Metamath Proof Explorer


Theorem poimirlem15

Description: Lemma for poimir , that the face in poimirlem22 is a face. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
poimirlem22.2 φTS
poimirlem15.3 φ2ndT1N1
Assertion poimirlem15 φ1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTS

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 poimirlem22.2 φTS
5 poimirlem15.3 φ2ndT1N1
6 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
7 6 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
8 4 7 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
9 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
10 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
11 8 9 10 3syl φ1st1stT0..^K1N
12 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
13 8 9 12 3syl φ2nd1stTf|f:1N1-1 onto1N
14 fvex 2nd1stTV
15 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
16 14 15 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
17 13 16 sylib φ2nd1stT:1N1-1 onto1N
18 elfznn 2ndT1N12ndT
19 5 18 syl φ2ndT
20 19 nnred φ2ndT
21 20 ltp1d φ2ndT<2ndT+1
22 20 21 ltned φ2ndT2ndT+1
23 22 necomd φ2ndT+12ndT
24 fvex 2ndTV
25 ovex 2ndT+1V
26 f1oprg 2ndTV2ndT+1V2ndT+1V2ndTV2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT
27 24 25 25 24 26 mp4an 2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT
28 22 23 27 syl2anc φ2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT
29 prcom 2ndT+12ndT=2ndT2ndT+1
30 f1oeq3 2ndT+12ndT=2ndT2ndT+12ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT2ndT+1
31 29 30 ax-mp 2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT2ndT+1
32 28 31 sylib φ2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT2ndT+1
33 f1oi I1N2ndT2ndT+1:1N2ndT2ndT+11-1 onto1N2ndT2ndT+1
34 disjdif 2ndT2ndT+11N2ndT2ndT+1=
35 f1oun 2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT2ndT+1I1N2ndT2ndT+1:1N2ndT2ndT+11-1 onto1N2ndT2ndT+12ndT2ndT+11N2ndT2ndT+1=2ndT2ndT+11N2ndT2ndT+1=2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+11-1 onto2ndT2ndT+11N2ndT2ndT+1
36 34 34 35 mpanr12 2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT2ndT+1I1N2ndT2ndT+1:1N2ndT2ndT+11-1 onto1N2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+11-1 onto2ndT2ndT+11N2ndT2ndT+1
37 32 33 36 sylancl φ2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+11-1 onto2ndT2ndT+11N2ndT2ndT+1
38 1 nncnd φN
39 npcan1 NN-1+1=N
40 38 39 syl φN-1+1=N
41 1 nnzd φN
42 peano2zm NN1
43 41 42 syl φN1
44 uzid N1N1N1
45 peano2uz N1N1N-1+1N1
46 43 44 45 3syl φN-1+1N1
47 40 46 eqeltrrd φNN1
48 fzss2 NN11N11N
49 47 48 syl φ1N11N
50 49 5 sseldd φ2ndT1N
51 19 peano2nnd φ2ndT+1
52 43 zred φN1
53 1 nnred φN
54 elfzle2 2ndT1N12ndTN1
55 5 54 syl φ2ndTN1
56 53 ltm1d φN1<N
57 20 52 53 55 56 lelttrd φ2ndT<N
58 19 nnzd φ2ndT
59 zltp1le 2ndTN2ndT<N2ndT+1N
60 58 41 59 syl2anc φ2ndT<N2ndT+1N
61 57 60 mpbid φ2ndT+1N
62 fznn N2ndT+11N2ndT+12ndT+1N
63 41 62 syl φ2ndT+11N2ndT+12ndT+1N
64 51 61 63 mpbir2and φ2ndT+11N
65 prssi 2ndT1N2ndT+11N2ndT2ndT+11N
66 50 64 65 syl2anc φ2ndT2ndT+11N
67 undif 2ndT2ndT+11N2ndT2ndT+11N2ndT2ndT+1=1N
68 66 67 sylib φ2ndT2ndT+11N2ndT2ndT+1=1N
69 f1oeq23 2ndT2ndT+11N2ndT2ndT+1=1N2ndT2ndT+11N2ndT2ndT+1=1N2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+11-1 onto2ndT2ndT+11N2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
