Metamath Proof Explorer


Theorem hgt750lemb

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Hypotheses hgt750leme.o O=z|¬2z
hgt750leme.n φN
hgt750lemb.2 φ2N
hgt750lemb.a A=crepr3N|¬c0O
Assertion hgt750lemb φnAΛn0Λn1Λn2logNi1N2Λij=1NΛj

Proof

Step Hyp Ref Expression
1 hgt750leme.o O=z|¬2z
2 hgt750leme.n φN
3 hgt750lemb.2 φ2N
4 hgt750lemb.a A=crepr3N|¬c0O
5 2 nnnn0d φN0
6 3nn0 30
7 6 a1i φ30
8 ssidd φ
9 5 7 8 reprfi2 φrepr3NFin
10 4 ssrab3 Arepr3N
11 ssfi repr3NFinArepr3NAFin
12 9 10 11 sylancl φAFin
13 vmaf Λ:
14 13 a1i φnAΛ:
15 ssidd φnA
16 2 nnzd φN
17 16 adantr φnAN
18 6 a1i φnA30
19 simpr φnAnA
20 10 19 sselid φnAnrepr3N
21 15 17 18 20 reprf φnAn:0..^3
22 c0ex 0V
23 22 tpid1 0012
24 fzo0to3tp 0..^3=012
25 23 24 eleqtrri 00..^3
26 25 a1i φnA00..^3
27 21 26 ffvelcdmd φnAn0
28 14 27 ffvelcdmd φnAΛn0
29 1ex 1V
30 29 tpid2 1012
31 30 24 eleqtrri 10..^3
32 31 a1i φnA10..^3
33 21 32 ffvelcdmd φnAn1
34 14 33 ffvelcdmd φnAΛn1
35 2ex 2V
36 35 tpid3 2012
37 36 24 eleqtrri 20..^3
38 37 a1i φnA20..^3
39 21 38 ffvelcdmd φnAn2
40 14 39 ffvelcdmd φnAΛn2
41 34 40 remulcld φnAΛn1Λn2
42 28 41 remulcld φnAΛn0Λn1Λn2
43 12 42 fsumrecl φnAΛn0Λn1Λn2
44 2 nnrpd φN+
45 44 relogcld φlogN
46 28 34 remulcld φnAΛn0Λn1
47 12 46 fsumrecl φnAΛn0Λn1
48 45 47 remulcld φlogNnAΛn0Λn1
49 fzfi 1NFin
50 diffi 1NFin1NFin
51 49 50 ax-mp 1NFin
52 snfi 2Fin
53 unfi 1NFin2Fin1N2Fin
54 51 52 53 mp2an 1N2Fin
55 54 a1i φ1N2Fin
56 13 a1i φi1N2Λ:
57 difss 1N1N
58 57 a1i φ1N1N
59 2nn 2
60 59 a1i φ2
61 elfz1b 21N2N2N
62 61 biimpri 2N2N21N
63 60 2 3 62 syl3anc φ21N
64 63 snssd φ21N
65 58 64 unssd φ1N21N
66 fz1ssnn 1N
67 66 a1i φ1N
68 65 67 sstrd φ1N2
69 68 sselda φi1N2i
70 56 69 ffvelcdmd φi1N2Λi
71 55 70 fsumrecl φi1N2Λi
72 fzfid φ1NFin
73 13 a1i φj1NΛ:
74 67 sselda φj1Nj
75 73 74 ffvelcdmd φj1NΛj
76 72 75 fsumrecl φj=1NΛj
77 71 76 remulcld φi1N2Λij=1NΛj
78 45 77 remulcld φlogNi1N2Λij=1NΛj
79 2 adantr φnAN
80 79 nnrpd φnAN+
81 relogcl N+logN
82 80 81 syl φnAlogN
83 34 82 remulcld φnAΛn1logN
84 28 83 remulcld φnAΛn0Λn1logN
85 vmage0 n00Λn0
86 27 85 syl φnA0Λn0
87 vmage0 n10Λn1
88 33 87 syl φnA0Λn1
89 39 nnrpd φnAn2+
90 89 relogcld φnAlogn2
91 vmalelog n2Λn2logn2
92 39 91 syl φnAΛn2logn2
93 15 17 18 20 38 reprle φnAn2N
94 logleb n2+N+n2Nlogn2logN
95 94 biimpa n2+N+n2Nlogn2logN
96 89 80 93 95 syl21anc φnAlogn2logN
