| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlselv.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
evlselv.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 3 |
|
evlselv.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
evlselv.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
| 5 |
|
evlselv.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
| 6 |
|
evlselv.l |
⊢ 𝐿 = ( algSc ‘ 𝑈 ) |
| 7 |
|
evlselv.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 8 |
|
evlselv.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 9 |
|
evlselv.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 10 |
|
evlselv.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 11 |
|
evlselv.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
| 14 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
| 15 |
7 14
|
ssexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 16 |
4 15 8
|
mplcrngd |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 17 |
16
|
crngringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ Ring ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 20 |
|
eqid |
⊢ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } = { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } |
| 21 |
1 3 4 5 19 8 9 10
|
selvcl |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ ( Base ‘ 𝑇 ) ) |
| 22 |
5 12 19 20 21
|
mplelf |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) |
| 25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
| 26 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑈 ) ) = ( .g ‘ ( mulGrp ‘ 𝑈 ) ) |
| 27 |
7 9
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
| 29 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CRing ) |
| 30 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) |
| 31 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 33 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 34 |
4 12 2 6 15 33
|
mplasclf |
⊢ ( 𝜑 → 𝐿 : 𝐾 ⟶ ( Base ‘ 𝑈 ) ) |
| 35 |
30 32 34
|
elmapdd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐾 ) ) |
| 36 |
11 9
|
elmapssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐽 ) ∈ ( 𝐾 ↑m 𝐽 ) ) |
| 37 |
35 36
|
mapcod |
⊢ ( 𝜑 → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
| 40 |
20 12 25 26 28 29 38 39
|
evlsvvvallem |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 41 |
12 13 18 24 40
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ) |
| 44 |
|
fveq1 |
⊢ ( 𝑢 = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) → ( 𝑢 ‘ 𝑐 ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) |
| 45 |
41 42 43 44
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) ) |
| 46 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐿 : 𝐾 ⟶ ( Base ‘ 𝑈 ) ) |
| 47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 48 |
47 2
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 49 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 50 |
47
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 51 |
33 50
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 52 |
51
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 53 |
20
|
psrbagf |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑒 : 𝐽 ⟶ ℕ0 ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 : 𝐽 ⟶ ℕ0 ) |
| 55 |
54
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝑒 ‘ 𝑗 ) ∈ ℕ0 ) |
| 56 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 57 |
11 56
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 58 |
57 9
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
| 60 |
59
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
| 61 |
48 49 52 55 60
|
mulgnn0cld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ 𝐾 ) |
| 62 |
46 61
|
cofmpt |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 63 |
4
|
mplassa |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
| 64 |
15 8 63
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
| 65 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 66 |
6 65
|
asclrhm |
⊢ ( 𝑈 ∈ AssAlg → 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 67 |
64 66
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 68 |
4 15 8
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
| 69 |
68
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑈 ) = 𝑅 ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) = ( 𝑅 RingHom 𝑈 ) ) |
| 71 |
67 70
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑅 RingHom 𝑈 ) ) |
| 72 |
47 25
|
rhmmhm |
⊢ ( 𝐿 ∈ ( 𝑅 RingHom 𝑈 ) → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 75 |
48 49 26
|
mhmmulg |
⊢ ( ( 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ∧ ( 𝑒 ‘ 𝑗 ) ∈ ℕ0 ∧ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 76 |
74 55 60 75
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 77 |
58
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
| 78 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) |
| 79 |
77 78
|
fvco3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) = ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 81 |
76 80
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) |
| 82 |
81
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) |
| 83 |
62 82
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) |
| 85 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 86 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 87 |
68 8
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑈 ) ∈ CRing ) |
| 88 |
|
eqid |
⊢ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) |
| 89 |
88
|
crngmgp |
⊢ ( ( Scalar ‘ 𝑈 ) ∈ CRing → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
| 90 |
87 89
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
| 91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
| 92 |
25
|
ringmgp |
⊢ ( 𝑈 ∈ Ring → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
| 93 |
17 92
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
| 94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
| 95 |
88 25
|
rhmmhm |
⊢ ( 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 96 |
67 95
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 98 |
68
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 99 |
2 98
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 100 |
99
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 101 |
61 100
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 102 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 103 |
88 102
|
mgpbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 104 |
101 103
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 105 |
104
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 106 |
54
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 = ( 𝑗 ∈ 𝐽 ↦ ( 𝑒 ‘ 𝑗 ) ) ) |
| 107 |
20
|
psrbagfsupp |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑒 finSupp 0 ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 finSupp 0 ) |
| 109 |
106 108
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( 𝑒 ‘ 𝑗 ) ) finSupp 0 ) |
| 110 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 111 |
48 110 49
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 112 |
111
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 113 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
| 114 |
109 112 55 60 113
|
fsuppssov1 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 115 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 116 |
47 115
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 117 |
114 116
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 1r ‘ 𝑅 ) ) |
| 118 |
68
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 119 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑈 ) ) = ( 1r ‘ ( Scalar ‘ 𝑈 ) ) |
| 120 |
88 119
|
ringidval |
⊢ ( 1r ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 121 |
118 120
|
eqtrdi |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 122 |
121
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 123 |
117 122
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 124 |