70 68 68 69 syl2anc φ2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+11-1 onto2ndT2ndT+11N2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
71 37 70 mpbid φ2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
72 f1oco 2nd1stT:1N1-1 onto1N2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
73 17 71 72 syl2anc φ2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
74 prex 2ndT2ndT+12ndT+12ndTV
75 ovex 1NV
76 difexg 1NV1N2ndT2ndT+1V
77 resiexg 1N2ndT2ndT+1VI1N2ndT2ndT+1V
78 75 76 77 mp2b I1N2ndT2ndT+1V
79 74 78 unex 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1V
80 14 79 coex 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1V
81 f1oeq1 f=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1f:1N1-1 onto1N2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
82 80 81 elab 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1f|f:1N1-1 onto1N2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N1-1 onto1N
83 73 82 sylibr φ2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1f|f:1N1-1 onto1N
84 opelxpi 1st1stT0..^K1N2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1f|f:1N1-1 onto1N1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+10..^K1N×f|f:1N1-1 onto1N
85 11 83 84 syl2anc φ1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+10..^K1N×f|f:1N1-1 onto1N
86 fz1ssfz0 1N0N
87 49 86 sstrdi φ1N10N
88 87 5 sseldd φ2ndT0N
89 opelxpi 1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+10..^K1N×f|f:1N1-1 onto1N2ndT0N1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT0..^K1N×f|f:1N1-1 onto1N×0N
90 85 88 89 syl2anc φ1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT0..^K1N×f|f:1N1-1 onto1N×0N
91 fveq2 t=T2ndt=2ndT
92 91 breq2d t=Ty<2ndty<2ndT
93 92 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
94 93 csbeq1d t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
95 2fveq3 t=T1st1stt=1st1stT
96 2fveq3 t=T2nd1stt=2nd1stT
97 96 imaeq1d t=T2nd1stt1j=2nd1stT1j
98 97 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
99 96 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
100 99 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
101 98 100 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
102 95 101 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
103 102 csbeq2dv t=Tify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
104 94 103 eqtrd t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
105 104 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
106 105 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
107 106 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
108 107 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
109 4 108 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
110 imaco 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y
111 f1ofn 2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1
112 28 111 syl φ2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1
113 112 ad2antrr φy0N1y<2ndT2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1
114 incom 2ndT2ndT+11y=1y2ndT2ndT+1
115 elfznn0 y0N1y0
116 115 nn0red y0N1y
117 ltnle y2ndTy<2ndT¬2ndTy
118 116 20 117 syl2anr φy0N1y<2ndT¬2ndTy
119 118 biimpa φy0N1y<2ndT¬2ndTy
