Metamath Proof Explorer


Theorem cntotbnd

Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypothesis cntotbnd.d D=absX×X
Assertion cntotbnd DTotBndXDBndX

Proof

Step Hyp Ref Expression
1 cntotbnd.d D=absX×X
2 totbndbnd DTotBndXDBndX
3 rpcn r+r
4 3 adantl DBndXr+r
5 gzcn ziz
6 mulcl rzrz
7 4 5 6 syl2an DBndXr+zirz
8 7 fmpttd DBndXr+zirz:i
9 8 frnd DBndXr+ranzirz
10 cnex V
11 10 elpw2 ranzirz𝒫ranzirz
12 9 11 sylibr DBndXr+ranzirz𝒫
13 cnmet absMet
14 1 bnd2lem absMetDBndXX
15 13 14 mpan DBndXX
16 15 sselda DBndXyXy
17 16 adantrl DBndXr+yXy
18 17 recld DBndXr+yXy
19 simprl DBndXr+yXr+
20 18 19 rerpdivcld DBndXr+yXyr
21 halfre 12
22 readdcl yr12yr+12
23 20 21 22 sylancl DBndXr+yXyr+12
24 23 flcld DBndXr+yXyr+12
25 17 imcld DBndXr+yXy
26 25 19 rerpdivcld DBndXr+yXyr
27 readdcl yr12yr+12
28 26 21 27 sylancl DBndXr+yXyr+12
29 28 flcld DBndXr+yXyr+12
30 gzreim yr+12yr+12yr+12+iyr+12i
31 24 29 30 syl2anc DBndXr+yXyr+12+iyr+12i
32 gzcn yr+12+iyr+12iyr+12+iyr+12
33 31 32 syl DBndXr+yXyr+12+iyr+12
34 19 rpcnd DBndXr+yXr
35 19 rpne0d DBndXr+yXr0
36 17 34 35 divcld DBndXr+yXyr
37 33 36 subcld DBndXr+yXyr+12+iyr+12-yr
38 37 abscld DBndXr+yXyr+12+iyr+12-yr
39 1re 1
40 39 a1i DBndXr+yX1
41 24 zcnd DBndXr+yXyr+12
42 ax-icn i
43 29 zcnd DBndXr+yXyr+12
44 mulcl iyr+12iyr+12
45 42 43 44 sylancr DBndXr+yXiyr+12
46 20 recnd DBndXr+yXyr
47 26 recnd DBndXr+yXyr
48 mulcl iyriyr
49 42 47 48 sylancr DBndXr+yXiyr
50 41 45 46 49 addsub4d DBndXr+yXyr+12+iyr+12-yr+iyr=yr+12yr+iyr+12-iyr
51 36 replimd DBndXr+yXyr=yr+iyr
52 19 rpred DBndXr+yXr
53 52 17 35 redivd DBndXr+yXyr=yr
54 52 17 35 imdivd DBndXr+yXyr=yr
55 54 oveq2d DBndXr+yXiyr=iyr
56 53 55 oveq12d DBndXr+yXyr+iyr=yr+iyr
57 51 56 eqtrd DBndXr+yXyr=yr+iyr
58 57 oveq2d DBndXr+yXyr+12+iyr+12-yr=yr+12+iyr+12-yr+iyr
59 42 a1i DBndXr+yXi
60 59 43 47 subdid DBndXr+yXiyr+12yr=iyr+12iyr
61 60 oveq2d DBndXr+yXyr+12-yr+iyr+12yr=yr+12yr+iyr+12-iyr
62 50 58 61 3eqtr4d DBndXr+yXyr+12+iyr+12-yr=yr+12-yr+iyr+12yr
63 62 fveq2d DBndXr+yXyr+12+iyr+12-yr=yr+12-yr+iyr+12yr
64 63 oveq1d DBndXr+yXyr+12+iyr+12-yr2=yr+12-yr+iyr+12yr2
65 24 zred DBndXr+yXyr+12
66 65 20 resubcld DBndXr+yXyr+12yr
67 29 zred DBndXr+yXyr+12
68 67 26 resubcld DBndXr+yXyr+12yr
69 absreimsq yr+12yryr+12yryr+12-yr+iyr+12yr2=yr+12yr2+yr+12yr2
70 66 68 69 syl2anc DBndXr+yXyr+12-yr+iyr+12yr2=yr+12yr2+yr+12yr2
71 64 70 eqtrd DBndXr+yXyr+12+iyr+12-yr2=yr+12yr2+yr+12yr2
72 66 resqcld DBndXr+yXyr+12yr2
73 68 resqcld DBndXr+yXyr+12yr2
74 21 resqcli 122
75 74 a1i DBndXr+yX122
76 21 a1i DBndXr+yX12
77 absresq yr+12yryr+12yr2=yr+12yr2
78 66 77 syl DBndXr+yXyr+12yr2=yr+12yr2
79 rddif yryr+12yr12
80 20 79 syl DBndXr+yXyr+12yr12
81 66 recnd DBndXr+yXyr+12yr
82 81 abscld DBndXr+yXyr+12yr
83 81 absge0d DBndXr+yX0yr+12yr
84 halfgt0 0<12
85 21 84 elrpii 12+
86 rpge0 12+012
87 85 86 mp1i DBndXr+yX012
88 82 76 83 87 le2sqd DBndXr+yXyr+12yr12yr+12yr2122
