Metamath Proof Explorer


Theorem sge0isum

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isum.m φM
sge0isum.z Z=M
sge0isum.f φF:Z0+∞
sge0isum.g G=seqM+F
sge0isum.gcnv φGB
Assertion sge0isum φsum^F=B

Proof

Step Hyp Ref Expression
1 sge0isum.m φM
2 sge0isum.z Z=M
3 sge0isum.f φF:Z0+∞
4 sge0isum.g G=seqM+F
5 sge0isum.gcnv φGB
6 2 fvexi ZV
7 6 a1i φZV
8 icossicc 0+∞0+∞
9 8 a1i φ0+∞0+∞
10 3 9 fssd φF:Z0+∞
11 7 10 sge0xrcl φsum^F*
12 eqidd φkZFk=Fk
13 rge0ssre 0+∞
14 3 ffvelcdmda φkZFk0+∞
15 13 14 sselid φkZFk
16 0xr 0*
17 16 a1i φkZ0*
18 pnfxr +∞*
19 18 a1i φkZ+∞*
20 icogelb 0*+∞*Fk0+∞0Fk
21 17 19 14 20 syl3anc φkZ0Fk
22 seqex seqM+FV
23 4 22 eqeltri GV
24 23 a1i φGV
25 climcl GBB
26 5 25 syl φB
27 breldmg GVBGBGdom
28 24 26 5 27 syl3anc φGdom
29 4 a1i φjZG=seqM+F
30 29 fveq1d φjZGj=seqM+Fj
31 2 eleq2i jZjM
32 31 biimpi jZjM
33 32 adantl φjZjM
34 simpll φjZkMjφ
35 elfzuz kMjkM
36 35 2 eleqtrrdi kMjkZ
37 36 adantl φjZkMjkZ
38 34 37 15 syl2anc φjZkMjFk
39 readdcl kik+i
40 39 adantl φjZkik+i
41 33 38 40 seqcl φjZseqM+Fj
42 30 41 eqeltrd φjZGj
43 42 recnd φjZGj
44 43 ralrimiva φjZGj
45 2 climbdd MGdomjZGjxjZGjx
46 1 28 44 45 syl3anc φxjZGjx
47 42 ad4ant13 φxjZGjxGj
48 43 ad4ant13 φxjZGjxGj
49 48 abscld φxjZGjxGj
50 simpllr φxjZGjxx
51 47 leabsd φxjZGjxGjGj
52 simpr φxjZGjxGjx
53 47 49 50 51 52 letrd φxjZGjxGjx
54 53 ex φxjZGjxGjx
55 54 ralimdva φxjZGjxjZGjx
56 55 reximdva φxjZGjxxjZGjx
57 46 56 mpd φxjZGjx
58 2 4 1 12 15 21 57 isumsup2 φGsupranG<
59 2 1 58 42 climrecl φsupranG<
60 59 rexrd φsupranG<*
61 3 feqmptd φF=kZFk
62 61 fveq2d φsum^F=sum^kZFk
63 mpteq1 y=kyFk=kFk
64 63 fveq2d y=sum^kyFk=sum^kFk
65 mpt0 kFk=
66 65 fveq2i sum^kFk=sum^
67 sge00 sum^=0
68 66 67 eqtri sum^kFk=0
69 68 a1i y=sum^kFk=0
70 64 69 eqtrd y=sum^kyFk=0
71 70 adantl φy𝒫ZFiny=sum^kyFk=0
72 0red φ0
73 39 adantl φkik+i
74 2 1 15 73 seqf φseqM+F:Z
75 4 a1i φG=seqM+F
76 75 feq1d φG:ZseqM+F:Z
77 74 76 mpbird φG:Z
78 77 frnd φranG
79 77 ffund φFunG
80 uzid MMM
81 1 80 syl φMM
82 2 eqcomi M=Z
83 81 82 eleqtrdi φMZ
84 77 fdmd φdomG=Z
85 84 eqcomd φZ=domG
86 83 85 eleqtrd φMdomG
87 fvelrn FunGMdomGGMranG
88 79 86 87 syl2anc φGMranG
89 78 88 sseldd φGM
90 16 a1i φ0*
91 18 a1i φ+∞*
92 3 83 ffvelcdmd φFM0+∞
93 icogelb 0*+∞*FM0+∞0FM
94 90 91 92 93 syl3anc φ0FM
95 4 fveq1i GM=seqM+FM
96 95 a1i φGM=seqM+FM
97 seq1 MseqM+FM=FM
98 1 97 syl φseqM+FM=FM
99 96 98 eqtr2d φFM=GM
100 94 99 breqtrd φ0GM
101 88 ne0d φranG
102 simpr φzranGzranG
103 77 ffnd φGFnZ
104 fvelrnb GFnZzranGjZGj=z
