Metamath Proof Explorer


Theorem aks4d1p8

Description: Show that N and R are coprime for AKS existence theorem, with eliminated hypothesis. (Contributed by metakunt, 10-Nov-2024) (Proof sketch by Thierry Arnoux.)

Ref Expression
Hypotheses aks4d1p8.1 φN3
aks4d1p8.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p8.3 B=log2N5
aks4d1p8.4 R=supr1B|¬rA<
Assertion aks4d1p8 φNgcdR=1

Proof

Step Hyp Ref Expression
1 aks4d1p8.1 φN3
2 aks4d1p8.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p8.3 B=log2N5
4 aks4d1p8.4 R=supr1B|¬rA<
5 4 a1i φ1<NgcdRppR¬pNRNgcdRAR=supr1B|¬rA<
6 ssrab2 r1B|¬rA1B
7 6 a1i φr1B|¬rA1B
8 elfznn o1Bo
9 8 adantl φo1Bo
10 9 nnred φo1Bo
11 10 ex φo1Bo
12 11 ssrdv φ1B
13 7 12 sstrd φr1B|¬rA
14 13 adantr φ1<NgcdRr1B|¬rA
15 14 adantr φ1<NgcdRpr1B|¬rA
16 15 adantr φ1<NgcdRppR¬pNr1B|¬rA
17 16 adantr φ1<NgcdRppR¬pNRNgcdRAr1B|¬rA
18 fzfid φ1BFin
19 18 7 ssfid φr1B|¬rAFin
20 1 2 3 aks4d1p3 φr1B¬rA
21 rabn0 r1B|¬rAr1B¬rA
22 20 21 sylibr φr1B|¬rA
23 fiminre r1B|¬rAr1B|¬rAFinr1B|¬rAxr1B|¬rAyr1B|¬rAxy
24 13 19 22 23 syl3anc φxr1B|¬rAyr1B|¬rAxy
25 24 adantr φ1<NgcdRxr1B|¬rAyr1B|¬rAxy
26 25 adantr φ1<NgcdRpxr1B|¬rAyr1B|¬rAxy
27 26 adantr φ1<NgcdRppR¬pNxr1B|¬rAyr1B|¬rAxy
28 27 adantr φ1<NgcdRppR¬pNRNgcdRAxr1B|¬rAyr1B|¬rAxy
29 breq1 r=RprARpA
30 29 notbid r=Rp¬rA¬RpA
31 1zzd φ1<NgcdRppR¬pNRNgcdRA1
32 3 a1i φB=log2N5
33 2re 2
34 33 a1i φ2
35 2pos 0<2
36 35 a1i φ0<2
37 eluzelz N3N
38 1 37 syl φN
39 38 zred φN
40 0red φ0
41 3re 3
42 41 a1i φ3
43 3pos 0<3
44 43 a1i φ0<3
45 eluzle N33N
46 1 45 syl φ3N
47 40 42 39 44 46 ltletrd φ0<N
48 1red φ1
49 1lt2 1<2
50 49 a1i φ1<2
51 48 50 ltned φ12
52 51 necomd φ21
53 34 36 39 47 52 relogbcld φlog2N
54 5nn0 50
55 54 a1i φ50
56 53 55 reexpcld φlog2N5
57 56 ceilcld φlog2N5
58 32 57 eqeltrd φB
59 58 ad4antr φ1<NgcdRppR¬pNRNgcdRAB
60 simplrl φ1<NgcdRppR¬pNRNgcdRApR
61 prmnn pp
62 61 adantl φ1<NgcdRpp
63 62 ad2antrr φ1<NgcdRppR¬pNRNgcdRAp
64 63 nnzd φ1<NgcdRppR¬pNRNgcdRAp
65 62 nnne0d φ1<NgcdRpp0
66 65 ad2antrr φ1<NgcdRppR¬pNRNgcdRAp0
67 1 2 3 4 aks4d1p4 φR1B¬RA
