Metamath Proof Explorer


Theorem pibt2

Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 and pibp21 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021)

Ref Expression
Hypotheses pibt2.x X=J
pibt2.19 C=xTop|y𝒫xx=yyωz𝒫yFinx=z
pibt2.21 W=xTop|y𝒫xFinzxzlimPtxy
Assertion pibt2 JCJW

Proof

Step Hyp Ref Expression
1 pibt2.x X=J
2 pibt2.19 C=xTop|y𝒫xx=yyωz𝒫yFinx=z
3 pibt2.21 W=xTop|y𝒫xFinzxzlimPtxy
4 1 2 pibp19 JCJTopy𝒫JX=yyωz𝒫yFinX=z
5 4 simplbi JCJTop
6 eldif b𝒫XFinb𝒫X¬bFin
7 velpw b𝒫XbX
8 7 anbi1i b𝒫X¬bFinbX¬bFin
9 vex bV
10 infinf bV¬bFinωb
11 9 10 ax-mp ¬bFinωb
12 9 infcntss ωbaabaω
13 11 12 sylbi ¬bFinaabaω
14 13 ad2antll JCbX¬bFinaabaω
15 sstr abbXaX
16 15 ancoms bXabaX
17 simplr JCaωaXlimPtJa=aω
18 simpll JCaωaXlimPtJa=JCaω
19 0ss a
20 sseq1 limPtJa=limPtJaaa
21 19 20 mpbiri limPtJa=limPtJaa
22 21 adantl JTopaXlimPtJa=limPtJaa
23 1 cldlp JTopaXaClsdJlimPtJaa
24 23 adantr JTopaXlimPtJa=aClsdJlimPtJaa
25 22 24 mpbird JTopaXlimPtJa=aClsdJ
26 5 25 sylanl1 JCaXlimPtJa=aClsdJ
27 26 adantllr JCaωaXlimPtJa=aClsdJ
28 simpr JCaωaXlimPtJa=limPtJa=
29 1 cldss aClsdJaX
30 1 nlpineqsn JTopaXlimPtJa=panJpnna=p
31 simpr pnna=pna=p
32 31 reximi nJpnna=pnJna=p
33 32 ralimi panJpnna=ppanJna=p
34 vex aV
35 ineq1 n=fpna=fpa
36 35 eqeq1d n=fpna=pfpa=p
37 34 36 ac6s panJna=pff:aJpafpa=p
38 30 33 37 3syl JTopaXlimPtJa=ff:aJpafpa=p
39 fvineqsnf1 f:aJpafpa=pf:a1-1J
40 simpr f:aJpafpa=ppafpa=p
41 39 40 jca f:aJpafpa=pf:a1-1Jpafpa=p
42 41 eximi ff:aJpafpa=pff:a1-1Jpafpa=p
43 38 42 syl JTopaXlimPtJa=ff:a1-1Jpafpa=p
44 29 43 syl3an2 JTopaClsdJlimPtJa=ff:a1-1Jpafpa=p
45 5 44 syl3an1 JCaClsdJlimPtJa=ff:a1-1Jpafpa=p
46 45 3adant1r JCaωaClsdJlimPtJa=ff:a1-1Jpafpa=p
47 simpr JTopaClsdJf:a1-1Jf:a1-1J
48 vsnid pp
49 eleq2 fpa=ppfpapp
50 48 49 mpbiri fpa=ppfpa
51 50 elin1d fpa=ppfp
52 51 ralimi pafpa=ppapfp
53 ralssiun papfpapafp
54 52 53 syl pafpa=papafp
55 54 adantl f:a1-1Jpafpa=papafp
56 f1fn f:a1-1JfFna
57 fniunfv fFnapafp=ranf
58 56 57 syl f:a1-1Jpafp=ranf
59 58 adantr f:a1-1Jpafpa=ppafp=ranf
60 55 59 sseqtrd f:a1-1Jpafpa=paranf
61 1 cldopn aClsdJXaJ
62 61 ad2antll f:a1-1JJTopaClsdJXaJ
63 62 anim1i f:a1-1JJTopaClsdJaranfXaJaranf
64 63 ancomd f:a1-1JJTopaClsdJaranfaranfXaJ
65 29 ad2antll f:a1-1JJTopaClsdJaX
66 65 anim1i f:a1-1JJTopaClsdJaranfXaJaXaranfXaJ
67 unisng XaJXa=Xa
68 67 eqcomd XaJXa=Xa
69 eqimss Xa=XaXaXa
70 ssun4 XaXaXaranfXa