120 elfzle2 2ndT1y2ndTy
121 119 120 nsyl φy0N1y<2ndT¬2ndT1y
122 disjsn 1y2ndT=¬2ndT1y
123 121 122 sylibr φy0N1y<2ndT1y2ndT=
124 116 ad2antlr φy0N1y<2ndTy
125 20 ad2antrr φy0N1y<2ndT2ndT
126 51 nnred φ2ndT+1
127 126 ad2antrr φy0N1y<2ndT2ndT+1
128 simpr φy0N1y<2ndTy<2ndT
129 21 ad2antrr φy0N1y<2ndT2ndT<2ndT+1
130 124 125 127 128 129 lttrd φy0N1y<2ndTy<2ndT+1
131 ltnle y2ndT+1y<2ndT+1¬2ndT+1y
132 116 126 131 syl2anr φy0N1y<2ndT+1¬2ndT+1y
133 132 adantr φy0N1y<2ndTy<2ndT+1¬2ndT+1y
134 130 133 mpbid φy0N1y<2ndT¬2ndT+1y
135 elfzle2 2ndT+11y2ndT+1y
136 134 135 nsyl φy0N1y<2ndT¬2ndT+11y
137 disjsn 1y2ndT+1=¬2ndT+11y
138 136 137 sylibr φy0N1y<2ndT1y2ndT+1=
139 123 138 uneq12d φy0N1y<2ndT1y2ndT1y2ndT+1=
140 df-pr 2ndT2ndT+1=2ndT2ndT+1
141 140 ineq2i 1y2ndT2ndT+1=1y2ndT2ndT+1
142 indi 1y2ndT2ndT+1=1y2ndT1y2ndT+1
143 141 142 eqtr2i 1y2ndT1y2ndT+1=1y2ndT2ndT+1
144 un0 =
145 139 143 144 3eqtr3g φy0N1y<2ndT1y2ndT2ndT+1=
146 114 145 eqtrid φy0N1y<2ndT2ndT2ndT+11y=
147 fnimadisj 2ndT2ndT+12ndT+12ndTFn2ndT2ndT+12ndT2ndT+11y=2ndT2ndT+12ndT+12ndT1y=
148 113 146 147 syl2anc φy0N1y<2ndT2ndT2ndT+12ndT+12ndT1y=
149 40 adantr φy0N1N-1+1=N
150 elfzuz3 y0N1N1y
151 peano2uz N1yN-1+1y
152 150 151 syl y0N1N-1+1y
153 152 adantl φy0N1N-1+1y
154 149 153 eqeltrrd φy0N1Ny
155 fzss2 Ny1y1N
156 reldisj 1y1N1y2ndT2ndT+1=1y1N2ndT2ndT+1
157 154 155 156 3syl φy0N11y2ndT2ndT+1=1y1N2ndT2ndT+1
158 157 adantr φy0N1y<2ndT1y2ndT2ndT+1=1y1N2ndT2ndT+1
159 145 158 mpbid φy0N1y<2ndT1y1N2ndT2ndT+1
160 resiima 1y1N2ndT2ndT+1I1N2ndT2ndT+11y=1y
161 159 160 syl φy0N1y<2ndTI1N2ndT2ndT+11y=1y
162 148 161 uneq12d φy0N1y<2ndT2ndT2ndT+12ndT+12ndT1yI1N2ndT2ndT+11y=1y
163 imaundir 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y=2ndT2ndT+12ndT+12ndT1yI1N2ndT2ndT+11y
164 uncom 1y=1y
165 un0 1y=1y
166 164 165 eqtr2i 1y=1y
167 162 163 166 3eqtr4g φy0N1y<2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y=1y
168 167 imaeq2d φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y=2nd1stT1y
169 110 168 eqtrid φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y=2nd1stT1y
170 169 xpeq1d φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×1=2nd1stT1y×1
171 imaco 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N
172 imaundir 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=2ndT2ndT+12ndT+12ndTy+1NI1N2ndT2ndT+1y+1N
173 imassrn 2ndT2ndT+12ndT+12ndTy+1Nran2ndT2ndT+12ndT+12ndT
174 173 a1i φy0N1y<2ndT2ndT2ndT+12ndT+12ndTy+1Nran2ndT2ndT+12ndT+12ndT
175 fnima 2ndT2ndT+12ndT+12ndTFn2ndT2ndT+12ndT2ndT+12ndT+12ndT2ndT2ndT+1=ran2ndT2ndT+12ndT+12ndT
176 28 111 175 3syl φ2ndT2ndT+12ndT+12ndT2ndT2ndT+1=ran2ndT2ndT+12ndT+12ndT
177 176 ad2antrr φy0N1y<2ndT2ndT2ndT+12ndT+12ndT2ndT2ndT+1=ran2ndT2ndT+12ndT+12ndT
178 elfzelz y0N1y
179 zltp1le y2ndTy<2ndTy+12ndT
180 178 58 179 syl2anr φy0N1y<2ndTy+12ndT
181 180 biimpa φy0N1y<2ndTy+12ndT
182 20 53 57 ltled φ2ndTN
183 182 ad2antrr φy0N1y<2ndT2ndTN
184 58 adantr φy0N12ndT
185 nn0p1nn y0y+1
186 115 185 syl y0N1y+1
187 186 nnzd y0N1y+1
188 187 adantl φy0N1y+1
189 41 adantr φy0N1N
190 elfz 2ndTy+1N2ndTy+1Ny+12ndT2ndTN
191 184 188 189 190 syl3anc φy0N12ndTy+1Ny+12ndT2ndTN
192 191 adantr φy0N1y<2ndT2ndTy+1Ny+12ndT2ndTN
193 181 183 192 mpbir2and φy0N1y<2ndT2ndTy+1N
194 1red φy0N1y<2ndT1
195 ltle y2ndTy<2ndTy2ndT
