Metamath Proof Explorer


Theorem fourierdlem50

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem50.xre φX
fourierdlem50.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem50.m φM
fourierdlem50.v φVPM
fourierdlem50.a φA
fourierdlem50.b φB
fourierdlem50.altb φA<B
fourierdlem50.ab φABππ
fourierdlem50.q Q=i0MViX
fourierdlem50.t T=ABranQAB
fourierdlem50.n N=T1
fourierdlem50.s S=ιf|fIsom<,<0NT
fourierdlem50.j φJ0..^N
fourierdlem50.u U=ιi0..^M|SJSJ+1QiQi+1
fourierdlem50.ch χφi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1
Assertion fourierdlem50 φU0..^MSJSJ+1QUQU+1

Proof

Step Hyp Ref Expression
1 fourierdlem50.xre φX
2 fourierdlem50.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
3 fourierdlem50.m φM
4 fourierdlem50.v φVPM
5 fourierdlem50.a φA
6 fourierdlem50.b φB
7 fourierdlem50.altb φA<B
8 fourierdlem50.ab φABππ
9 fourierdlem50.q Q=i0MViX
10 fourierdlem50.t T=ABranQAB
11 fourierdlem50.n N=T1
12 fourierdlem50.s S=ιf|fIsom<,<0NT
13 fourierdlem50.j φJ0..^N
14 fourierdlem50.u U=ιi0..^M|SJSJ+1QiQi+1
15 fourierdlem50.ch χφi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1
16 5 6 7 ltled φAB
17 2 3 4 fourierdlem15 φV:0M-π+Xπ+X
18 pire π
19 18 renegcli π
20 19 a1i φπ
21 20 1 readdcld φ-π+X
22 18 a1i φπ
23 22 1 readdcld φπ+X
24 21 23 iccssred φ-π+Xπ+X
25 17 24 fssd φV:0M
26 25 ffvelcdmda φi0MVi
27 1 adantr φi0MX
28 26 27 resubcld φi0MViX
29 28 9 fmptd φQ:0M
30 9 a1i φQ=i0MViX
31 fveq2 i=0Vi=V0
32 31 oveq1d i=0ViX=V0X
33 32 adantl φi=0ViX=V0X
34 nnssnn0 0
35 34 a1i φ0
36 nn0uz 0=0
37 35 36 sseqtrdi φ0
38 37 3 sseldd φM0
39 eluzfz1 M000M
40 38 39 syl φ00M
41 25 40 ffvelcdmd φV0
42 41 1 resubcld φV0X
43 30 33 40 42 fvmptd φQ0=V0X
44 2 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
45 3 44 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
46 4 45 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
47 46 simprd φV0=-π+XVM=π+Xi0..^MVi<Vi+1
48 47 simpld φV0=-π+XVM=π+X
49 48 simpld φV0=-π+X
50 49 oveq1d φV0X=π+X-X
51 20 recnd φπ
52 1 recnd φX
53 51 52 pncand φπ+X-X=π
54 43 50 53 3eqtrd φQ0=π
55 20 rexrd φπ*
56 22 rexrd φπ*
57 5 leidd φAA
58 5 6 5 57 16 eliccd φAAB
59 8 58 sseldd φAππ
60 iccgelb π*π*AπππA
61 55 56 59 60 syl3anc φπA
62 54 61 eqbrtrd φQ0A
63 6 leidd φBB
64 5 6 6 16 63 eliccd φBAB
65 8 64 sseldd φBππ
66 iccleub π*π*BππBπ
67 55 56 65 66 syl3anc φBπ
68 fveq2 i=MVi=VM
69 68 oveq1d i=MViX=VMX