97 40 90 82 92 96 letrd φnAΛn2logN
98 40 82 34 88 97 lemul2ad φnAΛn1Λn2Λn1logN
99 41 83 28 86 98 lemul2ad φnAΛn0Λn1Λn2Λn0Λn1logN
100 12 42 84 99 fsumle φnAΛn0Λn1Λn2nAΛn0Λn1logN
101 2 nncnd φN
102 2 nnne0d φN0
103 101 102 logcld φlogN
104 46 recnd φnAΛn0Λn1
105 12 103 104 fsummulc2 φlogNnAΛn0Λn1=nAlogNΛn0Λn1
106 103 adantr φnAlogN
107 106 104 mulcomd φnAlogNΛn0Λn1=Λn0Λn1logN
108 28 recnd φnAΛn0
109 34 recnd φnAΛn1
110 108 109 106 mulassd φnAΛn0Λn1logN=Λn0Λn1logN
111 107 110 eqtrd φnAlogNΛn0Λn1=Λn0Λn1logN
112 111 sumeq2dv φnAlogNΛn0Λn1=nAΛn0Λn1logN
113 105 112 eqtr2d φnAΛn0Λn1logN=logNnAΛn0Λn1
114 100 113 breqtrd φnAΛn0Λn1Λn2logNnAΛn0Λn1
115 2 nnred φN
116 2 nnge1d φ1N
117 115 116 logge0d φ0logN
118 xpfi 1N2Fin1NFin1N2×1NFin
119 55 72 118 syl2anc φ1N2×1NFin
120 13 a1i φu1N2×1NΛ:
121 68 adantr φu1N2×1N1N2
122 xp1st u1N2×1N1stu1N2
123 122 adantl φu1N2×1N1stu1N2
124 121 123 sseldd φu1N2×1N1stu
125 120 124 ffvelcdmd φu1N2×1NΛ1stu
126 xp2nd u1N2×1N2ndu1N
127 126 adantl φu1N2×1N2ndu1N
128 66 127 sselid φu1N2×1N2ndu
129 120 128 ffvelcdmd φu1N2×1NΛ2ndu
130 125 129 remulcld φu1N2×1NΛ1stuΛ2ndu
131 vmage0 1stu0Λ1stu
132 124 131 syl φu1N2×1N0Λ1stu
133 vmage0 2ndu0Λ2ndu
134 128 133 syl φu1N2×1N0Λ2ndu
135 125 129 132 134 mulge0d φu1N2×1N0Λ1stuΛ2ndu
136 ssidd φcA
137 16 adantr φcAN
138 6 a1i φcA30
139 simpr φcAcA
140 10 139 sselid φcAcrepr3N
141 136 137 138 140 reprf φcAc:0..^3
142 25 a1i φcA00..^3
143 141 142 ffvelcdmd φcAc0
144 2 adantr φcAN
145 136 137 138 140 142 reprle φcAc0N
146 elfz1b c01Nc0Nc0N
147 146 biimpri c0Nc0Nc01N
148 143 144 145 147 syl3anc φcAc01N
149 4 reqabi cAcrepr3N¬c0O
150 149 simprbi cA¬c0O
151 1 oddprm2 2=O
152 151 eleq2i c02c0O
153 150 152 sylnibr cA¬c02
154 139 153 syl φcA¬c02
155 148 154 jca φcAc01N¬c02
156 eldif c01N2c01N¬c02
157 155 156 sylibr φcAc01N2
158 uncom 1N2=21N
159 undif3 21N=21N2
160 158 159 eqtri 1N2=21N2
161 ssequn1 21N21N=1N
162 64 161 sylib φ21N=1N
163 162 difeq1d φ21N2=1N2
164 160 163 eqtrid φ1N2=1N2
165 164 eleq2d φc01N2c01N2
166 165 adantr φcAc01N2c01N2
167 157 166 mpbird φcAc01N2
168 31 a1i φcA10..^3
169 141 168 ffvelcdmd φcAc1
170 136 137 138 140 168 reprle φcAc1N
171 elfz1b c11Nc1Nc1N
172 171 biimpri c1Nc1Nc11N
173 169 144 170 172 syl3anc φcAc11N
174 167 173 opelxpd φcAc0c11N2×1N
175 174 ralrimiva φcAc0c11N2×1N
176 fveq1 d=cd0=c0
177 fveq1 d=cd1=c1