68 67 simpld φR1B
69 elfznn R1BR
70 68 69 syl φR
71 70 ad4antr φ1<NgcdRppR¬pNR
72 71 adantr φ1<NgcdRppR¬pNRNgcdRAR
73 72 nnzd φ1<NgcdRppR¬pNRNgcdRAR
74 anass φ1<NgcdRppR¬pNφ1<NgcdRppR¬pN
75 74 anbi1i φ1<NgcdRppR¬pNRNgcdRAφ1<NgcdRppR¬pNRNgcdRA
76 75 imbi1i φ1<NgcdRppR¬pNRNgcdRARφ1<NgcdRppR¬pNRNgcdRAR
77 73 76 mpbi φ1<NgcdRppR¬pNRNgcdRAR
78 dvdsval2 pp0RpRRp
79 64 66 77 78 syl3anc φ1<NgcdRppR¬pNRNgcdRApRRp
80 60 79 mpbid φ1<NgcdRppR¬pNRNgcdRARp
81 63 nncnd φ1<NgcdRppR¬pNRNgcdRAp
82 81 mullidd φ1<NgcdRppR¬pNRNgcdRA1p=p
83 75 72 sylbir φ1<NgcdRppR¬pNRNgcdRAR
84 64 83 jca φ1<NgcdRppR¬pNRNgcdRApR
85 dvdsle pRpRpR
86 85 imp pRpRpR
87 84 60 86 syl2anc φ1<NgcdRppR¬pNRNgcdRApR
88 82 87 eqbrtrd φ1<NgcdRppR¬pNRNgcdRA1pR
89 1red φ1<NgcdRppR¬pNRNgcdRA1
90 70 nnred φR
91 90 adantr φ1<NgcdRR
92 91 adantr φ1<NgcdRpR
93 92 adantr φ1<NgcdRppR¬pNR
94 93 adantr φ1<NgcdRppR¬pNRNgcdRAR
95 63 nnrpd φ1<NgcdRppR¬pNRNgcdRAp+
96 89 94 95 lemuldivd φ1<NgcdRppR¬pNRNgcdRA1pR1Rp
97 88 96 mpbid φ1<NgcdRppR¬pNRNgcdRA1Rp
98 90 ad2antrr φ1<NgcdRpR
99 58 ad2antrr φ1<NgcdRpB
100 99 zred φ1<NgcdRpB
101 62 nnred φ1<NgcdRpp
102 100 101 remulcld φ1<NgcdRpBp
103 elfzle2 R1BRB
104 68 103 syl φRB
105 104 adantr φ1<NgcdRRB
106 105 adantr φ1<NgcdRpRB
107 58 zred φB
108 9re 9
109 108 a1i φ9
110 9pos 0<9
111 110 a1i φ0<9
112 32 107 eqeltrrd φlog2N5
113 39 46 3lexlogpow5ineq4 φ9<log2N5
114 56 ceilged φlog2N5log2N5
115 109 56 112 113 114 ltletrd φ9<log2N5
116 115 32 breqtrrd φ9<B
117 40 109 107 111 116 lttrd φ0<B
118 40 107 117 ltled φ0B
119 118 adantr φ1<NgcdR0B
120 119 adantr φ1<NgcdRp0B
121 62 nnge1d φ1<NgcdRp1p
122 100 101 120 121 lemulge11d φ1<NgcdRpBBp
123 98 100 102 106 122 letrd φ1<NgcdRpRBp
124 62 nnrpd φ1<NgcdRpp+
125 98 100 124 ledivmul2d φ1<NgcdRpRpBRBp
126 123 125 mpbird φ1<NgcdRpRpB
127 126 adantr φ1<NgcdRppR¬pNRpB
128 127 adantr φ1<NgcdRppR¬pNRNgcdRARpB
129 31 59 80 97 128 elfzd φ1<NgcdRppR¬pNRNgcdRARp1B
130 93 recnd φ1<NgcdRppR¬pNR
131 62 adantr φ1<NgcdRppR¬pNp
132 131 nnzd φ1<NgcdRppR¬pNp
133 simplr φ1<NgcdRppR¬pNp
