Metamath Proof Explorer


Theorem logexprlim

Description: The sum sum_ n <_ x , log ^ N ( x / n ) has the asymptotic expansion ( N ! ) x + o ( x ) . (More precisely, the omitted term has order O ( log ^ N ( x ) / x ) .) (Contributed by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion logexprlim N0x+n=1xlogxnNxN!

Proof

Step Hyp Ref Expression
1 fzfid N0x+1xFin
2 simpr N0x+x+
3 elfznn n1xn
4 3 nnrpd n1xn+
5 rpdivcl x+n+xn+
6 2 4 5 syl2an N0x+n1xxn+
7 6 relogcld N0x+n1xlogxn
8 simpll N0x+n1xN0
9 7 8 reexpcld N0x+n1xlogxnN
10 1 9 fsumrecl N0x+n=1xlogxnN
11 relogcl x+logx
12 id N0N0
13 reexpcl logxN0logxN
14 11 12 13 syl2anr N0x+logxN
15 faccl N0N!
16 15 adantr N0x+N!
17 16 nnred N0x+N!
18 fzfid N0x+0NFin
19 11 adantl N0x+logx
20 elfznn0 k0Nk0
21 reexpcl logxk0logxk
22 19 20 21 syl2an N0x+k0Nlogxk
23 20 adantl N0x+k0Nk0
24 23 faccld N0x+k0Nk!
25 22 24 nndivred N0x+k0Nlogxkk!
26 18 25 fsumrecl N0x+k=0Nlogxkk!
27 17 26 remulcld N0x+N!k=0Nlogxkk!
28 14 27 resubcld N0x+logxNN!k=0Nlogxkk!
29 10 28 resubcld N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!
30 29 2 rerpdivcld N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x
31 rerpdivcl logxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x
32 28 31 sylancom N0x+logxNN!k=0Nlogxkk!x
33 1red N01
34 15 nncnd N0N!
35 simpl k=Nx+k=N
36 35 oveq2d k=Nx+logxk=logxN
37 36 oveq1d k=Nx+logxkx=logxNx
38 37 mpteq2dva k=Nx+logxkx=x+logxNx
39 38 breq1d k=Nx+logxkx0x+logxNx0
40 11 recnd x+logx
41 id k0k0
42 cxpexp logxk0logxk=logxk
43 40 41 42 syl2anr k0x+logxk=logxk
44 rpcn x+x
45 44 adantl k0x+x
46 45 cxp1d k0x+x1=x
47 43 46 oveq12d k0x+logxkx1=logxkx
48 47 mpteq2dva k0x+logxkx1=x+logxkx
49 nn0cn k0k
50 1rp 1+
51 cxploglim2 k1+x+logxkx10
52 49 50 51 sylancl k0x+logxkx10
53 48 52 eqbrtrrd k0x+logxkx0
54 39 53 vtoclga N0x+logxNx0
55 rerpdivcl logxNx+logxNx
56 14 55 sylancom N0x+logxNx
57 56 recnd N0x+logxNx
58 10 recnd N0x+n=1xlogxnN
59 14 recnd N0x+logxN
60 34 adantr N0x+N!
61 26 recnd N0x+k=0Nlogxkk!
62 60 61 mulcld N0x+N!k=0Nlogxkk!
63 59 62 subcld N0x+logxNN!k=0Nlogxkk!
64 58 63 subcld N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!
65 rpcnne0 x+xx0
66 65 adantl N0x+xx0
67 66 simpld N0x+x
68 66 simprd N0x+x0
69 64 67 68 divcld N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x
70 69 adantrr N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!x
71 15 adantr N0x+1xN!
72 71 nncnd N0x+1xN!
73 70 72 subcld N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!
74 73 abscld N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!
75 56 adantrr N0x+1xlogxNx
76 75 recnd N0x+1xlogxNx
77 76 abscld N0x+1xlogxNx
78 ioorp 0+∞=+
79 78 eqcomi +=0+∞
80 nnuz =1
81 1z 1
82 81 a1i N0x+1x1
83 1red N0x+1x1
84 1re 1
85 1nn0 10
86 84 85 nn0addge1i 11+1
87 86 a1i N0x+1x11+1
88 0red N0x+1x0
89 71 adantr N0x+1xy+N!
90 89 nnred N0x+1xy+N!
