Metamath Proof Explorer


Theorem abelth

Description: Abel's theorem. If the power series sum_ n e. NN0 A ( n ) ( x ^ n ) is convergent at 1 , then it is equal to the limit from "below", along a Stolz angle S (note that the M = 1 case of a Stolz angle is the real line [ 0 , 1 ] ). (Continuity on S \ { 1 } follows more generally from psercn .) (Contributed by Mario Carneiro, 2-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
abelth.6 F=xSn0Anxn
Assertion abelth φF:Scn

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 abelth.6 F=xSn0Anxn
7 1 2 3 4 5 6 abelthlem4 φF:S
8 1 2 3 4 5 6 abelthlem9 φr+w+yS1y<wF1Fy<r
9 1 2 3 4 5 abelthlem2 φ1SS10ballabs1
10 9 simpld φ1S
11 10 ad2antrr φr+yS1S
12 simpr φr+ySyS
13 11 12 ovresd φr+yS1absS×Sy=1absy
14 ax-1cn 1
15 5 ssrab3 S
16 15 12 sselid φr+ySy
17 eqid abs=abs
18 17 cnmetdval 1y1absy=1y
19 14 16 18 sylancr φr+yS1absy=1y
20 13 19 eqtrd φr+yS1absS×Sy=1y
21 20 breq1d φr+yS1absS×Sy<w1y<w
22 7 ad2antrr φr+ySF:S
23 22 11 ffvelcdmd φr+ySF1
24 7 adantr φr+F:S
25 24 ffvelcdmda φr+ySFy
26 17 cnmetdval F1FyF1absFy=F1Fy
27 23 25 26 syl2anc φr+ySF1absFy=F1Fy
28 27 breq1d φr+ySF1absFy<rF1Fy<r
29 21 28 imbi12d φr+yS1absS×Sy<wF1absFy<r1y<wF1Fy<r
30 29 ralbidva φr+yS1absS×Sy<wF1absFy<ryS1y<wF1Fy<r
31 30 rexbidv φr+w+yS1absS×Sy<wF1absFy<rw+yS1y<wF1Fy<r
32 8 31 mpbird φr+w+yS1absS×Sy<wF1absFy<r
33 32 ralrimiva φr+w+yS1absS×Sy<wF1absFy<r
34 cnxmet abs∞Met
35 xmetres2 abs∞MetSabsS×S∞MetS
36 34 15 35 mp2an absS×S∞MetS
37 eqid absS×S=absS×S
38 eqid TopOpenfld=TopOpenfld
39 38 cnfldtopn TopOpenfld=MetOpenabs
40 eqid MetOpenabsS×S=MetOpenabsS×S
41 37 39 40 metrest abs∞MetSTopOpenfld𝑡S=MetOpenabsS×S
42 34 15 41 mp2an TopOpenfld𝑡S=MetOpenabsS×S
43 42 39 metcnp absS×S∞MetSabs∞Met1SFTopOpenfld𝑡SCnPTopOpenfld1F:Sr+w+yS1absS×Sy<wF1absFy<r
44 36 34 10 43 mp3an12i φFTopOpenfld𝑡SCnPTopOpenfld1F:Sr+w+yS1absS×Sy<wF1absFy<r
45 7 33 44 mpbir2and φFTopOpenfld𝑡SCnPTopOpenfld1
46 45 ad2antrr φySy=1FTopOpenfld𝑡SCnPTopOpenfld1
47 simpr φySy=1y=1
48 47 fveq2d φySy=1TopOpenfld𝑡SCnPTopOpenfldy=TopOpenfld𝑡SCnPTopOpenfld1
49 46 48 eleqtrrd φySy=1FTopOpenfld𝑡SCnPTopOpenfldy
50 eldifsn yS1ySy1
51 9 simprd φS10ballabs1
52 abscl ww
53 52 adantl φww
54 53 a1d φww<1w
55 absge0 w0w
56 55 adantl φw0w
57 56 a1d φww<10w
58 1 2 abelthlem1 φ1supr|seq0+tn0Antnrdom*<
59 58 adantr φw1supr|seq0+tn0Antnrdom*<
60 53 rexrd φww*
61 1re 1
62 rexr 11*
63 61 62 mp1i φw1*
64 iccssxr 0+∞*
65 eqid tn0Antn=tn0Antn
66 eqid supr|seq0+tn0Antnrdom*<=supr|seq0+tn0Antnrdom*<
67 65 1 66 radcnvcl φsupr|seq0+tn0Antnrdom*<0+∞
68 64 67 sselid φsupr|seq0+tn0Antnrdom*<*
69 68 adantr φwsupr|seq0+tn0Antnrdom*<*