89 80 88 mpbid DBndXr+yXyr+12yr2122
90 78 89 eqbrtrrd DBndXr+yXyr+12yr2122
91 halfcn 12
92 91 sqvali 122=1212
93 halflt1 12<1
94 21 39 21 84 ltmul1ii 12<11212<112
95 93 94 mpbi 1212<112
96 91 mullidi 112=12
97 95 96 breqtri 1212<12
98 92 97 eqbrtri 122<12
99 98 a1i DBndXr+yX122<12
100 72 75 76 90 99 lelttrd DBndXr+yXyr+12yr2<12
101 absresq yr+12yryr+12yr2=yr+12yr2
102 68 101 syl DBndXr+yXyr+12yr2=yr+12yr2
103 rddif yryr+12yr12
104 26 103 syl DBndXr+yXyr+12yr12
105 68 recnd DBndXr+yXyr+12yr
106 105 abscld DBndXr+yXyr+12yr
107 105 absge0d DBndXr+yX0yr+12yr
108 106 76 107 87 le2sqd DBndXr+yXyr+12yr12yr+12yr2122
109 104 108 mpbid DBndXr+yXyr+12yr2122
110 102 109 eqbrtrrd DBndXr+yXyr+12yr2122
111 73 75 76 110 99 lelttrd DBndXr+yXyr+12yr2<12
112 72 73 40 100 111 lt2halvesd DBndXr+yXyr+12yr2+yr+12yr2<1
113 71 112 eqbrtrd DBndXr+yXyr+12+iyr+12-yr2<1
114 sq1 12=1
115 113 114 breqtrrdi DBndXr+yXyr+12+iyr+12-yr2<12
116 37 absge0d DBndXr+yX0yr+12+iyr+12-yr
117 0le1 01
118 117 a1i DBndXr+yX01
119 38 40 116 118 lt2sqd DBndXr+yXyr+12+iyr+12-yr<1yr+12+iyr+12-yr2<12
120 115 119 mpbird DBndXr+yXyr+12+iyr+12-yr<1
121 38 40 19 120 ltmul2dd DBndXr+yXryr+12+iyr+12-yr<r1
122 34 33 mulcld DBndXr+yXryr+12+iyr+12
123 eqid abs=abs
124 123 cnmetdval ryr+12+iyr+12yryr+12+iyr+12absy=ryr+12+iyr+12y
125 122 17 124 syl2anc DBndXr+yXryr+12+iyr+12absy=ryr+12+iyr+12y
126 34 33 36 subdid DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12ryr
127 17 34 35 divcan2d DBndXr+yXryr=y
128 127 oveq2d DBndXr+yXryr+12+iyr+12ryr=ryr+12+iyr+12y
129 126 128 eqtrd DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12y
130 129 fveq2d DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12y
131 34 37 absmuld DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12-yr
132 130 131 eqtr3d DBndXr+yXryr+12+iyr+12y=ryr+12+iyr+12-yr
133 19 rpge0d DBndXr+yX0r
134 52 133 absidd DBndXr+yXr=r
135 134 oveq1d DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12-yr
136 125 132 135 3eqtrrd DBndXr+yXryr+12+iyr+12-yr=ryr+12+iyr+12absy
137 34 mulridd DBndXr+yXr1=r
138 121 136 137 3brtr3d DBndXr+yXryr+12+iyr+12absy<r
139 cnxmet abs∞Met
140 139 a1i DBndXr+yXabs∞Met
141 rpxr r+r*
142 141 ad2antrl DBndXr+yXr*
143 elbl2 abs∞Metr*ryr+12+iyr+12yyryr+12+iyr+12ballabsrryr+12+iyr+12absy<r
144 140 142 122 17 143 syl22anc DBndXr+yXyryr+12+iyr+12ballabsrryr+12+iyr+12absy<r
145 138 144 mpbird DBndXr+yXyryr+12+iyr+12ballabsr
146 oveq2 z=yr+12+iyr+12rz=ryr+12+iyr+12
147 146 oveq1d z=yr+12+iyr+12rzballabsr=ryr+12+iyr+12ballabsr
148 147 eleq2d z=yr+12+iyr+12yrzballabsryryr+12+iyr+12ballabsr
149 148 rspcev yr+12+iyr+12iyryr+12+iyr+12ballabsrziyrzballabsr
150 31 145 149 syl2anc DBndXr+yXziyrzballabsr
151 150 expr DBndXr+yXziyrzballabsr
152 eliun yxranzirzxballabsrxranzirzyxballabsr
153 ovex rzV
154 153 rgenw zirzV
155 eqid zirz=zirz
156 oveq1 x=rzxballabsr=rzballabsr