196 116 20 195 syl2anr φy0N1y<2ndTy2ndT
197 196 imp φy0N1y<2ndTy2ndT
198 124 125 194 197 leadd1dd φy0N1y<2ndTy+12ndT+1
199 61 ad2antrr φy0N1y<2ndT2ndT+1N
200 58 peano2zd φ2ndT+1
201 200 adantr φy0N12ndT+1
202 elfz 2ndT+1y+1N2ndT+1y+1Ny+12ndT+12ndT+1N
203 201 188 189 202 syl3anc φy0N12ndT+1y+1Ny+12ndT+12ndT+1N
204 203 adantr φy0N1y<2ndT2ndT+1y+1Ny+12ndT+12ndT+1N
205 198 199 204 mpbir2and φy0N1y<2ndT2ndT+1y+1N
206 prssi 2ndTy+1N2ndT+1y+1N2ndT2ndT+1y+1N
207 193 205 206 syl2anc φy0N1y<2ndT2ndT2ndT+1y+1N
208 imass2 2ndT2ndT+1y+1N2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT2ndT+12ndT+12ndTy+1N
209 207 208 syl φy0N1y<2ndT2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT2ndT+12ndT+12ndTy+1N
210 177 209 eqsstrrd φy0N1y<2ndTran2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT+12ndTy+1N
211 174 210 eqssd φy0N1y<2ndT2ndT2ndT+12ndT+12ndTy+1N=ran2ndT2ndT+12ndT+12ndT
212 f1ofo 2ndT2ndT+12ndT+12ndT:2ndT2ndT+11-1 onto2ndT+12ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+1onto2ndT+12ndT
213 forn 2ndT2ndT+12ndT+12ndT:2ndT2ndT+1onto2ndT+12ndTran2ndT2ndT+12ndT+12ndT=2ndT+12ndT
214 28 212 213 3syl φran2ndT2ndT+12ndT+12ndT=2ndT+12ndT
215 214 29 eqtrdi φran2ndT2ndT+12ndT+12ndT=2ndT2ndT+1
216 215 ad2antrr φy0N1y<2ndTran2ndT2ndT+12ndT+12ndT=2ndT2ndT+1
217 211 216 eqtrd φy0N1y<2ndT2ndT2ndT+12ndT+12ndTy+1N=2ndT2ndT+1
218 undif 2ndT2ndT+1y+1N2ndT2ndT+1y+1N2ndT2ndT+1=y+1N
219 207 218 sylib φy0N1y<2ndT2ndT2ndT+1y+1N2ndT2ndT+1=y+1N
220 219 imaeq2d φy0N1y<2ndTI1N2ndT2ndT+12ndT2ndT+1y+1N2ndT2ndT+1=I1N2ndT2ndT+1y+1N
221 fnresi I1N2ndT2ndT+1Fn1N2ndT2ndT+1
222 disjdifr 1N2ndT2ndT+12ndT2ndT+1=
223 fnimadisj I1N2ndT2ndT+1Fn1N2ndT2ndT+11N2ndT2ndT+12ndT2ndT+1=I1N2ndT2ndT+12ndT2ndT+1=
224 221 222 223 mp2an I1N2ndT2ndT+12ndT2ndT+1=
225 224 a1i φy0N1y<2ndTI1N2ndT2ndT+12ndT2ndT+1=
226 nnuz =1
227 186 226 eleqtrdi y0N1y+11
228 fzss1 y+11y+1N1N
229 227 228 syl y0N1y+1N1N
230 229 ssdifd y0N1y+1N2ndT2ndT+11N2ndT2ndT+1
231 resiima y+1N2ndT2ndT+11N2ndT2ndT+1I1N2ndT2ndT+1y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
232 230 231 syl y0N1I1N2ndT2ndT+1y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
233 232 ad2antlr φy0N1y<2ndTI1N2ndT2ndT+1y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
234 225 233 uneq12d φy0N1y<2ndTI1N2ndT2ndT+12ndT2ndT+1I1N2ndT2ndT+1y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
235 imaundi I1N2ndT2ndT+12ndT2ndT+1y+1N2ndT2ndT+1=I1N2ndT2ndT+12ndT2ndT+1I1N2ndT2ndT+1y+1N2ndT2ndT+1
236 uncom y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
237 un0 y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
238 236 237 eqtr2i y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
239 234 235 238 3eqtr4g φy0N1y<2ndTI1N2ndT2ndT+12ndT2ndT+1y+1N2ndT2ndT+1=y+1N2ndT2ndT+1
240 220 239 eqtr3d φy0N1y<2ndTI1N2ndT2ndT+1y+1N=y+1N2ndT2ndT+1
241 217 240 uneq12d φy0N1y<2ndT2ndT2ndT+12ndT+12ndTy+1NI1N2ndT2ndT+1y+1N=2ndT2ndT+1y+1N2ndT2ndT+1
242 172 241 eqtrid φy0N1y<2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=2ndT2ndT+1y+1N2ndT2ndT+1
243 242 219 eqtrd φy0N1y<2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=y+1N
244 243 imaeq2d φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=2nd1stTy+1N
245 171 244 eqtrid φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N=2nd1stTy+1N