70 69 adantl φi=MViX=VMX
71 eluzfz2 M0M0M
72 38 71 syl φM0M
73 25 72 ffvelcdmd φVM
74 73 1 resubcld φVMX
75 30 70 72 74 fvmptd φQM=VMX
76 48 simprd φVM=π+X
77 76 oveq1d φVMX=π+X-X
78 22 recnd φπ
79 78 52 pncand φπ+X-X=π
80 75 77 79 3eqtrrd φπ=QM
81 67 80 breqtrd φBQM
82 prfi ABFin
83 82 a1i φABFin
84 fzfid φ0MFin
85 9 rnmptfi 0MFinranQFin
86 84 85 syl φranQFin
87 infi ranQFinranQABFin
88 86 87 syl φranQABFin
89 unfi ABFinranQABFinABranQABFin
90 83 88 89 syl2anc φABranQABFin
91 10 90 eqeltrid φTFin
92 5 6 jca φAB
93 prssg ABABAB
94 5 6 93 syl2anc φABAB
95 92 94 mpbid φAB
96 inss2 ranQABAB
97 ioossre AB
98 96 97 sstri ranQAB
99 98 a1i φranQAB
100 95 99 unssd φABranQAB
101 10 100 eqsstrid φT
102 91 101 12 11 fourierdlem36 φSIsom<,<0NT
103 eqid supx0..^M|QxSJ<=supx0..^M|QxSJ<
104 3 5 6 16 29 62 81 13 10 102 103 fourierdlem20 φi0..^MSJSJ+1QiQi+1
105 15 biimpi χφi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1
106 simp-4l φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1φ
107 105 106 syl χφ
108 simplr φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k0..^M
109 105 108 syl χk0..^M
110 107 109 jca χφk0..^M
111 simp-4r φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1i0..^M
112 105 111 syl χi0..^M
113 elfzofz k0..^Mk0M
114 113 ad2antlr φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k0M
115 105 114 syl χk0M
116 107 25 syl χV:0M
117 116 115 ffvelcdmd χVk
118 107 1 syl χX
119 117 118 resubcld χVkX
120 fveq2 i=kVi=Vk
121 120 oveq1d i=kViX=VkX
122 121 9 fvmptg k0MVkXQk=VkX
123 115 119 122 syl2anc χQk=VkX
124 123 119 eqeltrd χQk
125 29 adantr φi0..^MQ:0M
126 fzofzp1 i0..^Mi+10M
127 126 adantl φi0..^Mi+10M
128 125 127 ffvelcdmd φi0..^MQi+1
129 107 112 128 syl2anc χQi+1
130 isof1o SIsom<,<0NTS:0N1-1 ontoT
131 102 130 syl φS:0N1-1 ontoT
132 f1of S:0N1-1 ontoTS:0NT
133 131 132 syl φS:0NT
134 fzofzp1 J0..^NJ+10N
135 13 134 syl φJ+10N
136 133 135 ffvelcdmd φSJ+1T
137 101 136 sseldd φSJ+1
138 107 137 syl χSJ+1
139 elfzofz J0..^NJ0N
140 13 139 syl φJ0N
141 133 140 ffvelcdmd φSJT
142 101 141 sseldd φSJ
143 107 142 syl χSJ
144 105 simprd χSJSJ+1QkQk+1
145 124 rexrd χQk*
146 29 adantr φk0..^MQ:0M
147 fzofzp1 k0..^Mk+10M
148 147 adantl φk0..^Mk+10M
149 146 148 ffvelcdmd φk0..^MQk+1
150 149 rexrd φk0..^MQk+1*
151 110 150 syl χQk+1*
152 143 rexrd χSJ*
153 138 rexrd χSJ+1*
154 elfzoelz J0..^NJ
155 154 zred J0..^NJ
156 155 ltp1d J0..^NJ<J+1