134 71 anasss φ1<NgcdRppR¬pNR
135 133 134 pccld φ1<NgcdRppR¬pNppCntR0
136 132 135 zexpcld φ1<NgcdRppR¬pNpppCntR
137 136 zcnd φ1<NgcdRppR¬pNpppCntR
138 131 nncnd φ1<NgcdRppR¬pNp
139 65 adantr φ1<NgcdRppR¬pNp0
140 135 nn0zd φ1<NgcdRppR¬pNppCntR
141 138 139 140 expne0d φ1<NgcdRppR¬pNpppCntR0
142 130 137 141 divcan1d φ1<NgcdRppR¬pNRpppCntRpppCntR=R
143 142 eqcomd φ1<NgcdRppR¬pNR=RpppCntRpppCntR
144 pcdvds pRpppCntRR
145 133 134 144 syl2anc φ1<NgcdRppR¬pNpppCntRR
146 134 nnzd φ1<NgcdRppR¬pNR
147 dvdsval2 pppCntRpppCntR0RpppCntRRRpppCntR
148 136 141 146 147 syl3anc φ1<NgcdRppR¬pNpppCntRRRpppCntR
149 145 148 mpbid φ1<NgcdRppR¬pNRpppCntR
150 38 47 jca φN0<N
151 elnnz NN0<N
152 151 a1i φNN0<N
153 150 152 mpbird φN
154 153 nnzd φN
155 34 36 107 117 52 relogbcld φlog2B
156 155 flcld φlog2B
157 34 recnd φ2
158 40 36 gtned φ20
159 logb1 22021log21=0
160 157 158 52 159 syl3anc φlog21=0
161 160 eqcomd φ0=log21
162 2z 2
163 162 a1i φ2
164 34 leidd φ22
165 0lt1 0<1
166 165 a1i φ0<1
167 1lt9 1<9
168 167 a1i φ1<9
169 48 109 107 168 116 lttrd φ1<B
170 48 107 169 ltled φ1B
171 163 164 48 166 107 117 170 logblebd φlog21log2B
172 161 171 eqbrtrd φ0log2B
173 0zd φ0
174 flge log2B00log2B0log2B
175 155 173 174 syl2anc φ0log2B0log2B
176 172 175 mpbid φ0log2B
177 156 176 jca φlog2B0log2B
178 elnn0z log2B0log2B0log2B
179 178 a1i φlog2B0log2B0log2B
180 177 179 mpbird φlog2B0
181 154 180 zexpcld φNlog2B
182 fzfid φ1log2N2Fin
183 154 adantr φk1log2N2N
184 elfznn k1log2N2k
185 184 adantl φk1log2N2k
186 185 nnnn0d φk1log2N2k0
187 183 186 zexpcld φk1log2N2Nk
188 1zzd φk1log2N21
189 187 188 zsubcld φk1log2N2Nk1
190 182 189 fprodzcl φk=1log2N2Nk1
191 181 190 zmulcld φNlog2Bk=1log2N2Nk1
192 2 a1i φA=Nlog2Bk=1log2N2Nk1
193 192 eleq1d φANlog2Bk=1log2N2Nk1
194 191 193 mpbird φA
195 194 ad3antrrr φ1<NgcdRppR¬pNA
196 simprl φ1<NgcdRppR¬pNpR
197 134 133 196 aks4d1p8d3 φ1<NgcdRppR¬pNRpppCntRgcdpppCntR=1
198 138 exp0d φ1<NgcdRppR¬pNp0=1
199 pcelnn pRppCntRpR
200 133 134 199 syl2anc φ1<NgcdRppR¬pNppCntRpR
201 196 200 mpbird φ1<NgcdRppR¬pNppCntR
