| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aacllem.0 |
|- ( ph -> A e. CC ) |
| 2 |
|
aacllem.1 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
aacllem.2 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> X e. CC ) |
| 4 |
|
aacllem.3 |
|- ( ( ph /\ k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) -> C e. QQ ) |
| 5 |
|
aacllem.4 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ k ) = sum_ n e. ( 1 ... N ) ( C x. X ) ) |
| 6 |
2
|
nn0red |
|- ( ph -> N e. RR ) |
| 7 |
6
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
| 8 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 10 |
9
|
nn0red |
|- ( ph -> ( N + 1 ) e. RR ) |
| 11 |
6 10
|
ltnled |
|- ( ph -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
| 12 |
7 11
|
mpbid |
|- ( ph -> -. ( N + 1 ) <_ N ) |
| 13 |
4
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> C e. QQ ) |
| 14 |
13
|
fmpttd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> C ) : ( 1 ... N ) --> QQ ) |
| 15 |
|
qex |
|- QQ e. _V |
| 16 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 17 |
15 16
|
elmap |
|- ( ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> C ) : ( 1 ... N ) --> QQ ) |
| 18 |
14 17
|
sylibr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) ) ) |
| 19 |
18
|
fmpttd |
|- ( ph -> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) --> ( QQ ^m ( 1 ... N ) ) ) |
| 20 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 21 |
20
|
qdrng |
|- ( CCfld |`s QQ ) e. DivRing |
| 22 |
|
drngring |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) e. Ring ) |
| 23 |
21 22
|
ax-mp |
|- ( CCfld |`s QQ ) e. Ring |
| 24 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 25 |
|
eqid |
|- ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) = ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) |
| 26 |
25
|
frlmlmod |
|- ( ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin ) -> ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod ) |
| 27 |
23 24 26
|
mp2an |
|- ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod |
| 28 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
| 29 |
20
|
qrngbas |
|- QQ = ( Base ` ( CCfld |`s QQ ) ) |
| 30 |
25 29
|
frlmfibas |
|- ( ( ( CCfld |`s QQ ) e. DivRing /\ ( 1 ... N ) e. Fin ) -> ( QQ ^m ( 1 ... N ) ) = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 31 |
21 24 30
|
mp2an |
|- ( QQ ^m ( 1 ... N ) ) = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 32 |
25
|
frlmsca |
|- ( ( ( CCfld |`s QQ ) e. DivRing /\ ( 1 ... N ) e. Fin ) -> ( CCfld |`s QQ ) = ( Scalar ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 33 |
21 24 32
|
mp2an |
|- ( CCfld |`s QQ ) = ( Scalar ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 34 |
|
eqid |
|- ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 35 |
20
|
qrng0 |
|- 0 = ( 0g ` ( CCfld |`s QQ ) ) |
| 36 |
25 35
|
frlm0 |
|- ( ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) X. { 0 } ) = ( 0g ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 37 |
23 24 36
|
mp2an |
|- ( ( 1 ... N ) X. { 0 } ) = ( 0g ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 38 |
|
eqid |
|- ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) = ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) |
| 39 |
38 29
|
frlmfibas |
|- ( ( ( CCfld |`s QQ ) e. DivRing /\ ( 0 ... N ) e. Fin ) -> ( QQ ^m ( 0 ... N ) ) = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) ) ) |
| 40 |
21 28 39
|
mp2an |
|- ( QQ ^m ( 0 ... N ) ) = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) ) |
| 41 |
31 33 34 37 35 40
|
islindf4 |
|- ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod /\ ( 0 ... N ) e. Fin /\ ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) --> ( QQ ^m ( 1 ... N ) ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 42 |
27 28 41
|
mp3an12 |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) --> ( QQ ^m ( 1 ... N ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 43 |
19 42
|
syl |
|- ( ph -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 44 |
|
elmapi |
|- ( w e. ( QQ ^m ( 0 ... N ) ) -> w : ( 0 ... N ) --> QQ ) |
| 45 |
|
fzfid |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( 0 ... N ) e. Fin ) |
| 46 |
|
fvexd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. _V ) |
| 47 |
16
|
mptex |
|- ( n e. ( 1 ... N ) |-> C ) e. _V |
| 48 |
47
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> C ) e. _V ) |
| 49 |
|
simpr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> w : ( 0 ... N ) --> QQ ) |
| 50 |
49
|
feqmptd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> w = ( k e. ( 0 ... N ) |-> ( w ` k ) ) ) |
| 51 |
|
eqidd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) |
| 52 |
45 46 48 50 51
|
offval2 |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) = ( k e. ( 0 ... N ) |-> ( ( w ` k ) ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( n e. ( 1 ... N ) |-> C ) ) ) ) |
| 53 |
|
fzfid |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 54 |
|
ffvelcdm |
|- ( ( w : ( 0 ... N ) --> QQ /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. QQ ) |
| 55 |
54
|
adantll |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. QQ ) |
| 56 |
18
|
adantlr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) ) ) |
| 57 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 58 |
20 57
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` ( CCfld |`s QQ ) ) ) |
| 59 |
15 58
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s QQ ) ) |
| 60 |
25 31 29 53 55 56 34 59
|
frlmvscafval |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( n e. ( 1 ... N ) |-> C ) ) = ( ( ( 1 ... N ) X. { ( w ` k ) } ) oF x. ( n e. ( 1 ... N ) |-> C ) ) ) |
| 61 |
|
fvexd |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( w ` k ) e. _V ) |
| 62 |
13
|
adantllr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> C e. QQ ) |
| 63 |
|
fconstmpt |
|- ( ( 1 ... N ) X. { ( w ` k ) } ) = ( n e. ( 1 ... N ) |-> ( w ` k ) ) |
| 64 |
63
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( 1 ... N ) X. { ( w ` k ) } ) = ( n e. ( 1 ... N ) |-> ( w ` k ) ) ) |
| 65 |
|
eqidd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> C ) = ( n e. ( 1 ... N ) |-> C ) ) |
| 66 |
53 61 62 64 65
|
offval2 |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( ( 1 ... N ) X. { ( w ` k ) } ) oF x. ( n e. ( 1 ... N ) |-> C ) ) = ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) |
| 67 |
60 66
|
eqtrd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( n e. ( 1 ... N ) |-> C ) ) = ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) |