71 uniun ranfXa=ranfXa
72 70 71 sseqtrrdi XaXaXaranfXa
73 68 69 72 3syl XaJXaranfXa
74 ssun3 aranfaranfXa
75 74 71 sseqtrrdi aranfaranfXa
76 uncom aXa=Xaa
77 undif1 Xaa=Xa
78 76 77 eqtri aXa=Xa
79 ssequn2 aXXa=X
80 79 biimpi aXXa=X
81 78 80 eqtrid aXaXa=X
82 81 adantr aXaranfXaXaranfXaaXa=X
83 unss12 aranfXaXaranfXaaXaranfXaranfXa
84 unidm ranfXaranfXa=ranfXa
85 83 84 sseqtrdi aranfXaXaranfXaaXaranfXa
86 85 adantl aXaranfXaXaranfXaaXaranfXa
87 82 86 eqsstrrd aXaranfXaXaranfXaXranfXa
88 75 87 sylanr1 aXaranfXaranfXaXranfXa
89 73 88 sylanr2 aXaranfXaJXranfXa
90 89 adantl f:a1-1JJTopaClsdJaXaranfXaJXranfXa
91 f1f f:a1-1Jf:aJ
92 frn f:aJranfJ
93 91 92 syl f:a1-1JranfJ
94 1 topopn JTopXJ
95 1 difopn XJaClsdJXaJ
96 94 95 sylan JTopaClsdJXaJ
97 96 snssd JTopaClsdJXaJ
98 unss12 ranfJXaJranfXaJJ
99 unidm JJ=J
100 98 99 sseqtrdi ranfJXaJranfXaJ
101 93 97 100 syl2an f:a1-1JJTopaClsdJranfXaJ
102 uniss ranfXaJranfXaJ
103 102 1 sseqtrrdi ranfXaJranfXaX
104 101 103 syl f:a1-1JJTopaClsdJranfXaX
105 104 adantr f:a1-1JJTopaClsdJaXaranfXaJranfXaX
106 90 105 eqssd f:a1-1JJTopaClsdJaXaranfXaJX=ranfXa
107 66 106 syldan f:a1-1JJTopaClsdJaranfXaJX=ranfXa
108 64 107 syldan f:a1-1JJTopaClsdJaranfX=ranfXa
109 60 108 sylan2 f:a1-1JJTopaClsdJf:a1-1Jpafpa=pX=ranfXa
110 109 ancom1s JTopaClsdJf:a1-1Jf:a1-1Jpafpa=pX=ranfXa
111 110 ex JTopaClsdJf:a1-1Jf:a1-1Jpafpa=pX=ranfXa
112 47 111 mpand JTopaClsdJf:a1-1Jpafpa=pX=ranfXa
113 112 impr JTopaClsdJf:a1-1Jpafpa=pX=ranfXa
114 113 adantlrr JTopaClsdJaωf:a1-1Jpafpa=pX=ranfXa
115 5 114 sylanl1 JCaClsdJaωf:a1-1Jpafpa=pX=ranfXa
116 vex fV
117 f1f1orn f:a1-1Jf:a1-1 ontoranf
118 f1oen3g fVf:a1-1 ontoranfaranf
119 116 117 118 sylancr f:a1-1Jaranf
120 enen1 aranfaωranfω
121 endom ranfωranfω
122 snfi XaFin
123 isfinite XaFinXaω
124 122 123 mpbi Xaω
125 sdomdom XaωXaω
126 124 125 ax-mp Xaω
127 unctb ranfωXaωranfXaω
128 121 126 127 sylancl ranfωranfXaω
129 120 128 syl6bi aranfaωranfXaω
130 119 129 syl f:a1-1JaωranfXaω
131 130 impcom aωf:a1-1JranfXaω
132 131 adantll aClsdJaωf:a1-1JranfXaω
133 132 ad2ant2lr JCaClsdJaωf:a1-1Jpafpa=pranfXaω
134 101 ancoms JTopaClsdJf:a1-1JranfXaJ
135 134 adantrr JTopaClsdJf:a1-1Jpafpa=pranfXaJ
136 135 adantlrr JTopaClsdJaωf:a1-1Jpafpa=pranfXaJ
137 5 136 sylanl1 JCaClsdJaωf:a1-1Jpafpa=pranfXaJ
138 elpw2g JCranfXa𝒫JranfXaJ
139 138 biimprd JCranfXaJranfXa𝒫J
140 139 ad2antrr JCaClsdJaωf:a1-1Jpafpa=pranfXaJranfXa𝒫J