157 13 156 syl φJ<J+1
158 isoeq5 T=ABranQABSIsom<,<0NTSIsom<,<0NABranQAB
159 10 158 ax-mp SIsom<,<0NTSIsom<,<0NABranQAB
160 102 159 sylib φSIsom<,<0NABranQAB
161 isorel SIsom<,<0NABranQABJ0NJ+10NJ<J+1SJ<SJ+1
162 160 140 135 161 syl12anc φJ<J+1SJ<SJ+1
163 157 162 mpbid φSJ<SJ+1
164 107 163 syl χSJ<SJ+1
165 145 151 152 153 164 ioossioobi χSJSJ+1QkQk+1QkSJSJ+1Qk+1
166 144 165 mpbid χQkSJSJ+1Qk+1
167 166 simpld χQkSJ
168 124 143 138 167 164 lelttrd χQk<SJ+1
169 elfzofz i0..^Mi0M
170 169 ad2antlr φi0..^MSJSJ+1QiQi+1i0M
171 170 ad2antrr φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1i0M
172 105 171 syl χi0M
173 107 172 28 syl2anc χViX
174 9 fvmpt2 i0MViXQi=ViX
175 172 173 174 syl2anc χQi=ViX
176 175 173 eqeltrd χQi
177 simpllr φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1SJSJ+1QiQi+1
178 105 177 syl χSJSJ+1QiQi+1
179 176 129 143 138 164 178 fourierdlem10 χQiSJSJ+1Qi+1
180 179 simprd χSJ+1Qi+1
181 124 138 129 168 180 ltletrd χQk<Qi+1
182 124 129 118 181 ltadd2dd χX+Qk<X+Qi+1
183 123 oveq2d χX+Qk=X+Vk-X
184 107 52 syl χX
185 117 recnd χVk
186 184 185 pncan3d χX+Vk-X=Vk
187 183 186 eqtr2d χVk=X+Qk
188 112 126 syl χi+10M
189 25 adantr φi0..^MV:0M
190 189 127 ffvelcdmd φi0..^MVi+1
191 107 112 190 syl2anc χVi+1
192 191 118 resubcld χVi+1X
193 188 192 jca χi+10MVi+1X
194 eleq1 k=i+1k0Mi+10M
195 fveq2 k=i+1Vk=Vi+1
196 195 oveq1d k=i+1VkX=Vi+1X
197 196 eleq1d k=i+1VkXVi+1X
198 194 197 anbi12d k=i+1k0MVkXi+10MVi+1X
199 fveq2 k=i+1Qk=Qi+1
200 199 196 eqeq12d k=i+1Qk=VkXQi+1=Vi+1X
201 198 200 imbi12d k=i+1k0MVkXQk=VkXi+10MVi+1XQi+1=Vi+1X
202 201 122 vtoclg i+10Mi+10MVi+1XQi+1=Vi+1X
203 188 193 202 sylc χQi+1=Vi+1X
204 203 oveq2d χX+Qi+1=X+Vi+1-X
205 191 recnd χVi+1
206 184 205 pncan3d χX+Vi+1-X=Vi+1
207 204 206 eqtr2d χVi+1=X+Qi+1
208 182 187 207 3brtr4d χVk<Vi+1
209 eleq1w l=il0..^Mi0..^M
210 209 anbi2d l=iφk0..^Ml0..^Mφk0..^Mi0..^M
211 oveq1 l=il+1=i+1
212 211 fveq2d l=iVl+1=Vi+1
213 212 breq2d l=iVk<Vl+1Vk<Vi+1
214 210 213 anbi12d l=iφk0..^Ml0..^MVk<Vl+1φk0..^Mi0..^MVk<Vi+1
215 fveq2 l=iVl=Vi
216 215 breq2d l=iVkVlVkVi
217 214 216 imbi12d l=iφk0..^Ml0..^MVk<Vl+1VkVlφk0..^Mi0..^MVk<Vi+1VkVi
218 eleq1w h=kh0..^Mk0..^M
219 218 anbi2d h=kφh0..^Mφk0..^M
220 219 anbi1d h=kφh0..^Ml0..^Mφk0..^Ml0..^M
221 fveq2 h=kVh=Vk
222 221 breq1d h=kVh<Vl+1Vk<Vl+1
223 220 222 anbi12d h=kφh0..^Ml0..^MVh<Vl+1φk0..^Ml0..^MVk<Vl+1
224 221 breq1d h=kVhVlVkVl