202 201 nngt0d φ1<NgcdRppR¬pN0<ppCntR
203 101 adantr φ1<NgcdRppR¬pNp
204 173 ad3antrrr φ1<NgcdRppR¬pN0
205 prmgt1 p1<p
206 205 adantl φ1<NgcdRp1<p
207 206 adantr φ1<NgcdRppR¬pN1<p
208 203 204 140 207 ltexp2d φ1<NgcdRppR¬pN0<ppCntRp0<pppCntR
209 202 208 mpbid φ1<NgcdRppR¬pNp0<pppCntR
210 198 209 eqbrtrrd φ1<NgcdRppR¬pN1<pppCntR
211 136 zred φ1<NgcdRppR¬pNpppCntR
212 70 nnrpd φR+
213 212 adantr φ1<NgcdRR+
214 213 adantr φ1<NgcdRpR+
215 214 adantr φ1<NgcdRppR¬pNR+
216 211 215 ltmulgt11d φ1<NgcdRppR¬pN1<pppCntRR<RpppCntR
217 210 216 mpbid φ1<NgcdRppR¬pNR<RpppCntR
218 124 adantr φ1<NgcdRppR¬pNp+
219 218 140 rpexpcld φ1<NgcdRppR¬pNpppCntR+
220 93 93 219 ltdivmul2d φ1<NgcdRppR¬pNRpppCntR<RR<RpppCntR
221 217 220 mpbird φ1<NgcdRppR¬pNRpppCntR<R
222 93 211 141 redivcld φ1<NgcdRppR¬pNRpppCntR
223 222 93 ltnled φ1<NgcdRppR¬pNRpppCntR<R¬RRpppCntR
224 221 223 mpbid φ1<NgcdRppR¬pN¬RRpppCntR
225 4 a1i φ1<NgcdRppR¬pNR=supr1B|¬rA<
226 225 breq1d φ1<NgcdRppR¬pNRRpppCntRsupr1B|¬rA<RpppCntR
227 226 notbid φ1<NgcdRppR¬pN¬RRpppCntR¬supr1B|¬rA<RpppCntR
228 224 227 mpbid φ1<NgcdRppR¬pN¬supr1B|¬rA<RpppCntR
229 elfznn f1Bf
230 229 adantl φf1Bf
231 230 nnred φf1Bf
232 231 ex φf1Bf
233 232 ssrdv φ1B
234 7 233 sstrd φr1B|¬rA
235 234 adantr φ1<NgcdRr1B|¬rA
236 235 adantr φ1<NgcdRpr1B|¬rA
237 236 adantr φ1<NgcdRppR¬pNr1B|¬rA
238 19 adantr φ1<NgcdRr1B|¬rAFin
239 238 adantr φ1<NgcdRpr1B|¬rAFin
240 239 adantr φ1<NgcdRppR¬pNr1B|¬rAFin
241 infrefilb r1B|¬rAr1B|¬rAFinRpppCntRr1B|¬rAsupr1B|¬rA<RpppCntR
242 241 3expa r1B|¬rAr1B|¬rAFinRpppCntRr1B|¬rAsupr1B|¬rA<RpppCntR
243 242 ex r1B|¬rAr1B|¬rAFinRpppCntRr1B|¬rAsupr1B|¬rA<RpppCntR
244 243 con3d r1B|¬rAr1B|¬rAFin¬supr1B|¬rA<RpppCntR¬RpppCntRr1B|¬rA
245 237 240 244 syl2anc φ1<NgcdRppR¬pN¬supr1B|¬rA<RpppCntR¬RpppCntRr1B|¬rA
246 228 245 mpd φ1<NgcdRppR¬pN¬RpppCntRr1B|¬rA
247 1zzd φ1<NgcdRppR¬pN1
248 99 adantr φ1<NgcdRppR¬pNB
249 137 mullidd φ1<NgcdRppR¬pN1pppCntR=pppCntR
250 dvdsle pppCntRRpppCntRRpppCntRR
251 136 134 250 syl2anc φ1<NgcdRppR¬pNpppCntRRpppCntRR
252 145 251 mpd φ1<NgcdRppR¬pNpppCntRR