| 68 |
67
|
mpteq2dva |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( k e. ( 0 ... N ) |-> ( ( w ` k ) ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( n e. ( 1 ... N ) |-> C ) ) ) = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) |
| 69 |
52 68
|
eqtrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) |
| 70 |
69
|
oveq2d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) ) |
| 71 |
|
fzfid |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( 1 ... N ) e. Fin ) |
| 72 |
23
|
a1i |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( CCfld |`s QQ ) e. Ring ) |
| 73 |
55
|
adantlr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. QQ ) |
| 74 |
13
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> C e. QQ ) |
| 75 |
74
|
adantllr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> C e. QQ ) |
| 76 |
|
qmulcl |
|- ( ( ( w ` k ) e. QQ /\ C e. QQ ) -> ( ( w ` k ) x. C ) e. QQ ) |
| 77 |
73 75 76
|
syl2anc |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. C ) e. QQ ) |
| 78 |
77
|
an32s |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( ( w ` k ) x. C ) e. QQ ) |
| 79 |
78
|
fmpttd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) : ( 1 ... N ) --> QQ ) |
| 80 |
15 16
|
elmap |
|- ( ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) e. ( QQ ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) : ( 1 ... N ) --> QQ ) |
| 81 |
79 80
|
sylibr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) e. ( QQ ^m ( 1 ... N ) ) ) |
| 82 |
|
eqid |
|- ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) |
| 83 |
16
|
mptex |
|- ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) e. _V |
| 84 |
83
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) e. _V ) |
| 85 |
|
snex |
|- { 0 } e. _V |
| 86 |
16 85
|
xpex |
|- ( ( 1 ... N ) X. { 0 } ) e. _V |
| 87 |
86
|
a1i |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( 1 ... N ) X. { 0 } ) e. _V ) |
| 88 |
82 45 84 87
|
fsuppmptdm |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) finSupp ( ( 1 ... N ) X. { 0 } ) ) |
| 89 |
25 31 37 71 45 72 81 88
|
frlmgsum |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) = ( n e. ( 1 ... N ) |-> ( ( CCfld |`s QQ ) gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) ) |
| 90 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 91 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 92 |
|
cnfldex |
|- CCfld e. _V |
| 93 |
92
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> CCfld e. _V ) |
| 94 |
|
fzfid |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( 0 ... N ) e. Fin ) |
| 95 |
|
qsscn |
|- QQ C_ CC |
| 96 |
95
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> QQ C_ CC ) |
| 97 |
77
|
fmpttd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) : ( 0 ... N ) --> QQ ) |
| 98 |
|
0z |
|- 0 e. ZZ |
| 99 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
| 100 |
98 99
|
ax-mp |
|- 0 e. QQ |
| 101 |
100
|
a1i |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> 0 e. QQ ) |
| 102 |
|
addlid |
|- ( x e. CC -> ( 0 + x ) = x ) |
| 103 |
|
addrid |
|- ( x e. CC -> ( x + 0 ) = x ) |
| 104 |
102 103
|
jca |
|- ( x e. CC -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 105 |
104
|
adantl |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ x e. CC ) -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 106 |
90 91 20 93 94 96 97 101 105
|
gsumress |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( CCfld gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) = ( ( CCfld |`s QQ ) gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) |
| 107 |
|
simplr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> w : ( 0 ... N ) --> QQ ) |
| 108 |
|
qcn |
|- ( ( w ` k ) e. QQ -> ( w ` k ) e. CC ) |
| 109 |
54 108
|
syl |
|- ( ( w : ( 0 ... N ) --> QQ /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. CC ) |
| 110 |
107 109
|
sylan |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. CC ) |
| 111 |
|
qcn |
|- ( C e. QQ -> C e. CC ) |
| 112 |
13 111
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> C e. CC ) |
| 113 |
112
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> C e. CC ) |
| 114 |
113
|
adantllr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> C e. CC ) |
| 115 |
110 114
|
mulcld |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. C ) e. CC ) |
| 116 |
94 115
|
gsumfsum |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( CCfld gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 117 |
106 116
|
eqtr3d |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( ( CCfld |`s QQ ) gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 118 |
117
|
mpteq2dva |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( n e. ( 1 ... N ) |-> ( ( CCfld |`s QQ ) gsum ( k e. ( 0 ... N ) |-> ( ( w ` k ) x. C ) ) ) ) = ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) ) |
| 119 |
70 89 118
|
3eqtrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) ) |
| 120 |
|
qaddcl |
|- ( ( x e. QQ /\ y e. QQ ) -> ( x + y ) e. QQ ) |
| 121 |
120
|
adantl |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) e. QQ ) |
| 122 |
96 121 94 77 101
|
fsumcllem |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) e. QQ ) |
| 123 |
122
|
fmpttd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) : ( 1 ... N ) --> QQ ) |
| 124 |
15 16
|
elmap |
|- ( ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) e. ( QQ ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) : ( 1 ... N ) --> QQ ) |
| 125 |
123 124
|
sylibr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) e. ( QQ ^m ( 1 ... N ) ) ) |
| 126 |
119 125
|
eqeltrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) e. ( QQ ^m ( 1 ... N ) ) ) |
| 127 |
|
elmapi |
|- ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) e. ( QQ ^m ( 1 ... N ) ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) : ( 1 ... N ) --> QQ ) |
| 128 |
|
ffn |
|- ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) : ( 1 ... N ) --> QQ -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) Fn ( 1 ... N ) ) |
| 129 |
126 127 128
|
3syl |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) Fn ( 1 ... N ) ) |
| 130 |
|
c0ex |
|- 0 e. _V |
| 131 |
|
fnconstg |
|- ( 0 e. _V -> ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) ) |
| 132 |
130 131
|
ax-mp |
|- ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) |
| 133 |
|
nfcv |
|- F/_ n ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) |
| 134 |
|
nfcv |
|- F/_ n gsum |
| 135 |
|
nfcv |
|- F/_ n w |
| 136 |
|