178 176 177 opeq12d d=cd0d1=c0c1
179 178 cbvmptv dAd0d1=cAc0c1
180 179 rnmptss cAc0c11N2×1NrandAd0d11N2×1N
181 175 180 syl φrandAd0d11N2×1N
182 119 130 135 181 fsumless φurandAd0d1Λ1stuΛ2nduu1N2×1NΛ1stuΛ2ndu
183 fvex n0V
184 fvex n1V
185 183 184 op1std u=n0n11stu=n0
186 185 fveq2d u=n0n1Λ1stu=Λn0
187 183 184 op2ndd u=n0n12ndu=n1
188 187 fveq2d u=n0n1Λ2ndu=Λn1
189 186 188 oveq12d u=n0n1Λ1stuΛ2ndu=Λn0Λn1
190 opex c0c1V
191 190 rgenw cAc0c1V
192 179 fnmpt cAc0c1VdAd0d1FnA
193 191 192 mp1i φdAd0d1FnA
194 eqidd φrandAd0d1=randAd0d1
195 141 ad2antrr φcAnAdAd0d1c=dAd0d1nc:0..^3
196 195 ffnd φcAnAdAd0d1c=dAd0d1ncFn0..^3
197 21 ad4ant13 φcAnAdAd0d1c=dAd0d1nn:0..^3
198 197 ffnd φcAnAdAd0d1c=dAd0d1nnFn0..^3
199 simpr φcAnAdAd0d1c=dAd0d1ndAd0d1c=dAd0d1n
200 179 a1i φdAd0d1=cAc0c1
201 190 a1i φcAc0c1V
202 200 201 fvmpt2d φcAdAd0d1c=c0c1
203 202 adantr φcAnAdAd0d1c=c0c1
204 203 adantr φcAnAdAd0d1c=dAd0d1ndAd0d1c=c0c1
205 fveq1 c=nc0=n0
206 fveq1 c=nc1=n1
207 205 206 opeq12d c=nc0c1=n0n1
208 opex n0n1V
209 208 a1i φnAn0n1V
210 179 207 19 209 fvmptd3 φnAdAd0d1n=n0n1
211 210 adantlr φcAnAdAd0d1n=n0n1
212 211 adantr φcAnAdAd0d1c=dAd0d1ndAd0d1n=n0n1
213 199 204 212 3eqtr3d φcAnAdAd0d1c=dAd0d1nc0c1=n0n1
214 183 184 opth2 c0c1=n0n1c0=n0c1=n1
215 213 214 sylib φcAnAdAd0d1c=dAd0d1nc0=n0c1=n1
216 215 simpld φcAnAdAd0d1c=dAd0d1nc0=n0
217 216 ad2antrr φcAnAdAd0d1c=dAd0d1ni0..^3i=0c0=n0
218 simpr φcAnAdAd0d1c=dAd0d1ni0..^3i=0i=0
219 218 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=0ci=c0
220 218 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=0ni=n0
221 217 219 220 3eqtr4d φcAnAdAd0d1c=dAd0d1ni0..^3i=0ci=ni
222 215 simprd φcAnAdAd0d1c=dAd0d1nc1=n1
223 222 ad2antrr φcAnAdAd0d1c=dAd0d1ni0..^3i=1c1=n1
224 simpr φcAnAdAd0d1c=dAd0d1ni0..^3i=1i=1
225 224 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=1ci=c1
226 224 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=1ni=n1
227 223 225 226 3eqtr4d φcAnAdAd0d1c=dAd0d1ni0..^3i=1ci=ni
228 216 ad2antrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0=n0
229 222 ad2antrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2c1=n1
230 228 229 oveq12d φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0+c1=n0+n1
231 230 oveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=2Nc0+c1=Nn0+n1
232 24 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=20..^3=012