225 223 224 imbi12d h=kφh0..^Ml0..^MVh<Vl+1VhVlφk0..^Ml0..^MVk<Vl+1VkVl
226 elfzoelz h0..^Mh
227 226 ad3antlr φh0..^Ml0..^MVh<Vl+1h
228 elfzoelz l0..^Ml
229 228 ad2antlr φh0..^Ml0..^MVh<Vl+1l
230 simplr φh0..^Ml0..^MVh<Vl+1¬h<l+1Vh<Vl+1
231 25 adantr φl0..^MV:0M
232 fzofzp1 l0..^Ml+10M
233 232 adantl φl0..^Ml+10M
234 231 233 ffvelcdmd φl0..^MVl+1
235 234 adantlr φh0..^Ml0..^MVl+1
236 235 adantr φh0..^Ml0..^M¬h<l+1Vl+1
237 25 adantr φh0..^MV:0M
238 elfzofz h0..^Mh0M
239 238 adantl φh0..^Mh0M
240 237 239 ffvelcdmd φh0..^MVh
241 240 ad2antrr φh0..^Ml0..^M¬h<l+1Vh
242 228 zred l0..^Ml
243 peano2re ll+1
244 242 243 syl l0..^Ml+1
245 244 ad2antlr φh0..^Ml0..^M¬h<l+1l+1
246 226 zred h0..^Mh
247 246 ad3antlr φh0..^Ml0..^M¬h<l+1h
248 simpr φh0..^Ml0..^M¬h<l+1¬h<l+1
249 245 247 248 nltled φh0..^Ml0..^M¬h<l+1l+1h
250 228 peano2zd l0..^Ml+1
251 250 ad2antlr h0..^Ml0..^Ml+1hl+1
252 226 ad2antrr h0..^Ml0..^Ml+1hh
253 simpr h0..^Ml0..^Ml+1hl+1h
254 eluz2 hl+1l+1hl+1h
255 251 252 253 254 syl3anbrc h0..^Ml0..^Ml+1hhl+1
256 255 adantlll φh0..^Ml0..^Ml+1hhl+1
257 simplll φh0..^Ml0..^Mil+1hφ
258 0zd h0..^Ml0..^Mil+1h0
259 elfzoel2 h0..^MM
260 259 ad2antrr h0..^Ml0..^Mil+1hM
261 elfzelz il+1hi
262 261 adantl h0..^Ml0..^Mil+1hi
263 0red l0..^Mil+1h0
264 261 zred il+1hi
265 264 adantl l0..^Mil+1hi
266 242 adantr l0..^Mil+1hl
267 elfzole1 l0..^M0l
268 267 adantr l0..^Mil+1h0l
269 266 243 syl l0..^Mil+1hl+1
270 266 ltp1d l0..^Mil+1hl<l+1
271 elfzle1 il+1hl+1i
272 271 adantl l0..^Mil+1hl+1i
273 266 269 265 270 272 ltletrd l0..^Mil+1hl<i
274 263 266 265 268 273 lelttrd l0..^Mil+1h0<i
275 263 265 274 ltled l0..^Mil+1h0i
276 275 adantll h0..^Ml0..^Mil+1h0i
277 264 adantl h0..^Mil+1hi
278 259 zred h0..^MM
279 278 adantr h0..^Mil+1hM
280 246 adantr h0..^Mil+1hh
281 elfzle2 il+1hih
282 281 adantl h0..^Mil+1hih
283 elfzolt2 h0..^Mh<M
284 283 adantr h0..^Mil+1hh<M
285 277 280 279 282 284 lelttrd h0..^Mil+1hi<M
286 277 279 285 ltled h0..^Mil+1hiM
287 286 adantlr h0..^Ml0..^Mil+1hiM
288 258 260 262 276 287 elfzd h0..^Ml0..^Mil+1hi0M
289 288 adantlll φh0..^Ml0..^Mil+1hi0M
290 257 289 26 syl2anc φh0..^Ml0..^Mil+1hVi
291 290 adantlr φh0..^Ml0..^Ml+1hil+1hVi
292 simplll φh0..^Ml0..^Mil+1h1φ
293 0zd l0..^Mil+1h10
294 elfzelz il+1h1i
295 294 adantl l0..^Mil+1h1i
296 0red l0..^Mil+1h10
297 295 zred l0..^Mil+1h1i
298 242 adantr l0..^Mil+1h1l
299 267 adantr l0..^Mil+1h10l