nfcv |
|- F/_ n oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 137 |
|
nfcv |
|- F/_ n ( 0 ... N ) |
| 138 |
|
nfmpt1 |
|- F/_ n ( n e. ( 1 ... N ) |-> C ) |
| 139 |
137 138
|
nfmpt |
|- F/_ n ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) |
| 140 |
135 136 139
|
nfov |
|- F/_ n ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) |
| 141 |
133 134 140
|
nfov |
|- F/_ n ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) |
| 142 |
|
nfcv |
|- F/_ n ( ( 1 ... N ) X. { 0 } ) |
| 143 |
141 142
|
eqfnfv2f |
|- ( ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) Fn ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) ) -> ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) <-> A. n e. ( 1 ... N ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) ) ) |
| 144 |
129 132 143
|
sylancl |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) <-> A. n e. ( 1 ... N ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) ) ) |
| 145 |
119
|
fveq1d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = ( ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) ` n ) ) |
| 146 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) e. _V |
| 147 |
|
eqid |
|- ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) = ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 148 |
147
|
fvmpt2 |
|- ( ( n e. ( 1 ... N ) /\ sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) e. _V ) -> ( ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) ` n ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 149 |
146 148
|
mpan2 |
|- ( n e. ( 1 ... N ) -> ( ( n e. ( 1 ... N ) |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) ` n ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 150 |
145 149
|
sylan9eq |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) ) |
| 151 |
130
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { 0 } ) ` n ) = 0 ) |
| 152 |
151
|
adantl |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { 0 } ) ` n ) = 0 ) |
| 153 |
150 152
|
eqeq12d |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) <-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 154 |
153
|
ralbidva |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( A. n e. ( 1 ... N ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) <-> A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 155 |
144 154
|
bitrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) <-> A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 156 |
155
|
imbi1d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 157 |
44 156
|
sylan2 |
|- ( ( ph /\ w e. ( QQ ^m ( 0 ... N ) ) ) -> ( ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 158 |
157
|
ralbidva |
|- ( ph -> ( A. w e. ( QQ ^m ( 0 ... N ) ) ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) gsum ( w oF ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) ) = ( ( 1 ... N ) X. { 0 } ) -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 159 |
43 158
|
bitrd |
|- ( ph -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) ) ) |
| 160 |
|
drngnzr |
|- ( ( CCfld |`s QQ ) e. DivRing -> ( CCfld |`s QQ ) e. NzRing ) |
| 161 |
21 160
|
ax-mp |
|- ( CCfld |`s QQ ) e. NzRing |
| 162 |
33
|
islindf3 |
|- ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod /\ ( CCfld |`s QQ ) e. NzRing ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) ) |
| 163 |
27 161 162
|
mp2an |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 164 |
|
eqid |
|- ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) |
| 165 |
47 164
|
dmmpti |
|- dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) = ( 0 ... N ) |
| 166 |
|
f1eq2 |
|- ( dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) = ( 0 ... N ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -1-1-> _V <-> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V ) ) |
| 167 |
165 166
|
ax-mp |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -1-1-> _V <-> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V ) |
| 168 |
167
|
anbi1i |
|- ( ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) <-> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 169 |
163 168
|
bitri |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) LIndF ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) <-> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 170 |
|
con34b |
|- ( ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> ( -. w = ( ( 0 ... N ) X. { 0 } ) -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 171 |
|
df-nel |
|- ( w e/ { ( ( 0 ... N ) X. { 0 } ) } <-> -. w e. { ( ( 0 ... N ) X. { 0 } ) } ) |
| 172 |
|
velsn |
|- ( w e. { ( ( 0 ... N ) X. { 0 } ) } <-> w = ( ( 0 ... N ) X. { 0 } ) ) |
| 173 |
171 172
|
xchbinx |
|- ( w e/ { ( ( 0 ... N ) X. { 0 } ) } <-> -. w = ( ( 0 ... N ) X. { 0 } ) ) |
| 174 |
173
|
imbi1i |
|- ( ( w e/ { ( ( 0 ... N ) X. { 0 } ) } -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) <-> ( -. w = ( ( 0 ... N ) X. { 0 } ) -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 175 |
170 174
|
bitr4i |
|- ( ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> ( w e/ { ( ( 0 ... N ) X. { 0 } ) } -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 176 |
175
|
ralbii |
|- ( A. w e. ( QQ ^m ( 0 ... N ) ) ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> A. w e. ( QQ ^m ( 0 ... N ) ) ( w e/ { ( ( 0 ... N ) X. { 0 } ) } -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 177 |
|
raldifb |
|- ( A. w e. ( QQ ^m ( 0 ... N ) ) ( w e/ { ( ( 0 ... N ) X. { 0 } ) } -> -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) <-> A. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 178 |
|
ralnex |
|- ( A. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) -. A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 <-> -. E. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 179 |
176 177 178
|
3bitri |
|- ( A. w e. ( QQ ^m ( 0 ... N ) ) ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> w = ( ( 0 ... N ) X. { 0 } ) ) <-> -. E. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 180 |
159 169 179
|
3bitr3g |
|- ( ph -> ( ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) <-> -. E. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 181 |
|
eqid |
|- ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 182 |
31 181
|
lssmre |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod -> ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) ) |
| 183 |
27 182
|
ax-mp |
|- ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) |
| 184 |
183
|
a1i |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) ) |