157 156 eleq2d x=rzyxballabsryrzballabsr
158 155 157 rexrnmptw zirzVxranzirzyxballabsrziyrzballabsr
159 154 158 ax-mp xranzirzyxballabsrziyrzballabsr
160 152 159 bitri yxranzirzxballabsrziyrzballabsr
161 151 160 syl6ibr DBndXr+yXyxranzirzxballabsr
162 161 ssrdv DBndXr+Xxranzirzxballabsr
163 simpl DBndXr+DBndX
164 0cn 0
165 1 ssbnd absMet0DBndXdX0ballabsd
166 13 164 165 mp2an DBndXdX0ballabsd
167 163 166 sylib DBndXr+dX0ballabsd
168 fzfi r+dr+1r+dr+1Fin
169 xpfi r+dr+1r+dr+1Finr+dr+1r+dr+1Finr+dr+1r+dr+1×r+dr+1r+dr+1Fin
170 168 168 169 mp2an r+dr+1r+dr+1×r+dr+1r+dr+1Fin
171 eqid ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib=ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
172 ovex ra+ibV
173 171 172 fnmpoi ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibFnr+dr+1r+dr+1×r+dr+1r+dr+1
174 dffn4 ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibFnr+dr+1r+dr+1×r+dr+1r+dr+1ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib:r+dr+1r+dr+1×r+dr+1r+dr+1ontoranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
175 173 174 mpbi ar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib:r+dr+1r+dr+1×r+dr+1r+dr+1ontoranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
176 fofi r+dr+1r+dr+1×r+dr+1r+dr+1Finar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib:r+dr+1r+dr+1×r+dr+1r+dr+1ontoranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibFin
177 170 175 176 mp2an ranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibFin
178 155 153 elrnmpti xranzirzzix=rz
179 elgz zizzz
180 179 simp2bi ziz
181 180 ad2antlr DBndXr+dX0ballabsdzirzballabsrXz
182 181 zcnd DBndXr+dX0ballabsdzirzballabsrXz
183 182 abscld DBndXr+dX0ballabsdzirzballabsrXz
184 5 ad2antlr DBndXr+dX0ballabsdzirzballabsrXz
185 184 abscld DBndXr+dX0ballabsdzirzballabsrXz
186 simpllr DBndXr+dX0ballabsdzir+
187 186 adantr DBndXr+dX0ballabsdzirzballabsrXr+
188 187 rpred DBndXr+dX0ballabsdzirzballabsrXr
189 simplrl DBndXr+dX0ballabsdzid
190 189 adantr DBndXr+dX0ballabsdzirzballabsrXd
191 188 190 readdcld DBndXr+dX0ballabsdzirzballabsrXr+d
192 191 187 rerpdivcld DBndXr+dX0ballabsdzirzballabsrXr+dr
193 192 flcld DBndXr+dX0ballabsdzirzballabsrXr+dr
194 193 peano2zd DBndXr+dX0ballabsdzirzballabsrXr+dr+1
195 194 zred DBndXr+dX0ballabsdzirzballabsrXr+dr+1
196 absrele zzz
197 184 196 syl DBndXr+dX0ballabsdzirzballabsrXzz
198 187 rpcnd DBndXr+dX0ballabsdzirzballabsrXr
199 198 184 absmuld DBndXr+dX0ballabsdzirzballabsrXrz=rz
200 187 rpge0d DBndXr+dX0ballabsdzirzballabsrX0r
201 188 200 absidd DBndXr+dX0ballabsdzirzballabsrXr=r
202 201 oveq1d DBndXr+dX0ballabsdzirzballabsrXrz=rz
203 199 202 eqtrd DBndXr+dX0ballabsdzirzballabsrXrz=rz
204 simplrr DBndXr+dX0ballabsdziX0ballabsd
205 sslin X0ballabsdrzballabsrXrzballabsr0ballabsd
206 204 205 syl DBndXr+dX0ballabsdzirzballabsrXrzballabsr0ballabsd
207 139 a1i DBndXr+dX0ballabsdziabs∞Met