300 298 243 syl l0..^Mil+1h1l+1
301 298 ltp1d l0..^Mil+1h1l<l+1
302 elfzle1 il+1h1l+1i
303 302 adantl l0..^Mil+1h1l+1i
304 298 300 297 301 303 ltletrd l0..^Mil+1h1l<i
305 296 298 297 299 304 lelttrd l0..^Mil+1h10<i
306 296 297 305 ltled l0..^Mil+1h10i
307 eluz2 i00i0i
308 293 295 306 307 syl3anbrc l0..^Mil+1h1i0
309 308 adantll φh0..^Ml0..^Mil+1h1i0
310 elfzoel2 l0..^MM
311 310 ad2antlr φh0..^Ml0..^Mil+1h1M
312 294 zred il+1h1i
313 312 adantl h0..^Mil+1h1i
314 peano2rem hh1
315 246 314 syl h0..^Mh1
316 315 adantr h0..^Mil+1h1h1
317 278 adantr h0..^Mil+1h1M
318 elfzle2 il+1h1ih1
319 318 adantl h0..^Mil+1h1ih1
320 246 ltm1d h0..^Mh1<h
321 315 246 278 320 283 lttrd h0..^Mh1<M
322 321 adantr h0..^Mil+1h1h1<M
323 313 316 317 319 322 lelttrd h0..^Mil+1h1i<M
324 323 adantll φh0..^Mil+1h1i<M
325 324 adantlr φh0..^Ml0..^Mil+1h1i<M
326 elfzo2 i0..^Mi0Mi<M
327 309 311 325 326 syl3anbrc φh0..^Ml0..^Mil+1h1i0..^M
328 169 26 sylan2 φi0..^MVi
329 47 simprd φi0..^MVi<Vi+1
330 329 r19.21bi φi0..^MVi<Vi+1
331 328 190 330 ltled φi0..^MViVi+1
332 292 327 331 syl2anc φh0..^Ml0..^Mil+1h1ViVi+1
333 332 adantlr φh0..^Ml0..^Ml+1hil+1h1ViVi+1
334 256 291 333 monoord φh0..^Ml0..^Ml+1hVl+1Vh
335 249 334 syldan φh0..^Ml0..^M¬h<l+1Vl+1Vh
336 236 241 335 lensymd φh0..^Ml0..^M¬h<l+1¬Vh<Vl+1
337 336 adantlr φh0..^Ml0..^MVh<Vl+1¬h<l+1¬Vh<Vl+1
338 230 337 condan φh0..^Ml0..^MVh<Vl+1h<l+1
339 zleltp1 hlhlh<l+1
340 227 229 339 syl2anc φh0..^Ml0..^MVh<Vl+1hlh<l+1
341 338 340 mpbird φh0..^Ml0..^MVh<Vl+1hl
342 eluz2 lhhlhl
343 227 229 341 342 syl3anbrc φh0..^Ml0..^MVh<Vl+1lh
344 25 ad3antrrr φh0..^Ml0..^MihlV:0M
345 0zd h0..^Ml0..^Mihl0
346 259 ad2antrr h0..^Ml0..^MihlM
347 elfzelz ihli
348 347 adantl h0..^Ml0..^Mihli
349 0red h0..^Mihl0
350 246 adantr h0..^Mihlh
351 347 zred ihli
352 351 adantl h0..^Mihli
353 elfzole1 h0..^M0h
354 353 adantr h0..^Mihl0h
355 elfzle1 ihlhi
356 355 adantl h0..^Mihlhi
357 349 350 352 354 356 letrd h0..^Mihl0i
358 357 adantlr h0..^Ml0..^Mihl0i
359 351 adantl l0..^Mihli
360 310 zred l0..^MM
361 360 adantr l0..^MihlM
362 242 adantr l0..^Mihll
363 elfzle2 ihlil
364 363 adantl l0..^Mihlil
365 elfzolt2 l0..^Ml<M
366 365 adantr l0..^Mihll<M
367 359 362 361 364 366 lelttrd l0..^Mihli<M
368 359 361 367 ltled l0..^MihliM
369 368 adantll h0..^Ml0..^MihliM
370 345 346 348 358 369 elfzd h0..^Ml0..^Mihli0M
371 370 adantlll φh0..^Ml0..^Mihli0M
372 344 371 ffvelcdmd φh0..^Ml0..^MihlVi