91 rpre y+y
92 91 adantl N0x+1xy+y
93 fzfid N0x+1xy+0NFin
94 simprl N0x+1xx+
95 rpdivcl x+y+xy+
96 94 95 sylan N0x+1xy+xy+
97 96 relogcld N0x+1xy+logxy
98 reexpcl logxyk0logxyk
99 97 20 98 syl2an N0x+1xy+k0Nlogxyk
100 20 adantl N0x+1xy+k0Nk0
101 100 faccld N0x+1xy+k0Nk!
102 99 101 nndivred N0x+1xy+k0Nlogxykk!
103 93 102 fsumrecl N0x+1xy+k=0Nlogxykk!
104 92 103 remulcld N0x+1xy+yk=0Nlogxykk!
105 90 104 remulcld N0x+1xy+N!yk=0Nlogxykk!
106 simpll N0x+1xy+N0
107 97 106 reexpcld N0x+1xy+logxyN
108 nnrp yy+
109 108 107 sylan2 N0x+1xylogxyN
110 reelprrecn
111 110 a1i N0x+1x
112 104 recnd N0x+1xy+yk=0Nlogxykk!
113 107 89 nndivred N0x+1xy+logxyNN!
114 simpl N0x+1xN0
115 advlogexp x+N0dy+yk=0Nlogxykk!dy=y+logxyNN!
116 94 114 115 syl2anc N0x+1xdy+yk=0Nlogxykk!dy=y+logxyNN!
117 111 112 113 116 72 dvmptcmul N0x+1xdy+N!yk=0Nlogxykk!dy=y+N!logxyNN!
118 107 recnd N0x+1xy+logxyN
119 72 adantr N0x+1xy+N!
120 71 nnne0d N0x+1xN!0
121 120 adantr N0x+1xy+N!0
122 118 119 121 divcan2d N0x+1xy+N!logxyNN!=logxyN
123 122 mpteq2dva N0x+1xy+N!logxyNN!=y+logxyN
124 117 123 eqtrd N0x+1xdy+N!yk=0Nlogxykk!dy=y+logxyN
125 oveq2 y=nxy=xn
126 125 fveq2d y=nlogxy=logxn
127 126 oveq1d y=nlogxyN=logxnN
128 94 rpxrd N0x+1xx*
129 simp1rl N0x+1xy+n+1yynnxx+
130 simp2r N0x+1xy+n+1yynnxn+
131 129 130 rpdivcld N0x+1xy+n+1yynnxxn+
132 131 relogcld N0x+1xy+n+1yynnxlogxn
133 simp2l N0x+1xy+n+1yynnxy+
134 129 133 rpdivcld N0x+1xy+n+1yynnxxy+
135 134 relogcld N0x+1xy+n+1yynnxlogxy
136 simp1l N0x+1xy+n+1yynnxN0
137 log1 log1=0
138 130 rpcnd N0x+1xy+n+1yynnxn
139 138 mullidd N0x+1xy+n+1yynnx1n=n
140 simp33 N0x+1xy+n+1yynnxnx
141 139 140 eqbrtrd N0x+1xy+n+1yynnx1nx
142 1red N0x+1xy+n+1yynnx1
143 129 rpred N0x+1xy+n+1yynnxx
144 142 143 130 lemuldivd N0x+1xy+n+1yynnx1nx1xn
145 141 144 mpbid N0x+1xy+n+1yynnx1xn
146 logleb 1+xn+1xnlog1logxn
147 50 131 146 sylancr N0x+1xy+n+1yynnx1xnlog1logxn
148 145 147 mpbid N0x+1xy+n+1yynnxlog1logxn
149 137 148 eqbrtrrid N0x+1xy+n+1yynnx0logxn
150 simp32 N0x+1xy+n+1yynnxyn
151 133 130 129 lediv2d N0x+1xy+n+1yynnxynxnxy
152 150 151 mpbid N0x+1xy+n+1yynnxxnxy
153 131 134 logled N0x+1xy+n+1yynnxxnxylogxnlogxy
154 152 153 mpbid N0x+1xy+n+1yynnxlogxnlogxy
155 leexp1a logxnlogxyN00logxnlogxnlogxylogxnNlogxyN
156 132 135 136 149 154 155 syl32anc N0x+1xy+n+1yynnxlogxnNlogxyN
157 eqid y+n=1ylogxnNN!yk=0Nlogxykk!=y+n=1ylogxnNN!yk=0Nlogxykk!