233 232 sumeq1d φcAnAdAd0d1c=dAd0d1ni0..^3i=2j0..^3cj=j012cj
234 ssidd φcAnAdAd0d1c=dAd0d1ni0..^3i=2
235 137 ad4antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2N
236 6 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=230
237 140 ad4antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2crepr3N
238 234 235 236 237 reprsum φcAnAdAd0d1c=dAd0d1ni0..^3i=2j0..^3cj=N
239 fveq2 j=0cj=c0
240 fveq2 j=1cj=c1
241 fveq2 j=2cj=c2
242 143 nncnd φcAc0
243 242 ad4antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0
244 169 nncnd φcAc1
245 244 ad4antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2c1
246 37 a1i φcA20..^3
247 141 246 ffvelcdmd φcAc2
248 247 nncnd φcAc2
249 248 ad4antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2c2
250 243 245 249 3jca φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0c1c2
251 22 29 35 3pm3.2i 0V1V2V
252 251 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=20V1V2V
253 0ne1 01
254 253 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=201
255 0ne2 02
256 255 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=202
257 1ne2 12
258 257 a1i φcAnAdAd0d1c=dAd0d1ni0..^3i=212
259 239 240 241 250 252 254 256 258 sumtp φcAnAdAd0d1c=dAd0d1ni0..^3i=2j012cj=c0+c1+c2
260 233 238 259 3eqtr3rd φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0+c1+c2=N
261 243 245 addcld φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0+c1
262 101 ad5antr φcAnAdAd0d1c=dAd0d1ni0..^3i=2N
263 261 249 262 addrsub φcAnAdAd0d1c=dAd0d1ni0..^3i=2c0+c1+c2=Nc2=Nc0+c1
264 260 263 mpbid φcAnAdAd0d1c=dAd0d1ni0..^3i=2c2=Nc0+c1
265 232 sumeq1d φcAnAdAd0d1c=dAd0d1ni0..^3i=2j0..^3nj=j012nj
266 20 ad4ant13 φcAnAdAd0d1c=dAd0d1nnrepr3N
267 266 ad2antrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2nrepr3N
268 234 235 236 267 reprsum φcAnAdAd0d1c=dAd0d1ni0..^3i=2j0..^3nj=N
269 fveq2 j=0nj=n0
270 fveq2 j=1nj=n1
271 fveq2 j=2nj=n2
272 27 nncnd φnAn0
273 272 adantlr φcAnAn0
274 273 ad3antrrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2n0
275 33 nncnd φnAn1
276 275 adantlr φcAnAn1
277 276 ad3antrrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2n1
278 39 nncnd φnAn2
279 278 adantlr φcAnAn2
280 279 ad3antrrr φcAnAdAd0d1c=dAd0d1ni0..^3i=2n2
281 274 277 280 3jca φcAnAdAd0d1c=dAd0d1ni0..^3i=2n0n1n2