253 249 252 eqbrtrd φ1<NgcdRppR¬pN1pppCntRR
254 48 adantr φ1<NgcdR1
255 254 ad2antrr φ1<NgcdRppR¬pN1
256 255 93 219 lemuldivd φ1<NgcdRppR¬pN1pppCntRR1RpppCntR
257 253 256 mpbid φ1<NgcdRppR¬pN1RpppCntR
258 100 adantr φ1<NgcdRppR¬pNB
259 121 adantr φ1<NgcdRppR¬pN1p
260 203 135 259 expge1d φ1<NgcdRppR¬pN1pppCntR
261 nnledivrp RpppCntR+1pppCntRRpppCntRR
262 134 219 261 syl2anc φ1<NgcdRppR¬pN1pppCntRRpppCntRR
263 260 262 mpbid φ1<NgcdRppR¬pNRpppCntRR
264 106 adantr φ1<NgcdRppR¬pNRB
265 222 93 258 263 264 letrd φ1<NgcdRppR¬pNRpppCntRB
266 247 248 149 257 265 elfzd φ1<NgcdRppR¬pNRpppCntR1B
267 breq1 r=RpppCntRrARpppCntRA
268 267 notbid r=RpppCntR¬rA¬RpppCntRA
269 268 elrab3 RpppCntR1BRpppCntRr1B|¬rA¬RpppCntRA
270 269 con2bid RpppCntR1BRpppCntRA¬RpppCntRr1B|¬rA
271 266 270 syl φ1<NgcdRppR¬pNRpppCntRA¬RpppCntRr1B|¬rA
272 246 271 mpbird φ1<NgcdRppR¬pNRpppCntRA
273 134 ad2antrr φ1<NgcdRppR¬pNqqNqRR
274 153 adantr φ1<NgcdRN
275 274 adantr φ1<NgcdRpN
276 275 adantr φ1<NgcdRppRN
277 276 adantr φ1<NgcdRppR¬pNN
278 74 277 sylbir φ1<NgcdRppR¬pNN
279 278 ad2antrr φ1<NgcdRppR¬pNqqNqRN
280 133 ad2antrr φ1<NgcdRppR¬pNqqNqRp
281 simplr φ1<NgcdRppR¬pNqqNqRq
282 196 ad2antrr φ1<NgcdRppR¬pNqqNqRpR
283 simprr φ1<NgcdRppR¬pNqqNqRqR
284 simplrr φ1<NgcdRppR¬pNq¬pN
285 284 adantr φ1<NgcdRppR¬pNqqNqR¬pN
286 simprl φ1<NgcdRppR¬pNqqNqRqN
287 273 279 280 281 282 283 285 286 aks4d1p8d2 φ1<NgcdRppR¬pNqqNqRpppCntR<R
288 simpr φ1<NgcdR1<NgcdR
289 288 ad2antrr φ1<NgcdRppR¬pN1<NgcdR
290 255 289 ltned φ1<NgcdRppR¬pN1NgcdR
291 290 necomd φ1<NgcdRppR¬pNNgcdR1
292 278 134 prmdvdsncoprmbd φ1<NgcdRppR¬pNqqNqRNgcdR1
293 292 bicomd φ1<NgcdRppR¬pNNgcdR1qqNqR
294 293 biimpd φ1<NgcdRppR¬pNNgcdR1qqNqR
295 291 294 mpd φ1<NgcdRppR¬pNqqNqR
296 287 295 r19.29a φ1<NgcdRppR¬pNpppCntR<R
297 211 93 ltnled φ1<NgcdRppR¬pNpppCntR<R¬RpppCntR
298 296 297 mpbid φ1<NgcdRppR¬pN¬RpppCntR
299 225 breq1d φ1<NgcdRppR¬pNRpppCntRsupr1B|¬rA<pppCntR
300 299 notbid φ1<NgcdRppR¬pN¬RpppCntR¬supr1B|¬rA<pppCntR
301 298 300 mpbid φ1<NgcdRppR¬pN¬supr1B|¬rA<pppCntR
302 infrefilb r1B|¬rAr1B|¬rAFinpppCntRr1B|¬rAsupr1B|¬rA<pppCntR
303 302 3expa r1B|¬rAr1B|¬rAFinpppCntRr1B|¬rAsupr1B|¬rA<pppCntR
304 303 ex r1B|¬rAr1B|¬rAFinpppCntRr1B|¬rAsupr1B|¬rA<pppCntR
305 304 con3d r1B|¬rAr1B|¬rAFin¬supr1B|¬rA<pppCntR¬pppCntRr1B|¬rA
306 237 240 305 syl2anc φ1<NgcdRppR¬pN¬supr1B|¬rA<pppCntR¬pppCntRr1B|¬rA
307 301 306 mpd φ1<NgcdRppR¬pN¬pppCntRr1B|¬rA
308 211 93 258 252 264 letrd φ1<NgcdRppR¬pNpppCntRB
309 247 248 136 260 308 elfzd φ1<NgcdRppR¬pNpppCntR1B
310 breq1 r=pppCntRrApppCntRA
311 310 notbid r=pppCntR¬rA¬pppCntRA
312 311 elrab3 pppCntR1BpppCntRr1B|¬rA¬pppCntRA
313 309 312 syl φ1<NgcdRppR¬pNpppCntRr1B|¬rA¬pppCntRA
314 313 con2bid φ1<NgcdRppR¬pNpppCntRA¬pppCntRr1B|¬rA
315 307 314 mpbird φ1<NgcdRppR¬pNpppCntRA
316 149 136 195 197 272 315 coprmdvds2d φ1<NgcdRppR¬pNRpppCntRpppCntRA
317 143 316 eqbrtrd φ1<NgcdRppR¬pNRA
318 317 adantr φ1<NgcdRppR¬pNRNgcdRARA
319 67 simprd φ¬RA
320 319 ad5antr φ1<NgcdRppR¬pNRNgcdRA¬RA
321 75 320 sylbir φ1<NgcdRppR¬pNRNgcdRA¬RA
322 318 321 pm2.21dd φ1<NgcdRppR¬pNRNgcdRA¬RpA
323 30 129 322 elrabd φ1<NgcdRppR¬pNRNgcdRARpr1B|¬rA
324 lbinfle r1B|¬rAxr1B|¬rAyr1B|¬rAxyRpr1B|¬rAsupr1B|¬rA<Rp
325 17 28 323 324 syl3anc φ1<NgcdRppR¬pNRNgcdRAsupr1B|¬rA<Rp
326 5 325 eqbrtrd φ1<NgcdRppR¬pNRNgcdRARRp
327 207 adantr φ1<NgcdRppR¬pNRNgcdRA1<p
328 1rp 1+
329 328 a1i φ1<NgcdRppR¬pNRNgcdRA1+
330 215 adantr φ1<NgcdRppR¬pNRNgcdRAR+
331 329 95 330 ltdiv2d φ1<NgcdRppR¬pNRNgcdRA1<pRp<R1
332 327 331 mpbid φ1<NgcdRppR¬pNRNgcdRARp<R1
333 130 adantr φ1<NgcdRppR¬pNRNgcdRAR
334 333 div1d φ1<NgcdRppR¬pNRNgcdRAR1=R
335 332 334 breqtrd φ1<NgcdRppR¬pNRNgcdRARp<R
336 98 101 65 redivcld φ1<NgcdRpRp
337 336 adantr φ1<NgcdRppR¬pNRp
338 337 adantr φ1<NgcdRppR¬pNRNgcdRARp
339 338 94 ltnled φ1<NgcdRppR¬pNRNgcdRARp<R¬RRp
340 335 339 mpbid φ1<NgcdRppR¬pNRNgcdRA¬RRp
341 326 340 pm2.65da φ1<NgcdRppR¬pN¬RNgcdRA
342 1 2 3 4 aks4d1p7 φppR¬pN
343 342 adantr φ1<NgcdRppR¬pN
344 341 343 r19.29a φ1<NgcdR¬RNgcdRA
345 344 adantr φ1<NgcdRRNgcdRA¬RNgcdRA
346 1 2 3 4 345 aks4d1p5 φNgcdR=1