85 86 91 94 28 97 105 123
|
gsummhm |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 125 |
84 124
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) = ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 127 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ AssAlg ) |
| 128 |
101
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 129 |
123 120
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 1r ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 130 |
103 120 91 28 128 129
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 131 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 132 |
6 65 102 12 13 131
|
asclmul2 |
⊢ ( ( 𝑈 ∈ AssAlg ∧ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
| 133 |
127 130 24 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
| 134 |
126 133
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
| 135 |
134
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ‘ 𝑐 ) ) |
| 136 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 137 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 138 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 139 |
130 138
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
| 140 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 141 |
4 131 2 12 136 137 139 24 140
|
mplvscaval |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ‘ 𝑐 ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
| 142 |
135 141
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
| 143 |
142
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) |
| 144 |
45 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) |
| 145 |
144
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) ) |
| 146 |
69
|
fveq2d |
⊢ ( 𝜑 → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ 𝑅 ) ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ 𝑅 ) ) |
| 148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 149 |
148
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
| 150 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
| 151 |
148 139
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
| 152 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) |
| 153 |
4 2 12 137 152
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 154 |
153
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ∈ 𝐾 ) |
| 155 |
154
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ∈ 𝐾 ) |
| 156 |
2 136 150 151 155
|
crngcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 157 |
149 156
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 158 |
157
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 159 |
158
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 160 |
145 159
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 162 |
|
eqid |
⊢ ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) |
| 163 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) → ( 𝑢 ‘ 𝑐 ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
| 164 |
|
eqid |
⊢ ( 𝐽 eval 𝑈 ) = ( 𝐽 eval 𝑈 ) |
| 165 |
164 5 19 20 12 25 26 13 27 16 21 37
|
evlvvval |
⊢ ( 𝜑 → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 166 |
164 5 19 12 27 16 21 37
|
evlcl |
⊢ ( 𝜑 → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 167 |
165 166
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 169 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ∈ V ) |
| 170 |
162 163 168 169
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ‘ ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
| 171 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 172 |
17
|
ringcmnd |
⊢ ( 𝜑 → 𝑈 ∈ CMnd ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CMnd ) |
| 174 |
8
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 175 |
174
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 176 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Mnd ) |
| 177 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐽 ) ∈ V |
| 178 |
177
|
rabex |
⊢ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V |
| 179 |
178
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V ) |
| 180 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 181 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Grp ) |
| 182 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 183 |
4 12 137 162 180 181 182
|
mplmapghm |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 GrpHom 𝑅 ) ) |
| 184 |
|
ghmmhm |
⊢ ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 GrpHom 𝑅 ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 MndHom 𝑅 ) ) |
| 185 |
183 184
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 MndHom 𝑅 ) ) |
| 186 |
41
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 187 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
| 188 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CRing ) |
| 189 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ ( Base ‘ 𝑇 ) ) |
| 190 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
| 191 |
20 5 19 12 25 26 13 187 188 189 190
|
evlvvvallem |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑈 ) ) |
| 192 |
12 171 173 176 179 185 186 191
|
gsummhm |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ‘ ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
| 193 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
| 194 |
193
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
| 195 |
170 192 194
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) = ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
| 196 |
195
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 197 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 198 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 199 |
47
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 200 |
8 199
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 202 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 203 |
137
|
psrbagf |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
| 204 |
203
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
| 205 |
204
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
| 206 |
57 14
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
| 207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
| 208 |
207
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
| 209 |
48 49 202 205 208
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ∈ 𝐾 ) |
| 210 |
209
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
| 211 |
204
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
| 212 |
137
|
psrbagfsupp |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑐 finSupp 0 ) |
| 213 |
212
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 finSupp 0 ) |
| 214 |
211 213
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( 𝑐 ‘ 𝑘 ) ) finSupp 0 ) |
| 215 |
48 110 49
|
mulg0 |
⊢ ( 𝑣 ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑣 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 216 |
215
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑣 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 217 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ V ) |
| 218 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
| 219 |
214 216 217 208 218
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 220 |
48 110 201 180 210 219
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
| 221 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 222 |
2 136 221 155 151
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
| 223 |
178
|
mptex |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ∈ V |
| 224 |
223
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ∈ V ) |
| 225 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 226 |
|
funmpt |
⊢ Fun ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) |
| 227 |
226
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
| 228 |
5 19 171 21
|
mplelsfi |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑈 ) ) |
| 229 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑈 ) ) |
| 230 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ⊆ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) |
| 231 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑈 ) ∈ V ) |
| 232 |
23 230 179 231
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) = ( 0g ‘ 𝑈 ) ) |
| 233 |
232
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) = ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) ) |
| 234 |
4 137 197 171 15 174
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
| 235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑈 ) = ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
| 236 |
235
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) ) |
| 237 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 238 |
237
|
fvconst2 |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 240 |
236 239
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 241 |
240
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 242 |
233 241
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 243 |
242 179
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) |
| 244 |
224 225 227 229 243
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 245 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 246 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → 𝑣 ∈ 𝐾 ) |
| 247 |
2 136 197 245 246
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
| 248 |
244 247 155 151 225
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 249 |
2 197 136 198 179 220 222 248
|
gsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 250 |
161 196 249
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 251 |
|
fveq2 |
⊢ ( 𝑎 = 𝑒 → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) |
| 252 |
251
|
adantl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) |
| 253 |
|
simpl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → 𝑏 = 𝑐 ) |
| 254 |
252 253
|
fveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) |
| 255 |
|
fveq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) |
| 256 |
255
|
adantl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑎 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) |
| 257 |
256
|
oveq1d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 258 |
257
|
mpteq2dv |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 259 |
258
|
oveq2d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 260 |
254 259
|
oveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 261 |
|
fveq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 262 |
261
|
adantr |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 263 |
262
|
oveq1d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 264 |
263
|
mpteq2dv |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 265 |
264
|
oveq2d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
| 266 |
260 265
|
oveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 267 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 268 |
|
ovex |
⊢ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ V |
| 269 |
266 267 268
|
ovmpoa |
⊢ ( ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 270 |
269
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 271 |
270
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 272 |
271
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 273 |
250 272
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) |
| 274 |
273
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) |
| 275 |
274
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
| 276 |
33
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 277 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 278 |
277
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
| 279 |
278
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
| 280 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 281 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 282 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 283 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
| 284 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐽 ⊆ 𝐼 ) |
| 285 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 286 |
282 20 283 284 285
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
| 287 |
281 286
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ∈ ( Base ‘ 𝑈 ) ) |
| 288 |
4 2 12 137 287
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 289 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
| 290 |
282 137 283 289 285
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 291 |
288 290
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ∈ 𝐾 ) |
| 292 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 293 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
| 294 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 295 |
282
|
psrbagf |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 ) |
| 296 |
295
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
| 297 |
296 284
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 298 |
297
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ∈ ℕ0 ) |
| 299 |
58
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
| 300 |
299
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
| 301 |
48 49 294 298 300
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ 𝐾 ) |
| 302 |
301
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ 𝐾 ) |
| 303 |
27
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ∈ V ) |
| 304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ∈ V ) |
| 305 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
| 306 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 307 |
306
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → Fun ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 308 |
282
|
psrbagfsupp |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 finSupp 0 ) |
| 309 |
308
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 finSupp 0 ) |
| 310 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 0 ∈ ℤ ) |
| 311 |
309 310
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) finSupp 0 ) |
| 312 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ⊆ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) |
| 313 |
297 312 293 310
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = 0 ) |
| 314 |
313
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 315 |
|
eldifi |
⊢ ( 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) → 𝑗 ∈ 𝐽 ) |
| 316 |
48 110 49
|
mulg0 |
⊢ ( ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 317 |
300 316
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 318 |
315 317
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 319 |
314 318
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 320 |
319 293
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) supp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) |
| 321 |
304 305 307 311 320
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 322 |
48 110 292 293 302 321
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
| 323 |
2 136 280 291 322
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
| 324 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 325 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 326 |
296 289
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
| 327 |
326
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ ℕ0 ) |
| 328 |
206
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
| 329 |
328
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
| 330 |
48 49 325 327 329
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ∈ 𝐾 ) |
| 331 |
330
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
| 332 |
324
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ∈ V ) |
| 333 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 334 |
333
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → Fun ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 335 |
309 310
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) finSupp 0 ) |