158 96 3ad2antr1 N0x+1xy+1yyxxy+
159 158 relogcld N0x+1xy+1yyxlogxy
160 simpll N0x+1xy+1yyxN0
161 rpcn y+y
162 161 adantl N0x+1xy+y
163 162 3ad2antr1 N0x+1xy+1yyxy
164 163 mullidd N0x+1xy+1yyx1y=y
165 simpr3 N0x+1xy+1yyxyx
166 164 165 eqbrtrd N0x+1xy+1yyx1yx
167 1red N0x+1xy+1yyx1
168 94 rpred N0x+1xx
169 168 adantr N0x+1xy+1yyxx
170 simpr1 N0x+1xy+1yyxy+
171 167 169 170 lemuldivd N0x+1xy+1yyx1yx1xy
172 166 171 mpbid N0x+1xy+1yyx1xy
173 logleb 1+xy+1xylog1logxy
174 50 158 173 sylancr N0x+1xy+1yyx1xylog1logxy
175 172 174 mpbid N0x+1xy+1yyxlog1logxy
176 137 175 eqbrtrrid N0x+1xy+1yyx0logxy
177 159 160 176 expge0d N0x+1xy+1yyx0logxyN
178 50 a1i N0x+1x1+
179 1le1 11
180 179 a1i N0x+1x11
181 simprr N0x+1x1x
182 168 leidd N0x+1xxx
183 79 80 82 83 87 88 105 107 109 124 127 128 156 157 177 178 94 180 181 182 dvfsumlem4 N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!xy+n=1ylogxnNN!yk=0Nlogxykk!11/ylogxyN
184 fzfid N0x+1x1xFin
185 94 4 5 syl2an N0x+1xn1xxn+
186 185 relogcld N0x+1xn1xlogxn
187 simpll N0x+1xn1xN0
188 186 187 reexpcld N0x+1xn1xlogxnN
189 184 188 fsumrecl N0x+1xn=1xlogxnN
190 189 recnd N0x+1xn=1xlogxnN
191 94 rpcnd N0x+1xx
192 72 191 mulcld N0x+1xN!x
193 11 ad2antrl N0x+1xlogx
194 193 recnd N0x+1xlogx
195 194 114 expcld N0x+1xlogxN
196 fzfid N0x+1x0NFin
197 193 20 21 syl2an N0x+1xk0Nlogxk
198 20 adantl N0x+1xk0Nk0
199 198 faccld N0x+1xk0Nk!
200 197 199 nndivred N0x+1xk0Nlogxkk!
201 200 recnd N0x+1xk0Nlogxkk!
202 196 201 fsumcl N0x+1xk=0Nlogxkk!
203 72 202 mulcld N0x+1xN!k=0Nlogxkk!
204 195 203 subcld N0x+1xlogxNN!k=0Nlogxkk!
205 190 192 204 sub32d N0x+1xn=1xlogxnN-N!x-logxNN!k=0Nlogxkk!=n=1xlogxnN-logxNN!k=0Nlogxkk!-N!x
206 eqidd N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!=y+n=1ylogxnNN!yk=0Nlogxykk!
207 simpr N0x+1xy=xy=x
208 207 fveq2d N0x+1xy=xy=x
209 208 oveq2d N0x+1xy=x1y=1x
210 209 sumeq1d N0x+1xy=xn=1ylogxnN=n=1xlogxnN
211 oveq2 y=xxy=xx
212 65 ad2antrl N0x+1xxx0
213 divid xx0xx=1
214 212 213 syl N0x+1xxx=1
215 211 214 sylan9eqr N0x+1xy=xxy=1
216 215 adantr N0x+1xy=xk0Nxy=1
217 216 fveq2d N0x+1xy=xk0Nlogxy=log1
218 217 137 eqtrdi N0x+1xy=xk0Nlogxy=0
219 218 oveq1d N0x+1xy=xk0Nlogxyk=0k
220 219 oveq1d N0x+1xy=xk0Nlogxykk!=0kk!
221 220 sumeq2dv N0x+1xy=xk=0Nlogxykk!=k=0N0kk!
222 nn0uz 0=0
223 114 222 eleqtrdi N0x+1xN0
224 eluzfz1 N000N
225 223 224 syl N0x+1x00N
226 225 adantr N0x+1xy=x00N
227 226 snssd N0x+1xy=x00N
228 elsni k0k=0
229 228 adantl N0x+1xy=xk0k=0
230 oveq2 k=00k=00
231 0exp0e1 00=1
232 230 231 eqtrdi k=00k=1
233 fveq2 k=0k!=0!