373 372 adantlr φh0..^Ml0..^MVh<Vl+1ihlVi
374 simp-4l φh0..^Ml0..^MVh<Vl+1ihl1φ
375 0zd h0..^Mihl10
376 elfzelz ihl1i
377 376 adantl h0..^Mihl1i
378 0red h0..^Mihl10
379 246 adantr h0..^Mihl1h
380 377 zred h0..^Mihl1i
381 353 adantr h0..^Mihl10h
382 elfzle1 ihl1hi
383 382 adantl h0..^Mihl1hi
384 378 379 380 381 383 letrd h0..^Mihl10i
385 375 377 384 307 syl3anbrc h0..^Mihl1i0
386 385 adantll φh0..^Mihl1i0
387 386 ad4ant14 φh0..^Ml0..^MVh<Vl+1ihl1i0
388 310 ad3antlr φh0..^Ml0..^MVh<Vl+1ihl1M
389 376 zred ihl1i
390 389 adantl l0..^Mihl1i
391 242 adantr l0..^Mihl1l
392 360 adantr l0..^Mihl1M
393 elfzle2 ihl1il1
394 393 adantl l0..^Mihl1il1
395 zltlem1 ili<lil1
396 376 228 395 syl2anr l0..^Mihl1i<lil1
397 394 396 mpbird l0..^Mihl1i<l
398 365 adantr l0..^Mihl1l<M
399 390 391 392 397 398 lttrd l0..^Mihl1i<M
400 399 adantll φh0..^Ml0..^Mihl1i<M
401 400 adantlr φh0..^Ml0..^MVh<Vl+1ihl1i<M
402 387 388 401 326 syl3anbrc φh0..^Ml0..^MVh<Vl+1ihl1i0..^M
403 374 402 331 syl2anc φh0..^Ml0..^MVh<Vl+1ihl1ViVi+1
404 343 373 403 monoord φh0..^Ml0..^MVh<Vl+1VhVl
405 225 404 chvarvv φk0..^Ml0..^MVk<Vl+1VkVl
406 217 405 chvarvv φk0..^Mi0..^MVk<Vi+1VkVi
407 110 112 208 406 syl21anc χVkVi
408 107 112 jca χφi0..^M
409 110 149 syl χQk+1
410 179 simpld χQiSJ
411 176 143 138 410 164 lelttrd χQi<SJ+1
412 166 simprd χSJ+1Qk+1
413 176 138 409 411 412 ltletrd χQi<Qk+1
414 176 409 118 413 ltadd2dd χX+Qi<X+Qk+1
415 175 oveq2d χX+Qi=X+Vi-X
416 107 172 26 syl2anc χVi
417 416 recnd χVi
418 184 417 pncan3d χX+Vi-X=Vi
419 415 418 eqtr2d χVi=X+Qi
420 9 a1i φk0..^MQ=i0MViX
421 fveq2 i=k+1Vi=Vk+1
422 421 oveq1d i=k+1ViX=Vk+1X
423 422 adantl φk0..^Mi=k+1ViX=Vk+1X
424 25 adantr φk0..^MV:0M
425 424 148 ffvelcdmd φk0..^MVk+1
426 1 adantr φk0..^MX
427 425 426 resubcld φk0..^MVk+1X
428 420 423 148 427 fvmptd φk0..^MQk+1=Vk+1X
429 107 109 428 syl2anc χQk+1=Vk+1X
430 429 oveq2d χX+Qk+1=X+Vk+1-X
431 110 425 syl χVk+1
432 431 recnd χVk+1
433 184 432 pncan3d χX+Vk+1-X=Vk+1
434 430 433 eqtr2d χVk+1=X+Qk+1
435 414 419 434 3brtr4d χVi<Vk+1
436 eleq1w l=kl0..^Mk0..^M
437 436 anbi2d l=kφi0..^Ml0..^Mφi0..^Mk0..^M
438 oveq1 l=kl+1=k+1
439 438 fveq2d l=kVl+1=Vk+1
440 439 breq2d l=kVi<Vl+1Vi<Vk+1
441 437 440 anbi12d l=kφi0..^Ml0..^MVi<Vl+1φi0..^Mk0..^MVi<Vk+1
442 fveq2 l=kVl=Vk
443 442 breq2d l=kViVlViVk
444 441 443 imbi12d l=kφi0..^Ml0..^MVi<Vl+1ViVlφi0..^Mk0..^MVi<Vk+1ViVk