| 185 |
|
eqid |
|- ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 186 |
|
eqid |
|- ( mrCls ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) = ( mrCls ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 187 |
181 185 186
|
mrclsp |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod -> ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( mrCls ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 188 |
27 187
|
ax-mp |
|- ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( mrCls ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 189 |
|
eqid |
|- ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) = ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 190 |
33
|
islvec |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec <-> ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 191 |
27 21 190
|
mpbir2an |
|- ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec |
| 192 |
181 188 31
|
lssacsex |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec -> ( ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) e. ( ACS ` ( QQ ^m ( 1 ... N ) ) ) /\ A. z e. ~P ( QQ ^m ( 1 ... N ) ) A. x e. ( QQ ^m ( 1 ... N ) ) A. y e. ( ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { x } ) ) \ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` z ) ) x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { y } ) ) ) ) |
| 193 |
192
|
simprd |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec -> A. z e. ~P ( QQ ^m ( 1 ... N ) ) A. x e. ( QQ ^m ( 1 ... N ) ) A. y e. ( ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { x } ) ) \ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` z ) ) x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { y } ) ) ) |
| 194 |
191 193
|
ax-mp |
|- A. z e. ~P ( QQ ^m ( 1 ... N ) ) A. x e. ( QQ ^m ( 1 ... N ) ) A. y e. ( ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { x } ) ) \ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` z ) ) x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { y } ) ) |
| 195 |
194
|
a1i |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> A. z e. ~P ( QQ ^m ( 1 ... N ) ) A. x e. ( QQ ^m ( 1 ... N ) ) A. y e. ( ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { x } ) ) \ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` z ) ) x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( z u. { y } ) ) ) |
| 196 |
19
|
frnd |
|- ( ph -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( QQ ^m ( 1 ... N ) ) ) |
| 197 |
|
dif0 |
|- ( ( QQ ^m ( 1 ... N ) ) \ (/) ) = ( QQ ^m ( 1 ... N ) ) |
| 198 |
196 197
|
sseqtrrdi |
|- ( ph -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) ) |
| 199 |
198
|
adantr |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) ) |
| 200 |
|
eqid |
|- ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) = ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) |
| 201 |
200 25 31
|
uvcff |
|- ( ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin ) -> ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) : ( 1 ... N ) --> ( QQ ^m ( 1 ... N ) ) ) |
| 202 |
23 24 201
|
mp2an |
|- ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) : ( 1 ... N ) --> ( QQ ^m ( 1 ... N ) ) |
| 203 |
|
frn |
|- ( ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) : ( 1 ... N ) --> ( QQ ^m ( 1 ... N ) ) -> ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) C_ ( QQ ^m ( 1 ... N ) ) ) |
| 204 |
202 203
|
ax-mp |
|- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) C_ ( QQ ^m ( 1 ... N ) ) |
| 205 |
204 197
|
sseqtrri |
|- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) |
| 206 |
205
|
a1i |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) ) |
| 207 |
|
un0 |
|- ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) u. (/) ) = ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) |
| 208 |
207
|
fveq2i |
|- ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) u. (/) ) ) = ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 209 |
|
eqid |
|- ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) = ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 210 |
25 200 209
|
frlmlbs |
|- ( ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin ) -> ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) |
| 211 |
23 24 210
|
mp2an |
|- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) |
| 212 |
31 209 185
|
lbssp |
|- ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) -> ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) = ( QQ ^m ( 1 ... N ) ) ) |
| 213 |
211 212
|
ax-mp |
|- ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) = ( QQ ^m ( 1 ... N ) ) |
| 214 |
208 213
|
eqtri |
|- ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) u. (/) ) ) = ( QQ ^m ( 1 ... N ) ) |
| 215 |
196 214
|
sseqtrrdi |
|- ( ph -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) u. (/) ) ) ) |
| 216 |
215
|
adantr |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) u. (/) ) ) ) |
| 217 |
|
un0 |
|- ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) u. (/) ) = ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) |
| 218 |
27 161
|
pm3.2i |
|- ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod /\ ( CCfld |`s QQ ) e. NzRing ) |
| 219 |
185 33
|
lindsind2 |
|- ( ( ( ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod /\ ( CCfld |`s QQ ) e. NzRing ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) /\ x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) -> -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) |
| 220 |
218 219
|
mp3an1 |
|- ( ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) /\ x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) -> -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) |
| 221 |
220
|
ralrimiva |
|- ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) -> A. x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) |
| 222 |
188 189
|
ismri2 |
|- ( ( ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) C_ ( QQ ^m ( 1 ... N ) ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) <-> A. x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) ) |
| 223 |
183 196 222
|
sylancr |
|- ( ph -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) <-> A. x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) ) |
| 224 |
223
|
biimpar |
|- ( ( ph /\ A. x e. ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -. x e. ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ` ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) \ { x } ) ) ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 225 |