234 fac0 0!=1
235 233 234 eqtrdi k=0k!=1
236 232 235 oveq12d k=00kk!=11
237 1div1e1 11=1
238 236 237 eqtrdi k=00kk!=1
239 229 238 syl N0x+1xy=xk00kk!=1
240 ax-1cn 1
241 239 240 eqeltrdi N0x+1xy=xk00kk!
242 eldifi k0N0k0N
243 242 adantl N0x+1xy=xk0N0k0N
244 243 20 syl N0x+1xy=xk0N0k0
245 eldifsni k0N0k0
246 245 adantl N0x+1xy=xk0N0k0
247 eldifsn k00k0k0
248 244 246 247 sylanbrc N0x+1xy=xk0N0k00
249 dfn2 =00
250 248 249 eleqtrrdi N0x+1xy=xk0N0k
251 250 0expd N0x+1xy=xk0N00k=0
252 251 oveq1d N0x+1xy=xk0N00kk!=0k!
253 244 faccld N0x+1xy=xk0N0k!
254 253 nncnd N0x+1xy=xk0N0k!
255 253 nnne0d N0x+1xy=xk0N0k!0
256 254 255 div0d N0x+1xy=xk0N00k!=0
257 252 256 eqtrd N0x+1xy=xk0N00kk!=0
258 fzfid N0x+1xy=x0NFin
259 227 241 257 258 fsumss N0x+1xy=xk00kk!=k=0N0kk!
260 221 259 eqtr4d N0x+1xy=xk=0Nlogxykk!=k00kk!
261 0cn 0
262 238 sumsn 01k00kk!=1
263 261 240 262 mp2an k00kk!=1
264 260 263 eqtrdi N0x+1xy=xk=0Nlogxykk!=1
265 207 264 oveq12d N0x+1xy=xyk=0Nlogxykk!=x1
266 191 mulridd N0x+1xx1=x
267 266 adantr N0x+1xy=xx1=x
268 265 267 eqtrd N0x+1xy=xyk=0Nlogxykk!=x
269 268 oveq2d N0x+1xy=xN!yk=0Nlogxykk!=N!x
270 210 269 oveq12d N0x+1xy=xn=1ylogxnNN!yk=0Nlogxykk!=n=1xlogxnNN!x
271 ovexd N0x+1xn=1xlogxnNN!xV
272 206 270 94 271 fvmptd N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!x=n=1xlogxnNN!x
273 simpr N0x+1xy=1y=1
274 273 fveq2d N0x+1xy=1y=1
275 flid 11=1
276 81 275 ax-mp 1=1
277 274 276 eqtrdi N0x+1xy=1y=1
278 277 oveq2d N0x+1xy=11y=11
279 278 sumeq1d N0x+1xy=1n=1ylogxnN=n=11logxnN
280 191 div1d N0x+1xx1=x
281 280 adantr N0x+1xy=1x1=x
282 281 fveq2d N0x+1xy=1logx1=logx
283 282 oveq1d N0x+1xy=1logx1N=logxN
284 195 adantr N0x+1xy=1logxN
285 283 284 eqeltrd N0x+1xy=1logx1N
286 oveq2 n=1xn=x1
287 286 fveq2d n=1logxn=logx1
288 287 oveq1d n=1logxnN=logx1N
289 288 fsum1 1logx1Nn=11logxnN=logx1N
290 81 285 289 sylancr N0x+1xy=1n=11logxnN=logx1N
291 279 290 283 3eqtrd N0x+1xy=1n=1ylogxnN=logxN
292 273 oveq2d N0x+1xy=1xy=x1
293 292 281 eqtrd N0x+1xy=1xy=x
294 293 fveq2d N0x+1xy=1logxy=logx
295 294 adantr N0x+1xy=1k0Nlogxy=logx
296 295 oveq1d N0x+1xy=1k0Nlogxyk=logxk
297 296 oveq1d N0x+1xy=1k0Nlogxykk!=logxkk!
298 297 sumeq2dv N0x+1xy=1k=0Nlogxykk!=k=0Nlogxkk!
299 273 298 oveq12d N0x+1xy=1yk=0Nlogxykk!=1k=0Nlogxkk!