282 269 270 271 281 252 254 256 258 sumtp φcAnAdAd0d1c=dAd0d1ni0..^3i=2j012nj=n0+n1+n2
283 265 268 282 3eqtr3rd φcAnAdAd0d1c=dAd0d1ni0..^3i=2n0+n1+n2=N
284 274 277 addcld φcAnAdAd0d1c=dAd0d1ni0..^3i=2n0+n1
285 284 280 262 addrsub φcAnAdAd0d1c=dAd0d1ni0..^3i=2n0+n1+n2=Nn2=Nn0+n1
286 283 285 mpbid φcAnAdAd0d1c=dAd0d1ni0..^3i=2n2=Nn0+n1
287 231 264 286 3eqtr4d φcAnAdAd0d1c=dAd0d1ni0..^3i=2c2=n2
288 simpr φcAnAdAd0d1c=dAd0d1ni0..^3i=2i=2
289 288 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=2ci=c2
290 288 fveq2d φcAnAdAd0d1c=dAd0d1ni0..^3i=2ni=n2
291 287 289 290 3eqtr4d φcAnAdAd0d1c=dAd0d1ni0..^3i=2ci=ni
292 simpr φcAnAdAd0d1c=dAd0d1ni0..^3i0..^3
293 292 24 eleqtrdi φcAnAdAd0d1c=dAd0d1ni0..^3i012
294 vex iV
295 294 eltp i012i=0i=1i=2
296 293 295 sylib φcAnAdAd0d1c=dAd0d1ni0..^3i=0i=1i=2
297 221 227 291 296 mpjao3dan φcAnAdAd0d1c=dAd0d1ni0..^3ci=ni
298 196 198 297 eqfnfvd φcAnAdAd0d1c=dAd0d1nc=n
299 298 ex φcAnAdAd0d1c=dAd0d1nc=n
300 299 anasss φcAnAdAd0d1c=dAd0d1nc=n
301 300 ralrimivva φcAnAdAd0d1c=dAd0d1nc=n
302 dff1o6 dAd0d1:A1-1 ontorandAd0d1dAd0d1FnArandAd0d1=randAd0d1cAnAdAd0d1c=dAd0d1nc=n
303 302 biimpri dAd0d1FnArandAd0d1=randAd0d1cAnAdAd0d1c=dAd0d1nc=ndAd0d1:A1-1 ontorandAd0d1
304 193 194 301 303 syl3anc φdAd0d1:A1-1 ontorandAd0d1
305 181 sselda φurandAd0d1u1N2×1N
306 305 125 syldan φurandAd0d1Λ1stu
307 305 129 syldan φurandAd0d1Λ2ndu
308 306 307 remulcld φurandAd0d1Λ1stuΛ2ndu
309 308 recnd φurandAd0d1Λ1stuΛ2ndu
310 189 12 304 210 309 fsumf1o φurandAd0d1Λ1stuΛ2ndu=nAΛn0Λn1
311 76 recnd φj=1NΛj
312 70 recnd φi1N2Λi
313 55 311 312 fsummulc1 φi1N2Λij=1NΛj=i1N2Λij=1NΛj
314 49 a1i φi1N21NFin
315 75 adantrl φi1N2j1NΛj
316 315 anassrs φi1N2j1NΛj
317 316 recnd φi1N2j1NΛj
318 314 312 317 fsummulc2 φi1N2Λij=1NΛj=j=1NΛiΛj
319 318 sumeq2dv φi1N2Λij=1NΛj=i1N2j=1NΛiΛj
320 vex jV
321 294 320 op1std u=ij1stu=i
322 321 fveq2d u=ijΛ1stu=Λi
323 294 320 op2ndd u=ij2ndu=j
324 323 fveq2d u=ijΛ2ndu=Λj
325 322 324 oveq12d u=ijΛ1stuΛ2ndu=ΛiΛj
326 70 adantrr φi1N2j1NΛi
327 326 315 remulcld φi1N2j1NΛiΛj
328 327 recnd φi1N2j1NΛiΛj
329 325 55 72 328 fsumxp φi1N2j=1NΛiΛj=u1N2×1NΛ1stuΛ2ndu
330 313 319 329 3eqtrrd φu1N2×1NΛ1stuΛ2ndu=i1N2Λij=1NΛj
331 182 310 330 3brtr3d φnAΛn0Λn1i1N2Λij=1NΛj
332 47 77 45 117 331 lemul2ad φlogNnAΛn0Λn1logNi1N2Λij=1NΛj
333 43 48 78 114 332 letrd φnAΛn0Λn1Λn2logNi1N2Λij=1NΛj