Metamath Proof Explorer


Theorem ftc1cnnclem

Description: Lemma for ftc1cnnc ; cf. ftc1lem4 . The stronger assumptions of ftc1cn are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017)

Ref Expression
Hypotheses ftc1cnnc.g G=xABAxFtdt
ftc1cnnc.a φA
ftc1cnnc.b φB
ftc1cnnc.le φAB
ftc1cnnc.f φF:ABcn
ftc1cnnc.i φF𝐿1
ftc1cnnclem.c φcAB
ftc1cnnclem.h H=zABcGzGczc
ftc1cnnclem.e φE+
ftc1cnnclem.r φR+
ftc1cnnclem.fc φyAByc<RFyFc<E
ftc1cnnclem.x1 φXAB
ftc1cnnclem.x2 φXc<R
ftc1cnnclem.y1 φYAB
ftc1cnnclem.y2 φYc<R
Assertion ftc1cnnclem φX<YGYGXYXFc<E

Proof

Step Hyp Ref Expression
1 ftc1cnnc.g G=xABAxFtdt
2 ftc1cnnc.a φA
3 ftc1cnnc.b φB
4 ftc1cnnc.le φAB
5 ftc1cnnc.f φF:ABcn
6 ftc1cnnc.i φF𝐿1
7 ftc1cnnclem.c φcAB
8 ftc1cnnclem.h H=zABcGzGczc
9 ftc1cnnclem.e φE+
10 ftc1cnnclem.r φR+
11 ftc1cnnclem.fc φyAByc<RFyFc<E
12 ftc1cnnclem.x1 φXAB
13 ftc1cnnclem.x2 φXc<R
14 ftc1cnnclem.y1 φYAB
15 ftc1cnnclem.y2 φYc<R
16 ovexd φtXYFtFcV
17 2 rexrd φA*
18 3 rexrd φB*
19 elicc1 A*B*XABX*AXXB
20 19 biimpa A*B*XABX*AXXB
21 20 simp2d A*B*XABAX
22 17 18 12 21 syl21anc φAX
23 iccleub A*B*YABYB
24 17 18 14 23 syl3anc φYB
25 ioossioo A*B*AXYBXYAB
26 17 18 22 24 25 syl22anc φXYAB
27 26 sselda φtXYtAB
28 cncff F:ABcnF:AB
29 5 28 syl φF:AB
30 29 ffvelcdmda φtABFt
31 27 30 syldan φtXYFt
32 ioombl XYdomvol
33 32 a1i φXYdomvol
34 fvexd φtABFtV
35 29 feqmptd φF=tABFt
36 35 6 eqeltrrd φtABFt𝐿1
37 26 33 34 36 iblss φtXYFt𝐿1
38 29 7 ffvelcdmd φFc
39 38 adantr φtXYFc
40 fconstmpt XY×Fc=tXYFc
41 mblvol XYdomvolvolXY=vol*XY
42 32 41 ax-mp volXY=vol*XY
43 ioossicc XYXY
44 43 a1i φXYXY
45 iccssre ABAB
46 2 3 45 syl2anc φAB
47 46 12 sseldd φX
48 46 14 sseldd φY
49 iccmbl XYXYdomvol
50 47 48 49 syl2anc φXYdomvol
51 mblss XYdomvolXY
52 50 51 syl φXY
53 mblvol XYdomvolvolXY=vol*XY
54 50 53 syl φvolXY=vol*XY
55 iccvolcl XYvolXY
56 47 48 55 syl2anc φvolXY
57 54 56 eqeltrrd φvol*XY
58 ovolsscl XYXYXYvol*XYvol*XY
59 44 52 57 58 syl3anc φvol*XY
60 42 59 eqeltrid φvolXY
61 iblconst XYdomvolvolXYFcXY×Fc𝐿1
62 33 60 38 61 syl3anc φXY×Fc𝐿1
63 40 62 eqeltrrid φtXYFc𝐿1
64 eqid TopOpenfld=TopOpenfld
65 64 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
66 65 a1i φTopOpenfld×tTopOpenfldCnTopOpenfld
67 29 26 feqresmpt φFXY=tXYFt
68 rescncf XYABF:ABcnFXY:XYcn
69 26 5 68 sylc φFXY:XYcn
70 67 69 eqeltrrd φtXYFt:XYcn
71 ioossre XY
72 ax-resscn
73 71 72 sstri XY
74 ssid
75 cncfmptc FcXYtXYFc:XYcn
76 73 74 75 mp3an23 FctXYFc:XYcn
77 38 76 syl φtXYFc:XYcn
78 64 66 70 77 cncfmpt2f φtXYFtFc:XYcn
79 cnmbf XYdomvoltXYFtFc:XYcntXYFtFcMblFn
80 32 78 79 sylancr φtXYFtFcMblFn
81 31 37 39 63 80 iblsubnc φtXYFtFc𝐿1
82 16 81 itgcl φXYFtFcdt
83 82 adantr φX<YXYFtFcdt
