFkwXwk-1u𝒫XXrankA,uFkwXwk-1uX
221 219 220 sylib AVF:ATopXrankA,uFkwXwk-1uX
222 elssuni XXrankA,uFkwXwk-1uXXrankA,uFkwXwk-1u
223 145 222 mp1i AVF:ATopXXrankA,uFkwXwk-1u
224 221 223 eqssd AVF:ATopXrankA,uFkwXwk-1u=X
225 208 224 eqtr3d AVF:ATopfiXrankA,uFkwXwk-1u=X
226 225 ad3antrrr AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnfiXrankA,uFkwXwk-1u=X
227 206 226 sseqtrd AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnnAmwXwn-1hnX
228 227 52 sylib AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnXnAmwXwn-1hn=nAmwXwn-1hn
229 228 204 eqeltrd AVF:ATophFnAyAhyFymFinyAmhy=Fyz|nAmz=wXwn-1hnXnAmwXwn-1hnfiXrankA,uFkwXwk-1u
230 149 229 pm2.61dane AVF:ATophFnAyAhyFymFinyAmhy=FyXnAmwXwn-1hnfiXrankA,uFkwXwk-1u
231 110 230 eqeltrd AVF:ATophFnAyAhyFymFinyAmhy=FyyAhyfiXrankA,uFkwXwk-1u
232 231 rexlimdvaa AVF:ATophFnAyAhyFymFinyAmhy=FyyAhyfiXrankA,uFkwXwk-1u
233 232 impr AVF:ATophFnAyAhyFymFinyAmhy=FyyAhyfiXrankA,uFkwXwk-1u
234 4 233 sylan2b AVF:ATophFnAyAhyFymFinyAmhy=FyyAhyfiXrankA,uFkwXwk-1u
235 eleq1 s=yAhysfiXrankA,uFkwXwk-1uyAhyfiXrankA,uFkwXwk-1u
236 234 235 syl5ibrcom AVF:ATophFnAyAhyFymFinyAmhy=Fys=yAhysfiXrankA,uFkwXwk-1u
237 236 expimpd AVF:ATophFnAyAhyFymFinyAmhy=Fys=yAhysfiXrankA,uFkwXwk-1u
238 237 exlimdv AVF:ATophhFnAyAhyFymFinyAmhy=Fys=yAhysfiXrankA,uFkwXwk-1u
239 3 238 biimtrid AVF:ATopsBsfiXrankA,uFkwXwk-1u
240 239 ssrdv AVF:ATopBfiXrankA,uFkwXwk-1u
241 1 ptbasid AVF:ATopnAFnB
242 2 241 eqeltrid AVF:ATopXB
243 242 snssd AVF:ATopXB
244 243 136 unssd AVF:ATopXrankA,uFkwXwk-1uB
245 fiss BTopBasesXrankA,uFkwXwk-1uBfiXrankA,uFkwXwk-1ufiB
246 130 244 245 syl2anc AVF:ATopfiXrankA,uFkwXwk-1ufiB
247 1 ptbasin2 AVF:ATopfiB=B
248 246 247 sseqtrd AVF:ATopfiXrankA,uFkwXwk-1uB
249 240 248 eqssd AVF:ATopB=fiXrankA,uFkwXwk-1u