141 137 140 mpd JCaClsdJaωf:a1-1Jpafpa=pranfXa𝒫J
142 4 simprbi JCy𝒫JX=yyωz𝒫yFinX=z
143 unieq s=zs=z
144 143 eqeq2d s=zX=sX=z
145 144 cbvrexvw s𝒫yFinX=sz𝒫yFinX=z
146 145 imbi2i X=yyωs𝒫yFinX=sX=yyωz𝒫yFinX=z
147 146 ralbii y𝒫JX=yyωs𝒫yFinX=sy𝒫JX=yyωz𝒫yFinX=z
148 142 147 sylibr JCy𝒫JX=yyωs𝒫yFinX=s
149 unieq y=ranfXay=ranfXa
150 149 eqeq2d y=ranfXaX=yX=ranfXa
151 breq1 y=ranfXayωranfXaω
152 150 151 anbi12d y=ranfXaX=yyωX=ranfXaranfXaω
153 pweq y=ranfXa𝒫y=𝒫ranfXa
154 153 ineq1d y=ranfXa𝒫yFin=𝒫ranfXaFin
155 154 rexeqdv y=ranfXas𝒫yFinX=ss𝒫ranfXaFinX=s
156 152 155 imbi12d y=ranfXaX=yyωs𝒫yFinX=sX=ranfXaranfXaωs𝒫ranfXaFinX=s
157 156 rspccv y𝒫JX=yyωs𝒫yFinX=sranfXa𝒫JX=ranfXaranfXaωs𝒫ranfXaFinX=s
158 148 157 syl JCranfXa𝒫JX=ranfXaranfXaωs𝒫ranfXaFinX=s
159 158 ad2antrr JCaClsdJaωf:a1-1Jpafpa=pranfXa𝒫JX=ranfXaranfXaωs𝒫ranfXaFinX=s
160 141 159 mpd JCaClsdJaωf:a1-1Jpafpa=pX=ranfXaranfXaωs𝒫ranfXaFinX=s
161 115 133 160 mp2and JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=s
162 df-rex s𝒫ranfXaFinX=sss𝒫ranfXaFinX=s
163 elinel1 s𝒫ranfXaFins𝒫ranfXa
164 velpw s𝒫ranfXasranfXa
165 ssdif sranfXasXaranfXaXa
166 difun2 ranfXaXa=ranfXa
167 165 166 sseqtrdi sranfXasXaranfXa
168 167 difss2d sranfXasXaranf
169 164 168 sylbi s𝒫ranfXasXaranf
170 163 169 syl s𝒫ranfXaFinsXaranf
171 170 a1i JTopaXs𝒫ranfXaFinsXaranf
172 sseq2 X=saXas
173 uniexg JTopJV
174 1 173 eqeltrid JTopXV
175 difexg XVXaV
176 unisng XaVXa=Xa
177 174 175 176 3syl JTopXa=Xa
178 177 ineq2d JTopaXa=aXa
179 disjdif aXa=
180 178 179 eqtrdi JTopaXa=
181 inunissunidif aXa=asasXa
182 180 181 syl JTopasasXa
183 172 182 sylan9bbr JTopX=saXasXa
184 183 biimpd JTopX=saXasXa
185 184 impancom JTopaXX=sasXa
186 171 185 anim12d JTopaXs𝒫ranfXaFinX=ssXaranfasXa
187 5 29 186 syl2an JCaClsdJs𝒫ranfXaFinX=ssXaranfasXa
188 187 adantrr JCaClsdJaωs𝒫ranfXaFinX=ssXaranfasXa
189 188 anim2d JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=sf:a1-1Jpafpa=psXaranfasXa
190 119 ad2antrr f:a1-1Jpafpa=psXaranfasXaaranf
191 fvineqsneq fFnapafpa=psXaranfasXasXa=ranf
192 56 191 sylanl1 f:a1-1Jpafpa=psXaranfasXasXa=ranf
193 vex sV
194 difss sXas
195 ssdomg sVsXassXas
196 193 194 195 mp2 sXas
197 192 196 eqbrtrrdi f:a1-1Jpafpa=psXaranfasXaranfs
198 endomtr aranfranfsas
199 190 197 198 syl2anc f:a1-1Jpafpa=psXaranfasXaas
200 189 199 syl6 JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=sas