105 103 104 syl φzranGjZGj=z
106 105 adantr φzranGzranGjZGj=z
107 102 106 mpbid φzranGjZGj=z
108 107 adantlr φjZGjxzranGjZGj=z
109 nfv jφ
110 nfra1 jjZGjx
111 109 110 nfan jφjZGjx
112 nfv jzranG
113 111 112 nfan jφjZGjxzranG
114 nfv jzx
115 rspa jZGjxjZGjx
116 115 3adant3 jZGjxjZGj=zGjx
117 simp3 jZGjxjZGj=zGj=z
118 id Gj=zGj=z
119 118 eqcomd Gj=zz=Gj
120 119 adantl GjxGj=zz=Gj
121 simpl GjxGj=zGjx
122 120 121 eqbrtrd GjxGj=zzx
123 116 117 122 syl2anc jZGjxjZGj=zzx
124 123 3exp jZGjxjZGj=zzx
125 124 ad2antlr φjZGjxzranGjZGj=zzx
126 113 114 125 rexlimd φjZGjxzranGjZGj=zzx
127 108 126 mpd φjZGjxzranGzx
128 127 ralrimiva φjZGjxzranGzx
129 128 ex φjZGjxzranGzx
130 129 reximdv φxjZGjxxzranGzx
131 57 130 mpd φxzranGzx
132 suprub ranGranGxzranGzxGMranGGMsupranG<
133 78 101 131 88 132 syl31anc φGMsupranG<
134 72 89 59 100 133 letrd φ0supranG<
135 134 ad2antrr φy𝒫ZFiny=0supranG<
136 71 135 eqbrtrd φy𝒫ZFiny=sum^kyFksupranG<
137 simpr φy𝒫ZFiny𝒫ZFin
138 simpll φy𝒫ZFinkyφ
139 elpwinss y𝒫ZFinyZ
140 139 sselda y𝒫ZFinkykZ
141 140 adantll φy𝒫ZFinkykZ
142 8 14 sselid φkZFk0+∞
143 138 141 142 syl2anc φy𝒫ZFinkyFk0+∞
144 eqid kyFk=kyFk
145 143 144 fmptd φy𝒫ZFinkyFk:y0+∞
146 137 145 sge0xrcl φy𝒫ZFinsum^kyFk*
147 146 adantr φy𝒫ZFin¬y=sum^kyFk*
148 fzfid φy𝒫ZFinMsupy<Fin
149 elfzuz kMsupy<kM
150 149 82 eleqtrdi kMsupy<kZ
151 150 142 sylan2 φkMsupy<Fk0+∞
152 eqid kMsupy<Fk=kMsupy<Fk
153 151 152 fmptd φkMsupy<Fk:Msupy<0+∞
154 153 adantr φy𝒫ZFinkMsupy<Fk:Msupy<0+∞
155 148 154 sge0xrcl φy𝒫ZFinsum^kMsupy<Fk*
156 155 adantr φy𝒫ZFin¬y=sum^kMsupy<Fk*
157 60 adantr φy𝒫ZFinsupranG<*
158 157 adantr φy𝒫ZFin¬y=supranG<*
159 simpll φy𝒫ZFinkMsupy<φ
160 150 adantl φy𝒫ZFinkMsupy<kZ
161 159 160 142 syl2anc φy𝒫ZFinkMsupy<Fk0+∞
162 elinel2 y𝒫ZFinyFin
163 2 139 162 ssuzfz y𝒫ZFinyMsupy<
164 163 adantl φy𝒫ZFinyMsupy<
165 148 161 164 sge0lessmpt φy𝒫ZFinsum^kyFksum^kMsupy<Fk
166 165 adantr φy𝒫ZFin¬y=sum^kyFksum^kMsupy<Fk
167 78 adantr φy𝒫ZFinranG
168 167 adantr φy𝒫ZFin¬y=ranG
169 101 adantr φy𝒫ZFinranG
170 169 adantr φy𝒫ZFin¬y=ranG
171 131 adantr φy𝒫ZFinxzranGzx
172 171 adantr φy𝒫ZFin¬y=xzranGzx
173 159 160 14 syl2anc φy𝒫ZFinkMsupy<Fk0+∞
174 148 173 sge0fsummpt φy𝒫ZFinsum^kMsupy<Fk=k=Msupy<Fk
175 174 adantr φy𝒫ZFin¬y=sum^kMsupy<Fk=k=Msupy<Fk
176 eqidd φy𝒫ZFin¬y=kMsupy<Fk=Fk
177 139 2 sseqtrdi y𝒫ZFinyM
178 177 adantr y𝒫ZFin¬y=yM
179 uzssz M
180 2 179 eqsstri Z
181 139 180 sstrdi y𝒫ZFiny
182 181 adantr y𝒫ZFin¬y=y
183 neqne ¬y=y
184 183 adantl y𝒫ZFin¬y=y
185 162 adantr y𝒫ZFin¬y=yFin
186 suprfinzcl yyyFinsupy<y