246 245 xpeq1d φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0=2nd1stTy+1N×0
247 170 246 uneq12d φy0N1y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0=2nd1stT1y×12nd1stTy+1N×0
248 247 oveq2d φy0N1y<2ndT1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
249 iftrue y<2ndTify<2ndTyy+1=y
250 249 csbeq1d y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=y/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
251 vex yV
252 oveq2 j=y1j=1y
253 252 imaeq2d j=y2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y
254 253 xpeq1d j=y2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×1=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×1
255 oveq1 j=yj+1=y+1
256 255 oveq1d j=yj+1N=y+1N
257 256 imaeq2d j=y2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N
258 257 xpeq1d j=y2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
259 254 258 uneq12d j=y2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
260 259 oveq2d j=y1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
261 251 260 csbie y/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
262 250 261 eqtrdi y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
263 262 adantl φy0N1y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1N×0
264 249 csbeq1d y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=y/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
265 252 imaeq2d j=y2nd1stT1j=2nd1stT1y
266 265 xpeq1d j=y2nd1stT1j×1=2nd1stT1y×1
267 256 imaeq2d j=y2nd1stTj+1N=2nd1stTy+1N
268 267 xpeq1d j=y2nd1stTj+1N×0=2nd1stTy+1N×0
269 266 268 uneq12d j=y2nd1stT1j×12nd1stTj+1N×0=2nd1stT1y×12nd1stTy+1N×0
270 269 oveq2d j=y1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
271 251 270 csbie y/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
272 264 271 eqtrdi y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
273 272 adantl φy0N1y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
274 248 263 273 3eqtr4d φy0N1y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
275 lenlt 2ndTy2ndTy¬y<2ndT
276 20 116 275 syl2an φy0N12ndTy¬y<2ndT
277 276 biimpar φy0N1¬y<2ndT2ndTy
278 imaco 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1
279 imaundir 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=2ndT2ndT+12ndT+12ndT1y+1I1N2ndT2ndT+11y+1
280 imassrn 2ndT2ndT+12ndT+12ndT1y+1ran2ndT2ndT+12ndT+12ndT
281 280 a1i φy0N12ndTy2ndT2ndT+12ndT+12ndT1y+1ran2ndT2ndT+12ndT+12ndT
282 176 ad2antrr φy0N12ndTy2ndT2ndT+12ndT+12ndT2ndT2ndT+1=ran2ndT2ndT+12ndT+12ndT
283 19 ad2antrr φy0N12ndTy2ndT
284 20 ad2antrr φy0N12ndTy2ndT
285 116 ad2antlr φy0N12ndTyy
286 186 nnred y0N1y+1
287 286 ad2antlr φy0N12ndTyy+1
288 simpr φy0N12ndTy2ndTy
289 116 lep1d y0N1yy+1
290 289 ad2antlr φy0N12ndTyyy+1
291 284 285 287 288 290 letrd φy0N12ndTy2ndTy+1
292 fznn y+12ndT1y+12ndT2ndTy+1
293 187 292 syl y0N12ndT1y+12ndT2ndTy+1
294 293 ad2antlr φy0N12ndTy2ndT1y+12ndT2ndTy+1
295 283 291 294 mpbir2and φy0N12ndTy2ndT1y+1
296 51 ad2antrr φy0N12ndTy2ndT+1
297 1red φy0N12ndTy1
298 284 285 297 288 leadd1dd φy0N12ndTy2ndT+1y+1
299 fznn y+12ndT+11y+12ndT+12ndT+1y+1
300 187 299 syl y0N12ndT+11y+12ndT+12ndT+1y+1
301 300 ad2antlr φy0N12ndTy2ndT+11y+12ndT+12ndT+1y+1
302 296 298 301 mpbir2and φy0N12ndTy2ndT+11y+1