201 200 expdimp JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=sas
202 elinel2 s𝒫ranfXaFinsFin
203 202 adantr s𝒫ranfXaFinX=ssFin
204 203 a1i JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=ssFin
205 201 204 jcad JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=sassFin
206 205 eximdv JCaClsdJaωf:a1-1Jpafpa=pss𝒫ranfXaFinX=ssassFin
207 162 206 biimtrid JCaClsdJaωf:a1-1Jpafpa=ps𝒫ranfXaFinX=ssassFin
208 161 207 mpd JCaClsdJaωf:a1-1Jpafpa=psassFin
209 208 ex JCaClsdJaωf:a1-1Jpafpa=psassFin
210 209 exlimdv JCaClsdJaωff:a1-1Jpafpa=psassFin
211 210 anass1rs JCaωaClsdJff:a1-1Jpafpa=psassFin
212 211 3adant3 JCaωaClsdJlimPtJa=ff:a1-1Jpafpa=psassFin
213 46 212 mpd JCaωaClsdJlimPtJa=sassFin
214 18 27 28 213 syl3anc JCaωaXlimPtJa=sassFin
215 214 anasss JCaωaXlimPtJa=sassFin
216 isfinite sFinsω
217 domsdomtr assωaω
218 216 217 sylan2b assFinaω
219 218 exlimiv sassFinaω
220 sdomnen aω¬aω
221 215 219 220 3syl JCaωaXlimPtJa=¬aω
222 17 221 pm2.65da JCaω¬aXlimPtJa=
223 imnan aX¬limPtJa=¬aXlimPtJa=
224 222 223 sylibr JCaωaX¬limPtJa=
225 224 imp JCaωaX¬limPtJa=
226 neq0 ¬limPtJa=sslimPtJa
227 225 226 sylib JCaωaXsslimPtJa
228 1 lpss JTopaXlimPtJaX
229 5 228 sylan JCaXlimPtJaX
230 229 adantlr JCaωaXlimPtJaX
231 230 sseld JCaωaXslimPtJasX
232 231 ancrd JCaωaXslimPtJasXslimPtJa
233 232 eximdv JCaωaXsslimPtJassXslimPtJa
234 df-rex sXslimPtJassXslimPtJa
235 233 234 syl6ibr JCaωaXsslimPtJasXslimPtJa
236 227 235 mpd JCaωaXsXslimPtJa
237 16 236 sylan2 JCaωbXabsXslimPtJa
238 1 lpss3 JTopbXablimPtJalimPtJb
239 238 3expb JTopbXablimPtJalimPtJb
240 5 239 sylan JCbXablimPtJalimPtJb
241 240 adantlr JCaωbXablimPtJalimPtJb
242 241 sseld JCaωbXabslimPtJaslimPtJb
243 242 reximdv JCaωbXabsXslimPtJasXslimPtJb
244 237 243 mpd JCaωbXabsXslimPtJb
245 244 an42s JCbXabaωsXslimPtJb
246 245 ex JCbXabaωsXslimPtJb
247 246 exlimdv JCbXaabaωsXslimPtJb
248 247 adantrr JCbX¬bFinaabaωsXslimPtJb
249 14 248 mpd JCbX¬bFinsXslimPtJb
250 8 249 sylan2b JCb𝒫X¬bFinsXslimPtJb
251 6 250 sylan2b JCb𝒫XFinsXslimPtJb
252 251 ralrimiva JCb𝒫XFinsXslimPtJb
253 simpr y=bz=sz=s
254 fveq2 y=blimPtJy=limPtJb
255 254 adantr y=bz=slimPtJy=limPtJb
256 253 255 eleq12d y=bz=szlimPtJyslimPtJb
257 256 cbvrexdva y=bzXzlimPtJysXslimPtJb
258 257 cbvralvw y𝒫XFinzXzlimPtJyb𝒫XFinsXslimPtJb
259 252 258 sylibr JCy𝒫XFinzXzlimPtJy
260 1 3 pibp21 JWJTopy𝒫XFinzXzlimPtJy
261 5 259 260 sylanbrc JCJW