208 7 adantlr DBndXr+dX0ballabsdzirz
209 164 a1i DBndXr+dX0ballabsdzi0
210 186 rpxrd DBndXr+dX0ballabsdzir*
211 189 rexrd DBndXr+dX0ballabsdzid*
212 bldisj abs∞Metrz0r*d*r+𝑒drzabs0rzballabsr0ballabsd=
213 212 3exp2 abs∞Metrz0r*d*r+𝑒drzabs0rzballabsr0ballabsd=
214 213 imp32 abs∞Metrz0r*d*r+𝑒drzabs0rzballabsr0ballabsd=
215 207 208 209 210 211 214 syl32anc DBndXr+dX0ballabsdzir+𝑒drzabs0rzballabsr0ballabsd=
216 sseq0 rzballabsrXrzballabsr0ballabsdrzballabsr0ballabsd=rzballabsrX=
217 206 215 216 syl6an DBndXr+dX0ballabsdzir+𝑒drzabs0rzballabsrX=
218 217 necon3ad DBndXr+dX0ballabsdzirzballabsrX¬r+𝑒drzabs0
219 218 imp DBndXr+dX0ballabsdzirzballabsrX¬r+𝑒drzabs0
220 rexadd rdr+𝑒d=r+d
221 188 190 220 syl2anc DBndXr+dX0ballabsdzirzballabsrXr+𝑒d=r+d
222 208 adantr DBndXr+dX0ballabsdzirzballabsrXrz
223 123 cnmetdval rz0rzabs0=rz0
224 222 164 223 sylancl DBndXr+dX0ballabsdzirzballabsrXrzabs0=rz0
225 222 subid1d DBndXr+dX0ballabsdzirzballabsrXrz0=rz
226 225 fveq2d DBndXr+dX0ballabsdzirzballabsrXrz0=rz
227 224 226 eqtrd DBndXr+dX0ballabsdzirzballabsrXrzabs0=rz
228 221 227 breq12d DBndXr+dX0ballabsdzirzballabsrXr+𝑒drzabs0r+drz
229 219 228 mtbid DBndXr+dX0ballabsdzirzballabsrX¬r+drz
230 222 abscld DBndXr+dX0ballabsdzirzballabsrXrz
231 230 191 ltnled DBndXr+dX0ballabsdzirzballabsrXrz<r+d¬r+drz
232 229 231 mpbird DBndXr+dX0ballabsdzirzballabsrXrz<r+d
233 203 232 eqbrtrrd DBndXr+dX0ballabsdzirzballabsrXrz<r+d
234 185 191 187 ltmuldiv2d DBndXr+dX0ballabsdzirzballabsrXrz<r+dz<r+dr
235 233 234 mpbid DBndXr+dX0ballabsdzirzballabsrXz<r+dr
236 flltp1 r+drr+dr<r+dr+1
237 192 236 syl DBndXr+dX0ballabsdzirzballabsrXr+dr<r+dr+1
238 185 192 195 235 237 lttrd DBndXr+dX0ballabsdzirzballabsrXz<r+dr+1
239 185 195 238 ltled DBndXr+dX0ballabsdzirzballabsrXzr+dr+1
240 183 185 195 197 239 letrd DBndXr+dX0ballabsdzirzballabsrXzr+dr+1
241 181 zred DBndXr+dX0ballabsdzirzballabsrXz
242 241 195 absled DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1zzr+dr+1
243 240 242 mpbid DBndXr+dX0ballabsdzirzballabsrXr+dr+1zzr+dr+1
244 194 znegcld DBndXr+dX0ballabsdzirzballabsrXr+dr+1
245 elfz zr+dr+1r+dr+1zr+dr+1r+dr+1r+dr+1zzr+dr+1
246 181 244 194 245 syl3anc DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1r+dr+1zzr+dr+1
247 243 246 mpbird DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1
248 179 simp3bi ziz
249 248 ad2antlr DBndXr+dX0ballabsdzirzballabsrXz
250 249 zcnd DBndXr+dX0ballabsdzirzballabsrXz
251 250 abscld DBndXr+dX0ballabsdzirzballabsrXz
252 absimle zzz
253 184 252 syl DBndXr+dX0ballabsdzirzballabsrXzz
254 251 185 195 253 239 letrd DBndXr+dX0ballabsdzirzballabsrXzr+dr+1
255 249 zred DBndXr+dX0ballabsdzirzballabsrXz
256 255 195 absled DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1zzr+dr+1
257 254 256 mpbid DBndXr+dX0ballabsdzirzballabsrXr+dr+1zzr+dr+1
258 elfz zr+dr+1r+dr+1zr+dr+1r+dr+1r+dr+1zzr+dr+1