221 224
|
sylan2 |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 226 |
217 225
|
eqeltrid |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) u. (/) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) |
| 227 |
|
mptfi |
|- ( ( 0 ... N ) e. Fin -> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin ) |
| 228 |
|
rnfi |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin ) |
| 229 |
28 227 228
|
mp2b |
|- ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin |
| 230 |
229
|
orci |
|- ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin \/ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. Fin ) |
| 231 |
230
|
a1i |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. Fin \/ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. Fin ) ) |
| 232 |
184 188 189 195 199 206 216 226 231
|
mreexexd |
|- ( ( ph /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> E. v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v /\ ( v u. (/) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) ) |
| 233 |
232
|
ex |
|- ( ph -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) -> E. v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v /\ ( v u. (/) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) ) ) |
| 234 |
|
ovex |
|- ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. _V |
| 235 |
234
|
rnex |
|- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. _V |
| 236 |
|
elpwi |
|- ( v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> v C_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 237 |
|
ssdomg |
|- ( ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. _V -> ( v C_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) ) |
| 238 |
235 236 237
|
mpsyl |
|- ( v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 239 |
|
endomtr |
|- ( ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v /\ v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 240 |
239
|
ancoms |
|- ( ( v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v ) -> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 241 |
|
f1f1orn |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-onto-> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) |
| 242 |
|
ovex |
|- ( 0 ... N ) e. _V |
| 243 |
242
|
f1oen |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-onto-> ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -> ( 0 ... N ) ~~ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) |
| 244 |
241 243
|
syl |
|- ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( 0 ... N ) ~~ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ) |
| 245 |
|
endomtr |
|- ( ( ( 0 ... N ) ~~ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ( 0 ... N ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 246 |
200
|
uvcendim |
|- ( ( ( CCfld |`s QQ ) e. NzRing /\ ( 1 ... N ) e. Fin ) -> ( 1 ... N ) ~~ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) |
| 247 |
161 24 246
|
mp2an |
|- ( 1 ... N ) ~~ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) |
| 248 |
247
|
ensymi |
|- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ~~ ( 1 ... N ) |
| 249 |
|
domentr |
|- ( ( ( 0 ... N ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) /\ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ~~ ( 1 ... N ) ) -> ( 0 ... N ) ~<_ ( 1 ... N ) ) |
| 250 |
|
hashdom |
|- ( ( ( 0 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) ) <-> ( 0 ... N ) ~<_ ( 1 ... N ) ) ) |
| 251 |
28 24 250
|
mp2an |
|- ( ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) ) <-> ( 0 ... N ) ~<_ ( 1 ... N ) ) |
| 252 |
|
hashfz0 |
|- ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 253 |
2 252
|
syl |
|- ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 254 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| 255 |
2 254
|
syl |
|- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
| 256 |
253 255
|
breq12d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) ) <-> ( N + 1 ) <_ N ) ) |
| 257 |
251 256
|
bitr3id |
|- ( ph -> ( ( 0 ... N ) ~<_ ( 1 ... N ) <-> ( N + 1 ) <_ N ) ) |
| 258 |
249 257
|
imbitrid |
|- ( ph -> ( ( ( 0 ... N ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) /\ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ~~ ( 1 ... N ) ) -> ( N + 1 ) <_ N ) ) |
| 259 |
248 258
|
mpan2i |
|- ( ph -> ( ( 0 ... N ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> ( N + 1 ) <_ N ) ) |
| 260 |
245 259
|
syl5 |
|- ( ph -> ( ( ( 0 ... N ) ~~ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ( N + 1 ) <_ N ) ) |
| 261 |
260
|
expd |
|- ( ph -> ( ( 0 ... N ) ~~ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> ( N + 1 ) <_ N ) ) ) |
| 262 |
244 261
|
syl5 |
|- ( ph -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> ( N + 1 ) <_ N ) ) ) |
| 263 |
262
|
com23 |
|- ( ph -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 264 |
240 263
|
syl5 |
|- ( ph -> ( ( v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 265 |
264
|
expdimp |
|- ( ( ph /\ v ~<_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 266 |
238 265
|
sylan2 |
|- ( ( ph /\ v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 267 |
266
|
adantrd |
|- ( ( ph /\ v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) -> ( ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v /\ ( v u. (/) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 268 |
267
|
rexlimdva |
|- ( ph -> ( E. v e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) ~~ v /\ ( v u. (/) ) e. ( mrInd ` ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 269 |
233 268
|
syld |
|- ( ph -> ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) -> ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V -> ( N + 1 ) <_ N ) ) ) |
| 270 |
269
|
impd |
|- ( ph -> ( ( ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) /\ ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V ) -> ( N + 1 ) <_ N ) ) |
| 271 |
270
|
ancomsd |
|- ( ph -> ( ( ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) : ( 0 ... N ) -1-1-> _V /\ ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) ) e. ( LIndS ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) -> ( N + 1 ) <_ N ) ) |
| 272 |
180 271
|
sylbird |
|- ( ph -> ( -. E. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 -> ( N + 1 ) <_ N ) ) |
| 273 |
12 272
|
mt3d |
|- ( ph -> E. w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 274 |
|
eldifsn |
|- ( w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) <-> ( w e. ( QQ ^m ( 0 ... N ) ) /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) |
| 275 |