70 xrltletr w*1*supr|seq0+tn0Antnrdom*<*w<11supr|seq0+tn0Antnrdom*<w<supr|seq0+tn0Antnrdom*<
71 60 63 69 70 syl3anc φww<11supr|seq0+tn0Antnrdom*<w<supr|seq0+tn0Antnrdom*<
72 59 71 mpan2d φww<1w<supr|seq0+tn0Antnrdom*<
73 54 57 72 3jcad φww<1w0ww<supr|seq0+tn0Antnrdom*<
74 0cn 0
75 17 cnmetdval 0w0absw=0w
76 74 75 mpan w0absw=0w
77 abssub 0w0w=w0
78 74 77 mpan w0w=w0
79 subid1 ww0=w
80 79 fveq2d ww0=w
81 76 78 80 3eqtrd w0absw=w
82 81 breq1d w0absw<1w<1
83 82 adantl φw0absw<1w<1
84 0re 0
85 elico2 0supr|seq0+tn0Antnrdom*<*w0supr|seq0+tn0Antnrdom*<w0ww<supr|seq0+tn0Antnrdom*<
86 84 69 85 sylancr φww0supr|seq0+tn0Antnrdom*<w0ww<supr|seq0+tn0Antnrdom*<
87 73 83 86 3imtr4d φw0absw<1w0supr|seq0+tn0Antnrdom*<
88 87 imdistanda φw0absw<1ww0supr|seq0+tn0Antnrdom*<
89 1xr 1*
90 elbl abs∞Met01*w0ballabs1w0absw<1
91 34 74 89 90 mp3an w0ballabs1w0absw<1
92 absf abs:
93 ffn abs:absFn
94 elpreima absFnwabs-10supr|seq0+tn0Antnrdom*<ww0supr|seq0+tn0Antnrdom*<
95 92 93 94 mp2b wabs-10supr|seq0+tn0Antnrdom*<ww0supr|seq0+tn0Antnrdom*<
96 88 91 95 3imtr4g φw0ballabs1wabs-10supr|seq0+tn0Antnrdom*<
97 96 ssrdv φ0ballabs1abs-10supr|seq0+tn0Antnrdom*<
98 51 97 sstrd φS1abs-10supr|seq0+tn0Antnrdom*<
99 98 resmptd φxabs-10supr|seq0+tn0Antnrdom*<n0AnxnS1=xS1n0Anxn
100 6 reseq1i FS1=xSn0AnxnS1
101 difss S1S
102 resmpt S1SxSn0AnxnS1=xS1n0Anxn
103 101 102 ax-mp xSn0AnxnS1=xS1n0Anxn
104 100 103 eqtri FS1=xS1n0Anxn
105 99 104 eqtr4di φxabs-10supr|seq0+tn0Antnrdom*<n0AnxnS1=FS1
106 cnvimass abs-10supr|seq0+tn0Antnrdom*<domabs
107 92 fdmi domabs=
108 106 107 sseqtri abs-10supr|seq0+tn0Antnrdom*<
109 108 sseli xabs-10supr|seq0+tn0Antnrdom*<x
110 fveq2 n=jAn=Aj
111 oveq2 n=jxn=xj
112 110 111 oveq12d n=jAnxn=Ajxj
113 112 cbvsumv n0Anxn=j0Ajxj
114 65 pserval2 xj0tn0Antnxj=Ajxj
115 114 sumeq2dv xj0tn0Antnxj=j0Ajxj
116 113 115 eqtr4id xn0Anxn=j0tn0Antnxj
117 109 116 syl xabs-10supr|seq0+tn0Antnrdom*<n0Anxn=j0tn0Antnxj
118 117 mpteq2ia xabs-10supr|seq0+tn0Antnrdom*<n0Anxn=xabs-10supr|seq0+tn0Antnrdom*<j0tn0Antnxj
119 eqid abs-10supr|seq0+tn0Antnrdom*<=abs-10supr|seq0+tn0Antnrdom*<
120 eqid ifsupr|seq0+tn0Antnrdom*<v+supr|seq0+tn0Antnrdom*<2v+1=ifsupr|seq0+tn0Antnrdom*<v+supr|seq0+tn0Antnrdom*<2v+1
121 65 118 1 66 119 120 psercn φxabs-10supr|seq0+tn0Antnrdom*<n0Anxn:abs-10supr|seq0+tn0Antnrdom*<cn
122 rescncf S1abs-10supr|seq0+tn0Antnrdom*<xabs-10supr|seq0+tn0Antnrdom*<n0Anxn:abs-10supr|seq0+tn0Antnrdom*<cnxabs-10supr|seq0+tn0Antnrdom*<n0AnxnS1:S1cn
123 98 121 122 sylc φxabs-10supr|seq0+tn0Antnrdom*<n0AnxnS1:S1cn
124 105 123 eqeltrrd φFS1:S1cn
125 124 adantr φyS1FS1:S1cn
126 101 15 sstri S1
127 ssid
128 eqid TopOpenfld𝑡S1=TopOpenfld𝑡S1
129 38 cnfldtopon TopOpenfldTopOn