445 eleq1w h=ih0..^Mi0..^M
446 445 anbi2d h=iφh0..^Mφi0..^M
447 446 anbi1d h=iφh0..^Ml0..^Mφi0..^Ml0..^M
448 fveq2 h=iVh=Vi
449 448 breq1d h=iVh<Vl+1Vi<Vl+1
450 447 449 anbi12d h=iφh0..^Ml0..^MVh<Vl+1φi0..^Ml0..^MVi<Vl+1
451 448 breq1d h=iVhVlViVl
452 450 451 imbi12d h=iφh0..^Ml0..^MVh<Vl+1VhVlφi0..^Ml0..^MVi<Vl+1ViVl
453 452 404 chvarvv φi0..^Ml0..^MVi<Vl+1ViVl
454 444 453 chvarvv φi0..^Mk0..^MVi<Vk+1ViVk
455 408 109 435 454 syl21anc χViVk
456 117 416 letri3d χVk=ViVkViViVk
457 407 455 456 mpbir2and χVk=Vi
458 2 3 4 fourierdlem34 φV:0M1-1
459 107 458 syl χV:0M1-1
460 f1fveq V:0M1-1k0Mi0MVk=Vik=i
461 459 115 172 460 syl12anc χVk=Vik=i
462 457 461 mpbid χk=i
463 15 462 sylbir φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k=i
464 463 ex φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k=i
465 simpl SJSJ+1QiQi+1k=iSJSJ+1QiQi+1
466 fveq2 k=iQk=Qi
467 oveq1 k=ik+1=i+1
468 467 fveq2d k=iQk+1=Qi+1
469 466 468 oveq12d k=iQkQk+1=QiQi+1
470 469 eqcomd k=iQiQi+1=QkQk+1
471 470 adantl SJSJ+1QiQi+1k=iQiQi+1=QkQk+1
472 465 471 sseqtrd SJSJ+1QiQi+1k=iSJSJ+1QkQk+1
473 472 ex SJSJ+1QiQi+1k=iSJSJ+1QkQk+1
474 473 ad2antlr φi0..^MSJSJ+1QiQi+1k0..^Mk=iSJSJ+1QkQk+1
475 464 474 impbid φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k=i
476 475 ralrimiva φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k=i
477 476 ex φi0..^MSJSJ+1QiQi+1k0..^MSJSJ+1QkQk+1k=i
478 477 reximdva φi0..^MSJSJ+1QiQi+1i0..^Mk0..^MSJSJ+1QkQk+1k=i
479 104 478 mpd φi0..^Mk0..^MSJSJ+1QkQk+1k=i
480 reu6 ∃!k0..^MSJSJ+1QkQk+1i0..^Mk0..^MSJSJ+1QkQk+1k=i
481 479 480 sylibr φ∃!k0..^MSJSJ+1QkQk+1
482 fveq2 i=kQi=Qk
483 oveq1 i=ki+1=k+1
484 483 fveq2d i=kQi+1=Qk+1
485 482 484 oveq12d i=kQiQi+1=QkQk+1
486 485 sseq2d i=kSJSJ+1QiQi+1SJSJ+1QkQk+1
487 486 cbvreuvw ∃!i0..^MSJSJ+1QiQi+1∃!k0..^MSJSJ+1QkQk+1
488 481 487 sylibr φ∃!i0..^MSJSJ+1QiQi+1
489 riotacl ∃!i0..^MSJSJ+1QiQi+1ιi0..^M|SJSJ+1QiQi+10..^M
490 488 489 syl φιi0..^M|SJSJ+1QiQi+10..^M
491 14 490 eqeltrid φU0..^M
492 14 eqcomi ιi0..^M|SJSJ+1QiQi+1=U
493 492 a1i φιi0..^M|SJSJ+1QiQi+1=U
494 fveq2 i=UQi=QU
495 oveq1 i=Ui+1=U+1
496 495 fveq2d i=UQi+1=QU+1
497 494 496 oveq12d i=UQiQi+1=QUQU+1
498 497 sseq2d i=USJSJ+1QiQi+1SJSJ+1QUQU+1
499 498 riota2 U0..^M∃!i0..^MSJSJ+1QiQi+1SJSJ+1QUQU+1ιi0..^M|SJSJ+1QiQi+1=U
500 491 488 499 syl2anc φSJSJ+1QUQU+1ιi0..^M|SJSJ+1QiQi+1=U
501 493 500 mpbird φSJSJ+1QUQU+1
502 491 501 jca φU0..^MSJSJ+1QUQU+1