44
|
anim1i |
|- ( ( w e. ( QQ ^m ( 0 ... N ) ) /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) -> ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) |
| 276 |
274 275
|
sylbi |
|- ( w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) -> ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) |
| 277 |
95
|
a1i |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> QQ C_ CC ) |
| 278 |
2
|
adantr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> N e. NN0 ) |
| 279 |
277 278 55
|
elplyd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( Poly ` QQ ) ) |
| 280 |
279
|
adantrr |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( Poly ` QQ ) ) |
| 281 |
|
uzdisj |
|- ( ( 0 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
| 282 |
2
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 283 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
| 284 |
282 283
|
syl |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 285 |
284
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 286 |
285
|
ineq1d |
|- ( ph -> ( ( 0 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) |
| 287 |
281 286
|
eqtr3id |
|- ( ph -> (/) = ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) |
| 288 |
287
|
eqcomd |
|- ( ph -> ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
| 289 |
130
|
fconst |
|- ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> { 0 } |
| 290 |
|
snssi |
|- ( 0 e. QQ -> { 0 } C_ QQ ) |
| 291 |
98 99 290
|
mp2b |
|- { 0 } C_ QQ |
| 292 |
291 95
|
sstri |
|- { 0 } C_ CC |
| 293 |
|
fss |
|- ( ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> { 0 } /\ { 0 } C_ CC ) -> ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 294 |
289 292 293
|
mp2an |
|- ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> CC |
| 295 |
|
fun |
|- ( ( ( w : ( 0 ... N ) --> QQ /\ ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) /\ ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) -> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) ) |
| 296 |
294 295
|
mpanl2 |
|- ( ( w : ( 0 ... N ) --> QQ /\ ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) -> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) ) |
| 297 |
288 296
|
sylan2 |
|- ( ( w : ( 0 ... N ) --> QQ /\ ph ) -> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) ) |
| 298 |
297
|
ancoms |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) ) |
| 299 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 300 |
9 299
|
eleqtrdi |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` 0 ) ) |
| 301 |
|
uzsplit |
|- ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 302 |
300 301
|
syl |
|- ( ph -> ( ZZ>= ` 0 ) = ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 303 |
299 302
|
eqtrid |
|- ( ph -> NN0 = ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 304 |
285
|
uneq1d |
|- ( ph -> ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 305 |
303 304
|
eqtr2d |
|- ( ph -> ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) = NN0 ) |
| 306 |
|
ssequn1 |
|- ( QQ C_ CC <-> ( QQ u. CC ) = CC ) |
| 307 |
95 306
|
mpbi |
|- ( QQ u. CC ) = CC |
| 308 |
307
|
a1i |
|- ( ph -> ( QQ u. CC ) = CC ) |
| 309 |
305 308
|
feq23d |
|- ( ph -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) <-> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : NN0 --> CC ) ) |
| 310 |
309
|
adantr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) --> ( QQ u. CC ) <-> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : NN0 --> CC ) ) |
| 311 |
298 310
|
mpbid |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) : NN0 --> CC ) |
| 312 |
|
ffn |
|- ( w : ( 0 ... N ) --> QQ -> w Fn ( 0 ... N ) ) |
| 313 |
|
fnimadisj |
|- ( ( w Fn ( 0 ... N ) /\ ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) -> ( w " ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
| 314 |
312 288 313
|
syl2anr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w " ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
| 315 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 316 |
315
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 317 |
|
uzid |
|- ( ( N + 1 ) e. ZZ -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) ) |
| 318 |
|
ne0i |
|- ( ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) -> ( ZZ>= ` ( N + 1 ) ) =/= (/) ) |
| 319 |
316 317 318
|
3syl |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) =/= (/) ) |
| 320 |
|
inidm |
|- ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = ( ZZ>= ` ( N + 1 ) ) |
| 321 |
320
|
neeq1i |
|- ( ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) =/= (/) <-> ( ZZ>= ` ( N + 1 ) ) =/= (/) ) |
| 322 |
319 321
|
sylibr |
|- ( ph -> ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) =/= (/) ) |
| 323 |
|
xpima2 |
|- ( ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) =/= (/) -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 324 |
322 323
|
syl |
|- ( ph -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 325 |
324
|
adantr |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 326 |
314 325
|
uneq12d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( w " ( ZZ>= ` ( N + 1 ) ) ) u. ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) " ( ZZ>= ` ( N + 1 ) ) ) ) = ( (/) u. { 0 } ) ) |
| 327 |
|
imaundir |
|- ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) " ( ZZ>= ` ( N + 1 ) ) ) = ( ( w " ( ZZ>= ` ( N + 1 ) ) ) u. ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) " ( ZZ>= ` ( N + 1 ) ) ) ) |
| 328 |
|
uncom |
|- ( (/) u. { 0 } ) = ( { 0 } u. (/) ) |
| 329 |
|
un0 |
|- ( { 0 } u. (/) ) = { 0 } |
| 330 |
328 329
|
eqtr2i |
|- { 0 } = ( (/) u. { 0 } ) |
| 331 |
326 327 330
|
3eqtr4g |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 332 |
288 312
|
anim12ci |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w Fn ( 0 ... N ) /\ ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) ) |
| 333 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) Fn ( ZZ>= ` ( N + 1 ) ) ) |
| 334 |
130 333
|
ax-mp |
|- ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) Fn ( ZZ>= ` ( N + 1 ) ) |
| 335 |
|
fvun1 |
|- ( ( w Fn ( 0 ... N ) /\ ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) Fn ( ZZ>= ` ( N + 1 ) ) /\ ( ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) /\ k e. ( 0 ... N ) ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) = ( w ` k ) ) |
| 336 |
334 335
|
mp3an2 |
|- ( ( w Fn ( 0 ... N ) /\ ( ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) /\ k e. ( 0 ... N ) ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) = ( w ` k ) ) |