| 336 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ⊆ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) |
| 337 |
326 336 324 310
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = 0 ) |
| 338 |
337
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 339 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) → 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 340 |
339 329
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
| 341 |
48 110 49
|
mulg0 |
⊢ ( ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 342 |
340 341
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 343 |
338 342
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 344 |
343 324
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) supp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) |
| 345 |
332 305 334 335 344
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 346 |
48 110 292 324 331 345
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
| 347 |
2 136 280 323 346
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
| 348 |
347
|
fmpttd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 349 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
| 350 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 ∈ 𝐵 ) |
| 351 |
282 1 3 349 284 350 285
|
selvvvval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( 𝐹 ‘ 𝑑 ) ) |
| 352 |
351
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) ) |
| 353 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 354 |
1 353 3 282 10
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 355 |
354
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) ) |
| 356 |
1 3 197 10
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 357 |
355 356
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 358 |
352 357
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 359 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 360 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → 𝑣 ∈ 𝐾 ) |
| 361 |
2 136 197 359 360
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
| 362 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ∈ V ) |
| 363 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 364 |
358 361 362 322 363
|
fsuppssov1 |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 365 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ V ) |
| 366 |
364 361 365 346 363
|
fsuppssov1 |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 367 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) |
| 368 |
282 20 137 367 7 9
|
evlselvlem |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 369 |
2 197 276 279 348 366 368
|
gsumf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) ) ) |
| 370 |
137
|
psrbagf |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
| 371 |
370
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
| 372 |
20
|
psrbagf |
⊢ ( 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑎 : 𝐽 ⟶ ℕ0 ) |
| 373 |
372
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 : 𝐽 ⟶ ℕ0 ) |
| 374 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ |
| 375 |
374
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) |
| 376 |
371 373 375
|
fun2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ) |
| 377 |
|
undifr |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
| 378 |
9 377
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
| 379 |
378
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
| 380 |
379
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ↔ ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) ) |
| 381 |
376 380
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) |
| 382 |
|
vex |
⊢ 𝑏 ∈ V |
| 383 |
|
vex |
⊢ 𝑎 ∈ V |
| 384 |
382 383
|
unex |
⊢ ( 𝑏 ∪ 𝑎 ) ∈ V |
| 385 |
384
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) ∈ V ) |
| 386 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 0 ∈ ℤ ) |
| 387 |
381
|
ffund |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → Fun ( 𝑏 ∪ 𝑎 ) ) |
| 388 |
137
|
psrbagfsupp |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 finSupp 0 ) |
| 389 |
388
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 finSupp 0 ) |
| 390 |
20
|
psrbagfsupp |
⊢ ( 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑎 finSupp 0 ) |
| 391 |
390
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 finSupp 0 ) |
| 392 |
389 391
|
fsuppun |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) supp 0 ) ∈ Fin ) |
| 393 |
385 386 387 392
|
isfsuppd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) finSupp 0 ) |
| 394 |
|
fcdmnn0fsuppg |
⊢ ( ( ( 𝑏 ∪ 𝑎 ) ∈ V ∧ ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑏 ∪ 𝑎 ) finSupp 0 ↔ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) |
| 395 |
385 381 394
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) finSupp 0 ↔ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) |
| 396 |
393 395
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) |
| 397 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝐼 ∈ 𝑉 ) |
| 398 |
282
|
psrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) ) |
| 399 |
397 398
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) ) |
| 400 |
381 396 399
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 401 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) |
| 402 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 403 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑑 ↾ 𝐽 ) = ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) |
| 404 |
403
|
fveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ) |
| 405 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) |
| 406 |
404 405
|
fveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) |
| 407 |
403
|
fveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ) |
| 408 |
407
|
oveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 409 |
408
|
mpteq2dv |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 410 |
409
|
oveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 411 |
406 410
|
oveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 412 |
405
|
fveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) |
| 413 |
412
|
oveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 414 |
413
|
mpteq2dv |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 415 |
414
|
oveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
| 416 |
411 415
|
oveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 417 |
384 416
|
csbie |
⊢ ⦋ ( 𝑏 ∪ 𝑎 ) / 𝑑 ⦌ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
| 418 |
370
|
ffnd |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ) |
| 419 |
418
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ) |
| 420 |
373
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 Fn 𝐽 ) |
| 421 |
|
fnunres2 |
⊢ ( ( 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑎 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) = 𝑎 ) |
| 422 |
419 420 375 421
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) = 𝑎 ) |
| 423 |
422
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ) |
| 424 |
|
fnunres1 |
⊢ ( ( 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑎 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑏 ) |
| 425 |
419 420 375 424
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑏 ) |
| 426 |
423 425
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ) |
| 427 |
422
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝑎 ‘ 𝑗 ) ) |
| 428 |
427
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 429 |
428
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 430 |
429
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 431 |
426 430
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
| 432 |
425
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝑏 ‘ 𝑘 ) ) |
| 433 |
432
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 434 |
433
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 435 |
434
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