84 48 47 resubcld φYX
85 84 recnd φYX
86 85 adantr φX<YYX
87 47 48 posdifd φX<Y0<YX
88 87 biimpa φX<Y0<YX
89 88 gt0ne0d φX<YYX0
90 83 86 89 divcld φX<YXYFtFcdtYX
91 38 adantr φX<YFc
92 ltle XYX<YXY
93 47 48 92 syl2anc φX<YXY
94 93 imp φX<YXY
95 ssidd φABAB
96 ioossre AB
97 96 a1i φAB
98 1 2 3 4 95 97 6 29 12 14 ftc1lem1 φXYGYGX=XYFtdt
99 94 98 syldan φX<YGYGX=XYFtdt
100 31 39 npcand φtXYFt-Fc+Fc=Ft
101 100 itgeq2dv φXYFt-Fc+Fcdt=XYFtdt
102 31 39 subcld φtXYFtFc
103 100 mpteq2dva φtXYFt-Fc+Fc=tXYFt
104 103 67 eqtr4d φtXYFt-Fc+Fc=FXY
105 iblmbf F𝐿1FMblFn
106 6 105 syl φFMblFn
107 mbfres FMblFnXYdomvolFXYMblFn
108 106 32 107 sylancl φFXYMblFn
109 104 108 eqeltrd φtXYFt-Fc+FcMblFn
110 102 81 39 63 109 itgaddnc φXYFt-Fc+Fcdt=XYFtFcdt+XYFcdt
111 101 110 eqtr3d φXYFtdt=XYFtFcdt+XYFcdt
112 111 adantr φX<YXYFtdt=XYFtFcdt+XYFcdt
113 itgconst XYdomvolvolXYFcXYFcdt=FcvolXY
114 33 60 38 113 syl3anc φXYFcdt=FcvolXY
115 114 adantr φX<YXYFcdt=FcvolXY
116 47 adantr φX<YX
117 48 adantr φX<YY
118 ovolioo XYXYvol*XY=YX
119 116 117 94 118 syl3anc φX<Yvol*XY=YX
120 42 119 eqtrid φX<YvolXY=YX
121 120 oveq2d φX<YFcvolXY=FcYX
122 115 121 eqtrd φX<YXYFcdt=FcYX
123 122 oveq2d φX<YXYFtFcdt+XYFcdt=XYFtFcdt+FcYX
124 99 112 123 3eqtrd φX<YGYGX=XYFtFcdt+FcYX
125 124 oveq1d φX<YGYGXYX=XYFtFcdt+FcYXYX
126 91 86 mulcld φX<YFcYX
127 83 126 86 89 divdird φX<YXYFtFcdt+FcYXYX=XYFtFcdtYX+FcYXYX
128 91 86 89 divcan4d φX<YFcYXYX=Fc
129 128 oveq2d φX<YXYFtFcdtYX+FcYXYX=XYFtFcdtYX+Fc
130 125 127 129 3eqtrd φX<YGYGXYX=XYFtFcdtYX+Fc
131 90 91 130 mvrraddd φX<YGYGXYXFc=XYFtFcdtYX
132 131 fveq2d φX<YGYGXYXFc=XYFtFcdtYX
133 83 86 89 absdivd φX<YXYFtFcdtYX=XYFtFcdtYX
134 84 adantr φX<YYX
135 0re 0
136 ltle 0YX0<YX0YX
137 135 134 136 sylancr φX<Y0<YX0YX
138 88 137 mpd φX<Y0YX
139 134 138 absidd φX<YYX=YX
140 139 oveq2d φX<YXYFtFcdtYX=XYFtFcdtYX
141 132 133 140 3eqtrd φX<YGYGXYXFc=XYFtFcdtYX
142 83 abscld φX<YXYFtFcdt
143 102 abscld φtXYFtFc
144 cncfss cncn
145 72 74 144 mp2an cncn
146 abscncf abs:cn
147 145 146 sselii abs:cn
148 147 a1i φabs:cn
149 148 78 cncfmpt1f φtXYFtFc:XYcn
150 cnmbf XYdomvoltXYFtFc:XYcntXYFtFcMblFn
151 32 149 150 sylancr φtXYFtFcMblFn
152 16 81 151 iblabsnc φtXYFtFc𝐿1
153 143 152 itgrecl φXYFtFcdt
154 153 adantr φX<YXYFtFcdt
155 9 rpred φE
156 84 155 remulcld φYXE
157 156 adantr φX<YYXE
158 82 cjcld φXYFtFcdt
159 cncfmptc XYFtFcdtXYxXYXYFtFcdt:XYcn
160 73 74 159 mp3an23 XYFtFcdtxXYXYFtFcdt:XYcn
161 158 160 syl φxXYXYFtFcdt:XYcn
162 nfcv _xFtFc
163 nfcsb1v _tx/tFtFc
164 csbeq1a t=xFtFc=x/tFtFc
165 162 163 164 cbvmpt tXYFtFc=xXYx/tFtFc
166 165 78 eqeltrrid φxXYx/tFtFc:XYcn
167 161 166 mulcncf φxXYXYFtFcdtx/tFtFc:XYcn