259 249 244 194 258 syl3anc DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1r+dr+1zzr+dr+1
260 257 259 mpbird DBndXr+dX0ballabsdzirzballabsrXzr+dr+1r+dr+1
261 184 replimd DBndXr+dX0ballabsdzirzballabsrXz=z+iz
262 261 oveq2d DBndXr+dX0ballabsdzirzballabsrXrz=rz+iz
263 oveq1 a=za+ib=z+ib
264 263 oveq2d a=zra+ib=rz+ib
265 264 eqeq2d a=zrz=ra+ibrz=rz+ib
266 oveq2 b=zib=iz
267 266 oveq2d b=zz+ib=z+iz
268 267 oveq2d b=zrz+ib=rz+iz
269 268 eqeq2d b=zrz=rz+ibrz=rz+iz
270 265 269 rspc2ev zr+dr+1r+dr+1zr+dr+1r+dr+1rz=rz+izar+dr+1r+dr+1br+dr+1r+dr+1rz=ra+ib
271 247 260 262 270 syl3anc DBndXr+dX0ballabsdzirzballabsrXar+dr+1r+dr+1br+dr+1r+dr+1rz=ra+ib
272 271 ex DBndXr+dX0ballabsdzirzballabsrXar+dr+1r+dr+1br+dr+1r+dr+1rz=ra+ib
273 171 172 elrnmpo rzranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibar+dr+1r+dr+1br+dr+1r+dr+1rz=ra+ib
274 272 273 syl6ibr DBndXr+dX0ballabsdzirzballabsrXrzranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
275 156 ineq1d x=rzxballabsrX=rzballabsrX
276 275 neeq1d x=rzxballabsrXrzballabsrX
277 eleq1 x=rzxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibrzranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
278 276 277 imbi12d x=rzxballabsrXxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibrzballabsrXrzranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
279 274 278 syl5ibrcom DBndXr+dX0ballabsdzix=rzxballabsrXxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
280 279 rexlimdva DBndXr+dX0ballabsdzix=rzxballabsrXxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
281 178 280 biimtrid DBndXr+dX0ballabsdxranzirzxballabsrXxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
282 281 3imp DBndXr+dX0ballabsdxranzirzxballabsrXxranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
283 282 rabssdv DBndXr+dX0ballabsdxranzirz|xballabsrXranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ib
284 ssfi ranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibFinxranzirz|xballabsrXranar+dr+1r+dr+1,br+dr+1r+dr+1ra+ibxranzirz|xballabsrXFin
285 177 283 284 sylancr DBndXr+dX0ballabsdxranzirz|xballabsrXFin
286 167 285 rexlimddv DBndXr+xranzirz|xballabsrXFin
287 iuneq1 y=ranzirzxyxballabsr=xranzirzxballabsr
288 287 sseq2d y=ranzirzXxyxballabsrXxranzirzxballabsr
289 rabeq y=ranzirzxy|xballabsrX=xranzirz|xballabsrX
290 289 eleq1d y=ranzirzxy|xballabsrXFinxranzirz|xballabsrXFin
291 288 290 anbi12d y=ranzirzXxyxballabsrxy|xballabsrXFinXxranzirzxballabsrxranzirz|xballabsrXFin
292 291 rspcev ranzirz𝒫Xxranzirzxballabsrxranzirz|xballabsrXFiny𝒫Xxyxballabsrxy|xballabsrXFin
293 12 162 286 292 syl12anc DBndXr+y𝒫Xxyxballabsrxy|xballabsrXFin
294 293 ralrimiva DBndXr+y𝒫Xxyxballabsrxy|xballabsrXFin
295 1 sstotbnd3 absMetXDTotBndXr+y𝒫Xxyxballabsrxy|xballabsrXFin
296 13 15 295 sylancr DBndXDTotBndXr+y𝒫Xxyxballabsrxy|xballabsrXFin
297 294 296 mpbird DBndXDTotBndX
298 2 297 impbii DTotBndXDBndX