187 182 184 185 186 syl3anc y𝒫ZFin¬y=supy<y
188 178 187 sseldd y𝒫ZFin¬y=supy<M
189 188 adantll φy𝒫ZFin¬y=supy<M
190 15 recnd φkZFk
191 159 160 190 syl2anc φy𝒫ZFinkMsupy<Fk
192 191 adantlr φy𝒫ZFin¬y=kMsupy<Fk
193 176 189 192 fsumser φy𝒫ZFin¬y=k=Msupy<Fk=seqM+Fsupy<
194 4 eqcomi seqM+F=G
195 194 fveq1i seqM+Fsupy<=Gsupy<
196 195 a1i φy𝒫ZFin¬y=seqM+Fsupy<=Gsupy<
197 175 193 196 3eqtrd φy𝒫ZFin¬y=sum^kMsupy<Fk=Gsupy<
198 79 adantr φy𝒫ZFinFunG
199 198 adantr φy𝒫ZFin¬y=FunG
200 189 82 eleqtrdi φy𝒫ZFin¬y=supy<Z
201 85 ad2antrr φy𝒫ZFin¬y=Z=domG
202 200 201 eleqtrd φy𝒫ZFin¬y=supy<domG
203 fvelrn FunGsupy<domGGsupy<ranG
204 199 202 203 syl2anc φy𝒫ZFin¬y=Gsupy<ranG
205 197 204 eqeltrd φy𝒫ZFin¬y=sum^kMsupy<FkranG
206 suprub ranGranGxzranGzxsum^kMsupy<FkranGsum^kMsupy<FksupranG<
207 168 170 172 205 206 syl31anc φy𝒫ZFin¬y=sum^kMsupy<FksupranG<
208 147 156 158 166 207 xrletrd φy𝒫ZFin¬y=sum^kyFksupranG<
209 136 208 pm2.61dan φy𝒫ZFinsum^kyFksupranG<
210 209 ralrimiva φy𝒫ZFinsum^kyFksupranG<
211 nfv kφ
212 211 7 142 60 sge0lefimpt φsum^kZFksupranG<y𝒫ZFinsum^kyFksupranG<
213 210 212 mpbird φsum^kZFksupranG<
214 62 213 eqbrtrd φsum^FsupranG<
215 36 ssriv MjZ
216 215 a1i φMjZ
217 7 142 216 sge0lessmpt φsum^kMjFksum^kZFk
218 217 3ad2ant1 φjZGj=zsum^kMjFksum^kZFk
219 fzfid φMjFin
220 36 14 sylan2 φkMjFk0+∞
221 219 220 sge0fsummpt φsum^kMjFk=k=MjFk
222 221 3ad2ant1 φjZGj=zsum^kMjFk=k=MjFk
223 34 37 12 syl2anc φjZkMjFk=Fk
224 34 37 190 syl2anc φjZkMjFk
225 223 33 224 fsumser φjZk=MjFk=seqM+Fj
226 225 3adant3 φjZGj=zk=MjFk=seqM+Fj
227 222 226 eqtrd φjZGj=zsum^kMjFk=seqM+Fj
228 194 fveq1i seqM+Fj=Gj
229 228 a1i φjZGj=zseqM+Fj=Gj
230 simp3 φjZGj=zGj=z
231 227 229 230 3eqtrrd φjZGj=zz=sum^kMjFk
232 62 3ad2ant1 φjZGj=zsum^F=sum^kZFk
233 231 232 breq12d φjZGj=zzsum^Fsum^kMjFksum^kZFk
234 218 233 mpbird φjZGj=zzsum^F
235 234 3exp φjZGj=zzsum^F
236 235 adantr φzranGjZGj=zzsum^F
237 236 rexlimdv φzranGjZGj=zzsum^F
238 107 237 mpd φzranGzsum^F
239 238 ralrimiva φzranGzsum^F
240 7 10 sge0cl φsum^F0+∞
241 59 ltpnfd φsupranG<<+∞
242 11 60 91 214 241 xrlelttrd φsum^F<+∞
243 11 91 242 xrgtned φ+∞sum^F
244 243 necomd φsum^F+∞
245 ge0xrre sum^F0+∞sum^F+∞sum^F
246 240 244 245 syl2anc φsum^F
247 suprleub ranGranGxzranGzxsum^FsupranG<sum^FzranGzsum^F
248 78 101 131 246 247 syl31anc φsupranG<sum^FzranGzsum^F
249 239 248 mpbird φsupranG<sum^F
250 11 60 214 249 xrletrid φsum^F=supranG<
251 climuni GBGsupranG<B=supranG<
252 5 58 251 syl2anc φB=supranG<
253 250 252 eqtr4d φsum^F=B