303 prssi 2ndT1y+12ndT+11y+12ndT2ndT+11y+1
304 295 302 303 syl2anc φy0N12ndTy2ndT2ndT+11y+1
305 imass2 2ndT2ndT+11y+12ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT2ndT+12ndT+12ndT1y+1
306 304 305 syl φy0N12ndTy2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT2ndT+12ndT+12ndT1y+1
307 282 306 eqsstrrd φy0N12ndTyran2ndT2ndT+12ndT+12ndT2ndT2ndT+12ndT+12ndT1y+1
308 281 307 eqssd φy0N12ndTy2ndT2ndT+12ndT+12ndT1y+1=ran2ndT2ndT+12ndT+12ndT
309 215 ad2antrr φy0N12ndTyran2ndT2ndT+12ndT+12ndT=2ndT2ndT+1
310 308 309 eqtrd φy0N12ndTy2ndT2ndT+12ndT+12ndT1y+1=2ndT2ndT+1
311 undif 2ndT2ndT+11y+12ndT2ndT+11y+12ndT2ndT+1=1y+1
312 304 311 sylib φy0N12ndTy2ndT2ndT+11y+12ndT2ndT+1=1y+1
313 312 imaeq2d φy0N12ndTyI1N2ndT2ndT+12ndT2ndT+11y+12ndT2ndT+1=I1N2ndT2ndT+11y+1
314 224 a1i φy0N12ndTyI1N2ndT2ndT+12ndT2ndT+1=
315 eluzp1p1 N1yN-1+1y+1
316 150 315 syl y0N1N-1+1y+1
317 316 adantl φy0N1N-1+1y+1
318 149 317 eqeltrrd φy0N1Ny+1
319 fzss2 Ny+11y+11N
320 318 319 syl φy0N11y+11N
321 320 ssdifd φy0N11y+12ndT2ndT+11N2ndT2ndT+1
322 321 adantr φy0N12ndTy1y+12ndT2ndT+11N2ndT2ndT+1
323 resiima 1y+12ndT2ndT+11N2ndT2ndT+1I1N2ndT2ndT+11y+12ndT2ndT+1=1y+12ndT2ndT+1
324 322 323 syl φy0N12ndTyI1N2ndT2ndT+11y+12ndT2ndT+1=1y+12ndT2ndT+1
325 314 324 uneq12d φy0N12ndTyI1N2ndT2ndT+12ndT2ndT+1I1N2ndT2ndT+11y+12ndT2ndT+1=1y+12ndT2ndT+1
326 imaundi I1N2ndT2ndT+12ndT2ndT+11y+12ndT2ndT+1=I1N2ndT2ndT+12ndT2ndT+1I1N2ndT2ndT+11y+12ndT2ndT+1
327 uncom 1y+12ndT2ndT+1=1y+12ndT2ndT+1
328 un0 1y+12ndT2ndT+1=1y+12ndT2ndT+1
329 327 328 eqtr2i 1y+12ndT2ndT+1=1y+12ndT2ndT+1
330 325 326 329 3eqtr4g φy0N12ndTyI1N2ndT2ndT+12ndT2ndT+11y+12ndT2ndT+1=1y+12ndT2ndT+1
331 313 330 eqtr3d φy0N12ndTyI1N2ndT2ndT+11y+1=1y+12ndT2ndT+1
332 310 331 uneq12d φy0N12ndTy2ndT2ndT+12ndT+12ndT1y+1I1N2ndT2ndT+11y+1=2ndT2ndT+11y+12ndT2ndT+1
333 279 332 eqtrid φy0N12ndTy2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=2ndT2ndT+11y+12ndT2ndT+1
334 333 312 eqtrd φy0N12ndTy2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=1y+1
335 334 imaeq2d φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=2nd1stT1y+1
336 278 335 eqtrid φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1=2nd1stT1y+1
337 336 xpeq1d φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×1=2nd1stT1y+1×1
338 imaco 2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N
339 112 ad2antrr φy0N12ndTy2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1
340 incom 2ndT2ndT+1y+1+1N=y+1+1N2ndT2ndT+1
341 126 ad2antrr φy0N12ndTy2ndT+1
342 186 peano2nnd y0N1y+1+1
343 342 nnred y0N1y+1+1
344 343 ad2antlr φy0N12ndTyy+1+1
345 21 ad2antrr φy0N12ndTy2ndT<2ndT+1
346 116 ltp1d y0N1y<y+1
347 346 ad2antlr φy0N12ndTyy<y+1
348 284 285 287 288 347 lelttrd φy0N12ndTy2ndT<y+1
349 284 287 297 348 ltadd1dd φy0N12ndTy2ndT+1<y+1+1
350 284 341 344 345 349 lttrd φy0N12ndTy2ndT<y+1+1
351 ltnle 2ndTy+1+12ndT<y+1+1¬y+1+12ndT
352 20 343 351 syl2an φy0N12ndT<y+1+1¬y+1+12ndT
353 352 adantr φy0N12ndTy2ndT<y+1+1¬y+1+12ndT
354 350 353 mpbid φy0N12ndTy¬y+1+12ndT
355 elfzle1 2ndTy+1+1Ny+1+12ndT
356 354 355 nsyl φy0N12ndTy¬2ndTy+1+1N
357 disjsn y+1+1N2ndT=¬2ndTy+1+1N
358 356 357 sylibr φy0N12ndTyy+1+1N2ndT=
359 ltnle 2ndT+1y+1+12ndT+1<y+1+1¬y+1+12ndT+1
360 126 343 359 syl2an φy0N12ndT+1<y+1+1¬y+1+12ndT+1