| 436 |
431 435
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 437 |
417 436
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ⦋ ( 𝑏 ∪ 𝑎 ) / 𝑑 ⦌ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 438 |
400 401 402 437
|
fmpocos |
⊢ ( 𝜑 → ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 439 |
438
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) ) = ( 𝑅 Σg ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 440 |
|
ovex |
⊢ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∈ V |
| 441 |
440
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 442 |
441
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 443 |
178
|
a1i |
⊢ ( 𝜑 → { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V ) |
| 444 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑅 ∈ Ring ) |
| 445 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑈 ) ) |
| 446 |
4 2 12 137 445
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 447 |
446
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
| 448 |
447
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
| 449 |
448
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
| 450 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝐽 ∈ V ) |
| 451 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑅 ∈ CRing ) |
| 452 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐴 ↾ 𝐽 ) ∈ ( 𝐾 ↑m 𝐽 ) ) |
| 453 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
| 454 |
20 2 47 49 450 451 452 453
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
| 455 |
2 136 444 449 454
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
| 456 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
| 457 |
11 14
|
elmapssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ ( 𝐾 ↑m ( 𝐼 ∖ 𝐽 ) ) ) |
| 458 |
457
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ ( 𝐾 ↑m ( 𝐼 ∖ 𝐽 ) ) ) |
| 459 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 460 |
137 2 47 49 456 451 458 459
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
| 461 |
2 136 444 455 460
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
| 462 |
461
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∀ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
| 463 |
267
|
fmpo |
⊢ ( ∀ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∀ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ↔ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ⟶ 𝐾 ) |
| 464 |
462 463
|
sylib |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ⟶ 𝐾 ) |
| 465 |
|
f1of1 |
⊢ ( ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 466 |
368 465
|
syl |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 467 |
278
|
mptex |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∈ V |
| 468 |
467
|
a1i |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∈ V ) |
| 469 |
366 466 363 468
|
fsuppco |
⊢ ( 𝜑 → ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 470 |
438 469
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 471 |
2 197 276 442 443 464 470
|
gsumxp |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
| 472 |
369 439 471
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
| 473 |
2 136 280 291 322 346
|
ringassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 474 |
47 136
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 475 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 476 |
296
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
| 477 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 478 |
477
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) |
| 479 |
48 49 475 476 478
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐾 ) |
| 480 |
479
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) : 𝐼 ⟶ 𝐾 ) |
| 481 |
296
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) ) |
| 482 |
481 309
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) finSupp 0 ) |
| 483 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 484 |
482 483 476 478 305
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 485 |
|
disjdif |
⊢ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ |
| 486 |
485
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) |
| 487 |
|
undif |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
| 488 |
9 487
|
sylib |
⊢ ( 𝜑 → ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
| 489 |
488
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
| 490 |
489
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 = ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
| 491 |
48 110 474 292 283 480 484 486 490
|
gsumsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) ) |
| 492 |
284
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) = ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 493 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑗 ) ) |
| 494 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 495 |
493 494
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
| 496 |
495
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
| 497 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) |
| 498 |
497
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝑑 ‘ 𝑗 ) ) |
| 499 |
497
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 500 |
498 499
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
| 501 |
500
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) = ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
| 502 |
501
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 503 |
496 502
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 504 |
492 503
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
| 505 |
504
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
| 506 |
289
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) = ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 507 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 508 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 509 |
507 508
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
| 510 |
509
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
| 511 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 512 |
511
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
| 513 |
511
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 514 |
512 513
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
| 515 |
514
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) = ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
| 516 |
515
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 517 |
510 516
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 518 |
506 517
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
| 519 |
518
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
| 520 |
505 519
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 521 |
491 520
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 522 |
351 521
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 523 |
473 522
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 524 |
523
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 525 |
524
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 526 |
275 472 525
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 527 |
|
eqid |
⊢ ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) = ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) |
| 528 |
527 4 12 137 2 47 49 136 15 8 166 457
|
evlvvval |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) ‘ ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ‘ ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 529 |
|
eqid |
⊢ ( 𝐼 eval 𝑅 ) = ( 𝐼 eval 𝑅 ) |
| 530 |
529 1 3 282 2 47 49 136 7 8 10 11
|
evlvvval |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑅 ) ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 531 |
526 528 530
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) ‘ ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ‘ ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( 𝐼 eval 𝑅 ) ‘ 𝐹 ) ‘ 𝐴 ) ) |