300 202 adantr N0x+1xy=1k=0Nlogxkk!
301 300 mullidd N0x+1xy=11k=0Nlogxkk!=k=0Nlogxkk!
302 299 301 eqtrd N0x+1xy=1yk=0Nlogxykk!=k=0Nlogxkk!
303 302 oveq2d N0x+1xy=1N!yk=0Nlogxykk!=N!k=0Nlogxkk!
304 291 303 oveq12d N0x+1xy=1n=1ylogxnNN!yk=0Nlogxykk!=logxNN!k=0Nlogxkk!
305 ovexd N0x+1xlogxNN!k=0Nlogxkk!V
306 206 304 178 305 fvmptd N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!1=logxNN!k=0Nlogxkk!
307 272 306 oveq12d N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!xy+n=1ylogxnNN!yk=0Nlogxykk!1=n=1xlogxnN-N!x-logxNN!k=0Nlogxkk!
308 70 72 191 subdird N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!x=n=1xlogxnNlogxNN!k=0Nlogxkk!xxN!x
309 64 adantrr N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!
310 212 simprd N0x+1xx0
311 309 191 310 divcan1d N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xx=n=1xlogxnNlogxNN!k=0Nlogxkk!
312 311 oveq1d N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xxN!x=n=1xlogxnN-logxNN!k=0Nlogxkk!-N!x
313 308 312 eqtrd N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!x=n=1xlogxnN-logxNN!k=0Nlogxkk!-N!x
314 205 307 313 3eqtr4d N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!xy+n=1ylogxnNN!yk=0Nlogxykk!1=n=1xlogxnNlogxNN!k=0Nlogxkk!xN!x
315 314 fveq2d N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!xy+n=1ylogxnNN!yk=0Nlogxykk!1=n=1xlogxnNlogxNN!k=0Nlogxkk!xN!x
316 73 191 absmuld N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!x=n=1xlogxnNlogxNN!k=0Nlogxkk!xN!x
317 rprege0 x+x0x
318 317 ad2antrl N0x+1xx0x
319 absid x0xx=x
320 318 319 syl N0x+1xx=x
321 320 oveq2d N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!x=n=1xlogxnNlogxNN!k=0Nlogxkk!xN!x
322 315 316 321 3eqtrd N0x+1xy+n=1ylogxnNN!yk=0Nlogxykk!xy+n=1ylogxnNN!yk=0Nlogxykk!1=n=1xlogxnNlogxNN!k=0Nlogxkk!xN!x
323 1cnd N0x+1x1
324 294 oveq1d N0x+1xy=1logxyN=logxN
325 323 324 csbied N0x+1x1/ylogxyN=logxN
326 183 322 325 3brtr3d N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!xlogxN
327 14 adantrr N0x+1xlogxN
328 74 327 94 lemuldivd N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!xlogxNn=1xlogxnNlogxNN!k=0Nlogxkk!xN!logxNx
329 326 328 mpbid N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!logxNx
330 75 leabsd N0x+1xlogxNxlogxNx
331 74 75 77 329 330 letrd N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!logxNx
332 57 adantrr N0x+1xlogxNx
333 332 subid1d N0x+1xlogxNx0=logxNx
334 333 fveq2d N0x+1xlogxNx0=logxNx
335 331 334 breqtrrd N0x+1xn=1xlogxnNlogxNN!k=0Nlogxkk!xN!logxNx0
336 33 34 54 57 69 335 rlimsqzlem N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!xN!
337 divsubdir logxNN!k=0Nlogxkk!xx0logxNN!k=0Nlogxkk!x=logxNxN!k=0Nlogxkk!x
338 59 62 66 337 syl3anc N0x+logxNN!k=0Nlogxkk!x=logxNxN!k=0Nlogxkk!x
339 338 mpteq2dva N0x+logxNN!k=0Nlogxkk!x=x+logxNxN!k=0Nlogxkk!x
340 rerpdivcl N!k=0Nlogxkk!x+N!k=0Nlogxkk!x
341 27 340 sylancom N0x+N!k=0Nlogxkk!x
342 divass N!k=0Nlogxkk!xx0N!k=0Nlogxkk!x=N!k=0Nlogxkk!x
343 60 61 66 342 syl3anc N0x+N!k=0Nlogxkk!x=N!k=0Nlogxkk!x
344 25 recnd N0x+k0Nlogxkk!