361 360 adantr φy0N12ndTy2ndT+1<y+1+1¬y+1+12ndT+1
362 349 361 mpbid φy0N12ndTy¬y+1+12ndT+1
363 elfzle1 2ndT+1y+1+1Ny+1+12ndT+1
364 362 363 nsyl φy0N12ndTy¬2ndT+1y+1+1N
365 disjsn y+1+1N2ndT+1=¬2ndT+1y+1+1N
366 364 365 sylibr φy0N12ndTyy+1+1N2ndT+1=
367 358 366 uneq12d φy0N12ndTyy+1+1N2ndTy+1+1N2ndT+1=
368 140 ineq2i y+1+1N2ndT2ndT+1=y+1+1N2ndT2ndT+1
369 indi y+1+1N2ndT2ndT+1=y+1+1N2ndTy+1+1N2ndT+1
370 368 369 eqtr2i y+1+1N2ndTy+1+1N2ndT+1=y+1+1N2ndT2ndT+1
371 367 370 144 3eqtr3g φy0N12ndTyy+1+1N2ndT2ndT+1=
372 340 371 eqtrid φy0N12ndTy2ndT2ndT+1y+1+1N=
373 fnimadisj 2ndT2ndT+12ndT+12ndTFn2ndT2ndT+12ndT2ndT+1y+1+1N=2ndT2ndT+12ndT+12ndTy+1+1N=
374 339 372 373 syl2anc φy0N12ndTy2ndT2ndT+12ndT+12ndTy+1+1N=
375 342 226 eleqtrdi y0N1y+1+11
376 fzss1 y+1+11y+1+1N1N
377 reldisj y+1+1N1Ny+1+1N2ndT2ndT+1=y+1+1N1N2ndT2ndT+1
378 375 376 377 3syl y0N1y+1+1N2ndT2ndT+1=y+1+1N1N2ndT2ndT+1
379 378 ad2antlr φy0N12ndTyy+1+1N2ndT2ndT+1=y+1+1N1N2ndT2ndT+1
380 371 379 mpbid φy0N12ndTyy+1+1N1N2ndT2ndT+1
381 resiima y+1+1N1N2ndT2ndT+1I1N2ndT2ndT+1y+1+1N=y+1+1N
382 380 381 syl φy0N12ndTyI1N2ndT2ndT+1y+1+1N=y+1+1N
383 374 382 uneq12d φy0N12ndTy2ndT2ndT+12ndT+12ndTy+1+1NI1N2ndT2ndT+1y+1+1N=y+1+1N
384 imaundir 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N=2ndT2ndT+12ndT+12ndTy+1+1NI1N2ndT2ndT+1y+1+1N
385 uncom y+1+1N=y+1+1N
386 un0 y+1+1N=y+1+1N
387 385 386 eqtr2i y+1+1N=y+1+1N
388 383 384 387 3eqtr4g φy0N12ndTy2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N=y+1+1N
389 388 imaeq2d φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N=2nd1stTy+1+1N
390 338 389 eqtrid φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N=2nd1stTy+1+1N
391 390 xpeq1d φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0=2nd1stTy+1+1N×0
392 337 391 uneq12d φy0N12ndTy2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0=2nd1stT1y+1×12nd1stTy+1+1N×0
393 277 392 syldan φy0N1¬y<2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0=2nd1stT1y+1×12nd1stTy+1+1N×0
394 393 oveq2d φy0N1¬y<2ndT1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0=1st1stT+f2nd1stT1y+1×12nd1stTy+1+1N×0
395 iffalse ¬y<2ndTify<2ndTyy+1=y+1
396 395 csbeq1d ¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=y+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
397 ovex y+1V
398 oveq2 j=y+11j=1y+1
399 398 imaeq2d j=y+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1
400 399 xpeq1d j=y+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×1=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×1
401 oveq1 j=y+1j+1=y+1+1
402 401 oveq1d j=y+1j+1N=y+1+1N
403 402 imaeq2d j=y+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N
404 403 xpeq1d j=y+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
405 400 404 uneq12d j=y+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
406 405 oveq2d j=y+11st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
407 397 406 csbie y+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
408 396 407 eqtrdi ¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
409 408 adantl φy0N1¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11y+1×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1y+1+1N×0
410 395 csbeq1d ¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=y+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