168 cnmbf XYdomvolxXYXYFtFcdtx/tFtFc:XYcnxXYXYFtFcdtx/tFtFcMblFn
169 32 167 168 sylancr φxXYXYFtFcdtx/tFtFcMblFn
170 102 81 151 169 itgabsnc φXYFtFcdtXYFtFcdt
171 170 adantr φX<YXYFtFcdtXYFtFcdt
172 simpr φX<YX<Y
173 155 adantr φtXYE
174 fconstmpt XY×E=tXYE
175 9 rpcnd φE
176 iblconst XYdomvolvolXYEXY×E𝐿1
177 33 60 175 176 syl3anc φXY×E𝐿1
178 174 177 eqeltrrid φtXYE𝐿1
179 cncfmptc EXYtXYE:XYcn
180 73 74 179 mp3an23 EtXYE:XYcn
181 175 180 syl φtXYE:XYcn
182 64 66 181 149 cncfmpt2f φtXYEFtFc:XYcn
183 cnmbf XYdomvoltXYEFtFc:XYcntXYEFtFcMblFn
184 32 182 183 sylancr φtXYEFtFcMblFn
185 173 178 143 152 184 iblsubnc φtXYEFtFc𝐿1
186 185 adantr φX<YtXYEFtFc𝐿1
187 11 ralrimiva φyAByc<RFyFc<E
188 187 adantr φtXYyAByc<RFyFc<E
189 96 7 sselid φc
190 10 rpred φR
191 189 190 resubcld φcR
192 191 adantr φtXYcR
193 47 adantr φtXYX
194 elioore tXYt
195 194 adantl φtXYt
196 47 189 190 absdifltd φXc<RcR<XX<c+R
197 13 196 mpbid φcR<XX<c+R
198 197 simpld φcR<X
199 198 adantr φtXYcR<X
200 eliooord tXYX<tt<Y
201 200 adantl φtXYX<tt<Y
202 201 simpld φtXYX<t
203 192 193 195 199 202 lttrd φtXYcR<t
204 48 adantr φtXYY
205 189 190 readdcld φc+R
206 205 adantr φtXYc+R
207 201 simprd φtXYt<Y
208 48 189 190 absdifltd φYc<RcR<YY<c+R
209 15 208 mpbid φcR<YY<c+R
210 209 simprd φY<c+R
211 210 adantr φtXYY<c+R
212 195 204 206 207 211 lttrd φtXYt<c+R
213 189 adantr φtXYc
214 190 adantr φtXYR
215 195 213 214 absdifltd φtXYtc<RcR<tt<c+R
216 203 212 215 mpbir2and φtXYtc<R
217 fvoveq1 y=tyc=tc
218 217 breq1d y=tyc<Rtc<R
219 218 imbrov2fvoveq y=tyc<RFyFc<Etc<RFtFc<E
220 219 rspcv tAByAByc<RFyFc<Etc<RFtFc<E
221 27 188 216 220 syl3c φtXYFtFc<E
222 difrp FtFcEFtFc<EEFtFc+
223 143 173 222 syl2anc φtXYFtFc<EEFtFc+
224 221 223 mpbid φtXYEFtFc+
225 224 adantlr φX<YtXYEFtFc+
226 182 adantr φX<YtXYEFtFc:XYcn
227 172 186 225 226 itggt0cn φX<Y0<XYEFtFcdt
228 173 178 143 152 184 itgsubnc φXYEFtFcdt=XYEdtXYFtFcdt
229 228 adantr φX<YXYEFtFcdt=XYEdtXYFtFcdt
230 itgconst XYdomvolvolXYEXYEdt=EvolXY
231 33 60 175 230 syl3anc φXYEdt=EvolXY
232 231 adantr φX<YXYEdt=EvolXY
233 120 oveq2d φX<YEvolXY=EYX
234 175 85 mulcomd φEYX=YXE
235 234 adantr φX<YEYX=YXE
236 232 233 235 3eqtrd φX<YXYEdt=YXE
237 236 oveq1d φX<YXYEdtXYFtFcdt=YXEXYFtFcdt
238 229 237 eqtrd φX<YXYEFtFcdt=YXEXYFtFcdt
239 227 238 breqtrd φX<Y0<YXEXYFtFcdt
240 153 156 posdifd φXYFtFcdt<YXE0<YXEXYFtFcdt
241 240 biimpar φ0<YXEXYFtFcdtXYFtFcdt<YXE
242 239 241 syldan φX<YXYFtFcdt<YXE
243 142 154 157 171 242 lelttrd φX<YXYFtFcdt<YXE
244 155 adantr φX<YE
245 ltdivmul XYFtFcdtEYX0<YXXYFtFcdtYX<EXYFtFcdt<YXE
246 142 244 134 88 245 syl112anc φX<YXYFtFcdtYX<EXYFtFcdt<YXE
247 243 246 mpbird φX<YXYFtFcdtYX<E
248 141 247 eqbrtrd φX<YGYGXYXFc<E