345 18 67 344 68 fsumdivc N0x+k=0Nlogxkk!x=k=0Nlogxkk!x
346 22 recnd N0x+k0Nlogxk
347 24 nnrpd N0x+k0Nk!+
348 347 rpcnne0d N0x+k0Nk!k!0
349 66 adantr N0x+k0Nxx0
350 divdiv32 logxkk!k!0xx0logxkk!x=logxkxk!
351 346 348 349 350 syl3anc N0x+k0Nlogxkk!x=logxkxk!
352 351 sumeq2dv N0x+k=0Nlogxkk!x=k=0Nlogxkxk!
353 345 352 eqtrd N0x+k=0Nlogxkk!x=k=0Nlogxkxk!
354 353 oveq2d N0x+N!k=0Nlogxkk!x=N!k=0Nlogxkxk!
355 343 354 eqtrd N0x+N!k=0Nlogxkk!x=N!k=0Nlogxkxk!
356 355 mpteq2dva N0x+N!k=0Nlogxkk!x=x+N!k=0Nlogxkxk!
357 2 adantr N0x+k0Nx+
358 22 357 rerpdivcld N0x+k0Nlogxkx
359 358 24 nndivred N0x+k0Nlogxkxk!
360 18 359 fsumrecl N0x+k=0Nlogxkxk!
361 rpssre +
362 rlimconst +N!x+N!N!
363 361 34 362 sylancr N0x+N!N!
364 361 a1i N0+
365 fzfid N00NFin
366 359 anasss N0x+k0Nlogxkxk!
367 358 an32s N0k0Nx+logxkx
368 20 adantl N0k0Nk0
369 368 faccld N0k0Nk!
370 369 nnred N0k0Nk!
371 370 adantr N0k0Nx+k!
372 368 53 syl N0k0Nx+logxkx0
373 369 nncnd N0k0Nk!
374 rlimconst +k!x+k!k!
375 361 373 374 sylancr N0k0Nx+k!k!
376 369 nnne0d N0k0Nk!0
377 376 adantr N0k0Nx+k!0
378 367 371 372 375 376 377 rlimdiv N0k0Nx+logxkxk!0k!
379 373 376 div0d N0k0N0k!=0
380 378 379 breqtrd N0k0Nx+logxkxk!0
381 364 365 366 380 fsumrlim N0x+k=0Nlogxkxk!k=0N0
382 fzfi 0NFin
383 382 olci 0N00NFin
384 sumz 0N00NFink=0N0=0
385 383 384 ax-mp k=0N0=0
386 381 385 breqtrdi N0x+k=0Nlogxkxk!0
387 17 360 363 386 rlimmul N0x+N!k=0Nlogxkxk!N!0
388 34 mul01d N0N!0=0
389 387 388 breqtrd N0x+N!k=0Nlogxkxk!0
390 356 389 eqbrtrd N0x+N!k=0Nlogxkk!x0
391 56 341 54 390 rlimsub N0x+logxNxN!k=0Nlogxkk!x00
392 0m0e0 00=0
393 391 392 breqtrdi N0x+logxNxN!k=0Nlogxkk!x0
394 339 393 eqbrtrd N0x+logxNN!k=0Nlogxkk!x0
395 30 32 336 394 rlimadd N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!xN!+0
396 divsubdir n=1xlogxnNlogxNN!k=0Nlogxkk!xx0n=1xlogxnNlogxNN!k=0Nlogxkk!x=n=1xlogxnNxlogxNN!k=0Nlogxkk!x
397 58 63 66 396 syl3anc N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x=n=1xlogxnNxlogxNN!k=0Nlogxkk!x
398 397 oveq1d N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x=n=1xlogxnNx-logxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x
399 10 2 rerpdivcld N0x+n=1xlogxnNx
400 399 recnd N0x+n=1xlogxnNx
401 32 recnd N0x+logxNN!k=0Nlogxkk!x
402 400 401 npcand N0x+n=1xlogxnNx-logxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x=n=1xlogxnNx
403 398 402 eqtrd N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x=n=1xlogxnNx
404 403 mpteq2dva N0x+n=1xlogxnNlogxNN!k=0Nlogxkk!x+logxNN!k=0Nlogxkk!x=x+n=1xlogxnNx
405 34 addridd N0N!+0=N!
406 395 404 405 3brtr3d N0x+n=1xlogxnNxN!