130 129 toponrestid TopOpenfld=TopOpenfld𝑡
131 38 128 130 cncfcn S1S1cn=TopOpenfld𝑡S1CnTopOpenfld
132 126 127 131 mp2an S1cn=TopOpenfld𝑡S1CnTopOpenfld
133 125 132 eleqtrdi φyS1FS1TopOpenfld𝑡S1CnTopOpenfld
134 simpr φyS1yS1
135 resttopon TopOpenfldTopOnS1TopOpenfld𝑡S1TopOnS1
136 129 126 135 mp2an TopOpenfld𝑡S1TopOnS1
137 136 toponunii S1=TopOpenfld𝑡S1
138 137 cncnpi FS1TopOpenfld𝑡S1CnTopOpenfldyS1FS1TopOpenfld𝑡S1CnPTopOpenfldy
139 133 134 138 syl2anc φyS1FS1TopOpenfld𝑡S1CnPTopOpenfldy
140 38 cnfldtop TopOpenfldTop
141 cnex V
142 141 15 ssexi SV
143 restabs TopOpenfldTopS1SSVTopOpenfld𝑡S𝑡S1=TopOpenfld𝑡S1
144 140 101 142 143 mp3an TopOpenfld𝑡S𝑡S1=TopOpenfld𝑡S1
145 144 oveq1i TopOpenfld𝑡S𝑡S1CnPTopOpenfld=TopOpenfld𝑡S1CnPTopOpenfld
146 145 fveq1i TopOpenfld𝑡S𝑡S1CnPTopOpenfldy=TopOpenfld𝑡S1CnPTopOpenfldy
147 139 146 eleqtrrdi φyS1FS1TopOpenfld𝑡S𝑡S1CnPTopOpenfldy
148 resttop TopOpenfldTopSVTopOpenfld𝑡STop
149 140 142 148 mp2an TopOpenfld𝑡STop
150 149 a1i φyS1TopOpenfld𝑡STop
151 101 a1i φyS1S1S
152 10 snssd φ1S
153 38 cnfldhaus TopOpenfldHaus
154 unicntop =TopOpenfld
155 154 sncld TopOpenfldHaus11ClsdTopOpenfld
156 153 14 155 mp2an 1ClsdTopOpenfld
157 154 restcldi S1ClsdTopOpenfld1S1ClsdTopOpenfld𝑡S
158 15 156 157 mp3an12 1S1ClsdTopOpenfld𝑡S
159 154 restuni TopOpenfldTopSS=TopOpenfld𝑡S
160 140 15 159 mp2an S=TopOpenfld𝑡S
161 160 cldopn 1ClsdTopOpenfld𝑡SS1TopOpenfld𝑡S
162 152 158 161 3syl φS1TopOpenfld𝑡S
163 160 isopn3 TopOpenfld𝑡STopS1SS1TopOpenfld𝑡SintTopOpenfld𝑡SS1=S1
164 149 101 163 mp2an S1TopOpenfld𝑡SintTopOpenfld𝑡SS1=S1
165 162 164 sylib φintTopOpenfld𝑡SS1=S1
166 165 eleq2d φyintTopOpenfld𝑡SS1yS1
167 166 biimpar φyS1yintTopOpenfld𝑡SS1
168 7 adantr φyS1F:S
169 160 154 cnprest TopOpenfld𝑡STopS1SyintTopOpenfld𝑡SS1F:SFTopOpenfld𝑡SCnPTopOpenfldyFS1TopOpenfld𝑡S𝑡S1CnPTopOpenfldy
170 150 151 167 168 169 syl22anc φyS1FTopOpenfld𝑡SCnPTopOpenfldyFS1TopOpenfld𝑡S𝑡S1CnPTopOpenfldy
171 147 170 mpbird φyS1FTopOpenfld𝑡SCnPTopOpenfldy
172 50 171 sylan2br φySy1FTopOpenfld𝑡SCnPTopOpenfldy
173 172 anassrs φySy1FTopOpenfld𝑡SCnPTopOpenfldy
174 49 173 pm2.61dane φySFTopOpenfld𝑡SCnPTopOpenfldy
175 174 ralrimiva φySFTopOpenfld𝑡SCnPTopOpenfldy
176 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
177 129 15 176 mp2an TopOpenfld𝑡STopOnS
178 cncnp TopOpenfld𝑡STopOnSTopOpenfldTopOnFTopOpenfld𝑡SCnTopOpenfldF:SySFTopOpenfld𝑡SCnPTopOpenfldy
179 177 129 178 mp2an FTopOpenfld𝑡SCnTopOpenfldF:SySFTopOpenfld𝑡SCnPTopOpenfldy
180 7 175 179 sylanbrc φFTopOpenfld𝑡SCnTopOpenfld
181 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
182 38 181 130 cncfcn SScn=TopOpenfld𝑡SCnTopOpenfld
183 15 127 182 mp2an Scn=TopOpenfld𝑡SCnTopOpenfld
184 180 183 eleqtrrdi φF:Scn