| 337 |
336
|
anassrs |
|- ( ( ( w Fn ( 0 ... N ) /\ ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) /\ k e. ( 0 ... N ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) = ( w ` k ) ) |
| 338 |
332 337
|
sylan |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) = ( w ` k ) ) |
| 339 |
338
|
eqcomd |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) = ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) ) |
| 340 |
339
|
oveq1d |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. ( y ^ k ) ) = ( ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) x. ( y ^ k ) ) ) |
| 341 |
340
|
sumeq2dv |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) x. ( y ^ k ) ) ) |
| 342 |
341
|
mpteq2dv |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ` k ) x. ( y ^ k ) ) ) ) |
| 343 |
279 278 311 331 342
|
coeeq |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) = ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) ) |
| 344 |
343
|
reseq1d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) |` ( 0 ... N ) ) ) |
| 345 |
|
res0 |
|- ( w |` (/) ) = (/) |
| 346 |
287
|
reseq2d |
|- ( ph -> ( w |` (/) ) = ( w |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 347 |
|
res0 |
|- ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` (/) ) = (/) |
| 348 |
287
|
reseq2d |
|- ( ph -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` (/) ) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 349 |
347 348
|
eqtr3id |
|- ( ph -> (/) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 350 |
345 346 349
|
3eqtr3a |
|- ( ph -> ( w |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) |
| 351 |
|
fss |
|- ( ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> { 0 } /\ { 0 } C_ QQ ) -> ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> QQ ) |
| 352 |
289 291 351
|
mp2an |
|- ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> QQ |
| 353 |
|
fresaunres1 |
|- ( ( w : ( 0 ... N ) --> QQ /\ ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) : ( ZZ>= ` ( N + 1 ) ) --> QQ /\ ( w |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) |` ( 0 ... N ) ) = w ) |
| 354 |
352 353
|
mp3an2 |
|- ( ( w : ( 0 ... N ) --> QQ /\ ( w |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) |` ( 0 ... N ) ) = w ) |
| 355 |
350 354
|
sylan2 |
|- ( ( w : ( 0 ... N ) --> QQ /\ ph ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) |` ( 0 ... N ) ) = w ) |
| 356 |
355
|
ancoms |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( w u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) |` ( 0 ... N ) ) = w ) |
| 357 |
344 356
|
eqtrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = w ) |
| 358 |
|
fveq2 |
|- ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) = 0p -> ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) = ( coeff ` 0p ) ) |
| 359 |
358
|
reseq1d |
|- ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) = 0p -> ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = ( ( coeff ` 0p ) |` ( 0 ... N ) ) ) |
| 360 |
|
eqtr2 |
|- ( ( ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = w /\ ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = ( ( coeff ` 0p ) |` ( 0 ... N ) ) ) -> w = ( ( coeff ` 0p ) |` ( 0 ... N ) ) ) |
| 361 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
| 362 |
361
|
reseq1i |
|- ( ( coeff ` 0p ) |` ( 0 ... N ) ) = ( ( NN0 X. { 0 } ) |` ( 0 ... N ) ) |
| 363 |
|
elfznn0 |
|- ( x e. ( 0 ... N ) -> x e. NN0 ) |
| 364 |
363
|
ssriv |
|- ( 0 ... N ) C_ NN0 |
| 365 |
|
xpssres |
|- ( ( 0 ... N ) C_ NN0 -> ( ( NN0 X. { 0 } ) |` ( 0 ... N ) ) = ( ( 0 ... N ) X. { 0 } ) ) |
| 366 |
364 365
|
ax-mp |
|- ( ( NN0 X. { 0 } ) |` ( 0 ... N ) ) = ( ( 0 ... N ) X. { 0 } ) |
| 367 |
362 366
|
eqtri |
|- ( ( coeff ` 0p ) |` ( 0 ... N ) ) = ( ( 0 ... N ) X. { 0 } ) |
| 368 |
360 367
|
eqtrdi |
|- ( ( ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = w /\ ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = ( ( coeff ` 0p ) |` ( 0 ... N ) ) ) -> w = ( ( 0 ... N ) X. { 0 } ) ) |
| 369 |
368
|
ex |
|- ( ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = w -> ( ( ( coeff ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ) |` ( 0 ... N ) ) = ( ( coeff ` 0p ) |` ( 0 ... N ) ) -> w = ( ( 0 ... N ) X. { 0 } ) ) ) |
| 370 |
357 359 369
|
syl2im |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) = 0p -> w = ( ( 0 ... N ) X. { 0 } ) ) ) |
| 371 |
370
|
necon3d |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> ( w =/= ( ( 0 ... N ) X. { 0 } ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) =/= 0p ) ) |
| 372 |
371
|
impr |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) =/= 0p ) |
| 373 |
|
eldifsn |
|- ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( Poly ` QQ ) /\ ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) =/= 0p ) ) |
| 374 |
280 372 373
|
sylanbrc |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( ( Poly ` QQ ) \ { 0p } ) ) |
| 375 |
374
|
adantrr |
|- ( ( ph /\ ( ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( ( Poly ` QQ ) \ { 0p } ) ) |
| 376 |
|
oveq1 |
|- ( y = A -> ( y ^ k ) = ( A ^ k ) ) |
| 377 |
376
|
oveq2d |
|- ( y = A -> ( ( w ` k ) x. ( y ^ k ) ) = ( ( w ` k ) x. ( A ^ k ) ) ) |
| 378 |
377
|
sumeq2sdv |
|- ( y = A -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) ) |
| 379 |
|
eqid |
|- ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) |
| 380 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) e. _V |
| 381 |
378 379 380
|
fvmpt |
|- ( A e. CC -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) ) |
| 382 |
1 381
|
syl |
|- ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) ) |
| 383 |
382
|
adantr |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) ) |
| 384 |
109
|
adantll |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( w ` k ) e. CC ) |
| 385 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> X e. CC ) |
| 386 |
112 385
|
mulcld |
|- ( ( ( ph /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( C x. X ) e. CC ) |
| 387 |
386
|
adantllr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( C x. X ) e. CC ) |
| 388 |
53 384 387
|
fsummulc2 |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) ) = sum_ n e. ( 1 ... N ) ( ( w ` k ) x. ( C x. X ) ) ) |
| 389 |
5
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. ( A ^ k ) ) = ( ( w ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) ) ) |
| 390 |
389
|
adantlr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. ( A ^ k ) ) = ( ( w ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) ) ) |
| 391 |
384
|
adantr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( w ` k ) e. CC ) |
| 392 |
112
|
adantllr |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> C e. CC ) |
| 393 |
|
simpll |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ph ) |
| 394 |
393 3
|
sylan |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> X e. CC ) |
| 395 |
391 392 394
|
mulassd |
|- ( ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( w ` k ) x. C ) x. X ) = ( ( w ` k ) x. ( C x. X ) ) ) |
| 396 |
395
|
sumeq2dv |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> sum_ n e. ( 1 ... N ) ( ( ( w ` k ) x. C ) x. X ) = sum_ n e. ( 1 ... N ) ( ( w ` k ) x. ( C x. X ) ) ) |
| 397 |
388 390 396
|
3eqtr4d |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ k e. ( 0 ... N ) ) -> ( ( w ` k ) x. ( A ^ k ) ) = sum_ n e. ( 1 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 398 |
397
|
sumeq2dv |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) = sum_ k e. ( 0 ... N ) sum_ n e. ( 1 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 399 |
109
|
ad2ant2lr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> ( w ` k ) e. CC ) |
| 400 |
112
|
anasss |
|- ( ( ph /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> C e. CC ) |
| 401 |
400
|
adantlr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> C e. CC ) |
| 402 |
399 401
|
mulcld |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> ( ( w ` k ) x. C ) e. CC ) |
| 403 |
3
|
ad2ant2rl |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> X e. CC ) |
| 404 |
402 403
|
mulcld |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) ) -> ( ( ( w ` k ) x. C ) x. X ) e. CC ) |
| 405 |
45 71 404
|
fsumcom |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> sum_ k e. ( 0 ... N ) sum_ n e. ( 1 ... N ) ( ( ( w ` k ) x. C ) x. X ) = sum_ n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 406 |
398 405
|
eqtrd |
|- ( ( ph /\ w : ( 0 ... N ) --> QQ ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) = sum_ n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 407 |
406
|
adantrr |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) = sum_ n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 408 |
|
nfv |
|- F/ n ph |
| 409 |
|
nfv |
|- F/ n w : ( 0 ... N ) --> QQ |
| 410 |
|
nfra1 |
|- F/ n A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 |
| 411 |
409 410
|
nfan |
|- F/ n ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 412 |
408 411
|
nfan |
|- F/ n ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) |
| 413 |
|
rspa |
|- ( ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 /\ n e. ( 1 ... N ) ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) |
| 414 |
413
|
oveq1d |
|- ( ( A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 /\ n e. ( 1 ... N ) ) -> ( sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) x. X ) = ( 0 x. X ) ) |
| 415 |
414
|
adantll |
|- ( ( ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) /\ n e. ( 1 ... N ) ) -> ( sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) x. X ) = ( 0 x. X ) ) |
| 416 |
415
|
adantll |
|- ( ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) /\ n e. ( 1 ... N ) ) -> ( sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) x. X ) = ( 0 x. X ) ) |
| 417 |
3
|
adantlr |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> X e. CC ) |
| 418 |
94 417 115
|
fsummulc1 |
|- ( ( ( ph /\ w : ( 0 ... N ) --> QQ ) /\ n e. ( 1 ... N ) ) -> ( sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) x. X ) = sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 419 |
418
|
adantlrr |
|- ( ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) /\ n e. ( 1 ... N ) ) -> ( sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) x. X ) = sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) ) |
| 420 |
3
|
mul02d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( 0 x. X ) = 0 ) |
| 421 |
420
|
adantlr |
|- ( ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) /\ n e. ( 1 ... N ) ) -> ( 0 x. X ) = 0 ) |
| 422 |
416 419 421
|
3eqtr3d |
|- ( ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) /\ n e. ( 1 ... N ) ) -> sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) = 0 ) |
| 423 |
422
|
ex |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> ( n e. ( 1 ... N ) -> sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) = 0 ) ) |
| 424 |
412 423
|
ralrimi |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) = 0 ) |
| 425 |
424
|
sumeq2d |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> sum_ n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( ( w ` k ) x. C ) x. X ) = sum_ n e. ( 1 ... N ) 0 ) |
| 426 |
407 425
|
eqtrd |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) = sum_ n e. ( 1 ... N ) 0 ) |
| 427 |
24
|
olci |
|- ( ( 1 ... N ) C_ ( ZZ>= ` B ) \/ ( 1 ... N ) e. Fin ) |
| 428 |
|
sumz |
|- ( ( ( 1 ... N ) C_ ( ZZ>= ` B ) \/ ( 1 ... N ) e. Fin ) -> sum_ n e. ( 1 ... N ) 0 = 0 ) |
| 429 |
427 428
|
ax-mp |
|- sum_ n e. ( 1 ... N ) 0 = 0 |
| 430 |
426 429
|
eqtrdi |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( A ^ k ) ) = 0 ) |
| 431 |
383 430
|
eqtrd |
|- ( ( ph /\ ( w : ( 0 ... N ) --> QQ /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = 0 ) |
| 432 |
431
|
adantrlr |
|- ( ( ph /\ ( ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = 0 ) |
| 433 |
|
fveq1 |
|- ( x = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) -> ( x ` A ) = ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) ) |
| 434 |
433
|
eqeq1d |
|- ( x = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) -> ( ( x ` A ) = 0 <-> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = 0 ) ) |
| 435 |
434
|
rspcev |
|- ( ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( w ` k ) x. ( y ^ k ) ) ) ` A ) = 0 ) -> E. x e. ( ( Poly ` QQ ) \ { 0p } ) ( x ` A ) = 0 ) |
| 436 |
375 432 435
|
syl2anc |
|- ( ( ph /\ ( ( w : ( 0 ... N ) --> QQ /\ w =/= ( ( 0 ... N ) X. { 0 } ) ) /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> E. x e. ( ( Poly ` QQ ) \ { 0p } ) ( x ` A ) = 0 ) |
| 437 |
276 436
|
sylanr1 |
|- ( ( ph /\ ( w e. ( ( QQ ^m ( 0 ... N ) ) \ { ( ( 0 ... N ) X. { 0 } ) } ) /\ A. n e. ( 1 ... N ) sum_ k e. ( 0 ... N ) ( ( w ` k ) x. C ) = 0 ) ) -> E. x e. ( ( Poly ` QQ ) \ { 0p } ) ( x ` A ) = 0 ) |
| 438 |
273 437
|
rexlimddv |
|- ( ph -> E. x e. ( ( Poly ` QQ ) \ { 0p } ) ( x ` A ) = 0 ) |
| 439 |
|
elqaa |
|- ( A e. AA <-> ( A e. CC /\ E. x e. ( ( Poly ` QQ ) \ { 0p } ) ( x ` A ) = 0 ) ) |
| 440 |
1 438 439
|
sylanbrc |
|- ( ph -> A e. AA ) |