411 398 imaeq2d j=y+12nd1stT1j=2nd1stT1y+1
412 411 xpeq1d j=y+12nd1stT1j×1=2nd1stT1y+1×1
413 402 imaeq2d j=y+12nd1stTj+1N=2nd1stTy+1+1N
414 413 xpeq1d j=y+12nd1stTj+1N×0=2nd1stTy+1+1N×0
415 412 414 uneq12d j=y+12nd1stT1j×12nd1stTj+1N×0=2nd1stT1y+1×12nd1stTy+1+1N×0
416 415 oveq2d j=y+11st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y+1×12nd1stTy+1+1N×0
417 397 416 csbie y+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y+1×12nd1stTy+1+1N×0
418 410 417 eqtrdi ¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y+1×12nd1stTy+1+1N×0
419 418 adantl φy0N1¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y+1×12nd1stTy+1+1N×0
420 394 409 419 3eqtr4d φy0N1¬y<2ndTify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
421 274 420 pm2.61dan φy0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
422 421 mpteq2dva φy0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
423 109 422 eqtr4d φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
424 opex 1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1V
425 424 24 op1std t=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
426 424 24 op2ndd t=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT2ndt=2ndT
427 breq2 2ndt=2ndTy<2ndty<2ndT
428 427 ifbid 2ndt=2ndTify<2ndtyy+1=ify<2ndTyy+1
429 428 csbeq1d 2ndt=2ndTify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
430 fvex 1st1stTV
431 430 80 op1std 1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11st1stt=1st1stT
432 430 80 op2ndd 1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
433 id 1st1stt=1st1stT1st1stt=1st1stT
434 imaeq1 2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stt1j=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j
435 434 xpeq1d 2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stt1j×1=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×1
436 imaeq1 2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1sttj+1N=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N
437 436 xpeq1d 2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1sttj+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
438 435 437 uneq12d 2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stt1j×12nd1sttj+1N×0=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
439 433 438 oveqan12d 1st1stt=1st1stT2nd1stt=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
440 431 432 439 syl2anc 1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
441 440 csbeq2dv 1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
442 429 441 sylan9eqr 1stt=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndt=2ndTify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
443 425 426 442 syl2anc t=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
444 443 mpteq2dv t=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTy0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
445 444 eqeq2d t=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
446 445 2 elrab2 1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTS1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11j×12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1j+1N×0
447 90 423 446 sylanbrc φ1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTS