Metamath Proof Explorer


Theorem pibt2

Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 and pibp21 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021)

Ref Expression
Hypotheses pibt2.x X = J
pibt2.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
pibt2.21 W = x Top | y 𝒫 x Fin z x z limPt x y
Assertion pibt2 J C J W

Proof

Step Hyp Ref Expression
1 pibt2.x X = J
2 pibt2.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
3 pibt2.21 W = x Top | y 𝒫 x Fin z x z limPt x y
4 1 2 pibp19 J C J Top y 𝒫 J X = y y ω z 𝒫 y Fin X = z
5 4 simplbi J C J Top
6 eldif b 𝒫 X Fin b 𝒫 X ¬ b Fin
7 velpw b 𝒫 X b X
8 7 anbi1i b 𝒫 X ¬ b Fin b X ¬ b Fin
9 vex b V
10 infinf b V ¬ b Fin ω b
11 9 10 ax-mp ¬ b Fin ω b
12 9 infcntss ω b a a b a ω
13 11 12 sylbi ¬ b Fin a a b a ω
14 13 ad2antll J C b X ¬ b Fin a a b a ω
15 sstr a b b X a X
16 15 ancoms b X a b a X
17 simplr J C a ω a X limPt J a = a ω
18 simpll J C a ω a X limPt J a = J C a ω
19 0ss a
20 sseq1 limPt J a = limPt J a a a
21 19 20 mpbiri limPt J a = limPt J a a
22 21 adantl J Top a X limPt J a = limPt J a a
23 1 cldlp J Top a X a Clsd J limPt J a a
24 23 adantr J Top a X limPt J a = a Clsd J limPt J a a
25 22 24 mpbird J Top a X limPt J a = a Clsd J
26 5 25 sylanl1 J C a X limPt J a = a Clsd J
27 26 adantllr J C a ω a X limPt J a = a Clsd J
28 simpr J C a ω a X limPt J a = limPt J a =
29 1 cldss a Clsd J a X
30 1 nlpineqsn J Top a X limPt J a = p a n J p n n a = p
31 simpr p n n a = p n a = p
32 31 reximi n J p n n a = p n J n a = p
33 32 ralimi p a n J p n n a = p p a n J n a = p
34 vex a V
35 ineq1 n = f p n a = f p a
36 35 eqeq1d n = f p n a = p f p a = p
37 34 36 ac6s p a n J n a = p f f : a J p a f p a = p
38 fvineqsnf1 f : a J p a f p a = p f : a 1-1 J
39 simpr f : a J p a f p a = p p a f p a = p
40 38 39 jca f : a J p a f p a = p f : a 1-1 J p a f p a = p
41 40 eximi f f : a J p a f p a = p f f : a 1-1 J p a f p a = p
42 30 33 37 41 4syl J Top a X limPt J a = f f : a 1-1 J p a f p a = p
43 29 42 syl3an2 J Top a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
44 5 43 syl3an1 J C a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
45 44 3adant1r J C a ω a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
46 simpr J Top a Clsd J f : a 1-1 J f : a 1-1 J
47 vsnid p p
48 eleq2 f p a = p p f p a p p
49 47 48 mpbiri f p a = p p f p a
50 49 elin1d f p a = p p f p
51 50 ralimi p a f p a = p p a p f p
52 ralssiun p a p f p a p a f p
53 51 52 syl p a f p a = p a p a f p
54 53 adantl f : a 1-1 J p a f p a = p a p a f p
55 f1fn f : a 1-1 J f Fn a
56 fniunfv f Fn a p a f p = ran f
57 55 56 syl f : a 1-1 J p a f p = ran f
58 57 adantr f : a 1-1 J p a f p a = p p a f p = ran f
59 54 58 sseqtrd f : a 1-1 J p a f p a = p a ran f
60 1 cldopn a Clsd J X a J
61 60 ad2antll f : a 1-1 J J Top a Clsd J X a J
62 61 anim1i f : a 1-1 J J Top a Clsd J a ran f X a J a ran f
63 62 ancomd f : a 1-1 J J Top a Clsd J a ran f a ran f X a J
64 29 ad2antll f : a 1-1 J J Top a Clsd J a X
65 64 anim1i f : a 1-1 J J Top a Clsd J a ran f X a J a X a ran f X a J
66 unisng X a J X a = X a
67 66 eqcomd X a J X a = X a
68 eqimss X a = X a X a X a
69 ssun4 X a X a X a ran f X a
70 uniun ran f X a = ran f X a
71 69 70 sseqtrrdi X a X a X a ran f X a
72 67 68 71 3syl X a J X a ran f X a
73 ssun3 a ran f a ran f X a
74 73 70 sseqtrrdi a ran f a ran f X a
75 uncom a X a = X a a
76 undif1 X a a = X a
77 75 76 eqtri a X a = X a
78 ssequn2 a X X a = X
79 78 biimpi a X X a = X
80 77 79 eqtrid a X a X a = X
81 80 adantr a X a ran f X a X a ran f X a a X a = X
82 unss12 a ran f X a X a ran f X a a X a ran f X a ran f X a
83 unidm ran f X a ran f X a = ran f X a
84 82 83 sseqtrdi a ran f X a X a ran f X a a X a ran f X a
85 84 adantl a X a ran f X a X a ran f X a a X a ran f X a
86 81 85 eqsstrrd a X a ran f X a X a ran f X a X ran f X a
87 74 86 sylanr1 a X a ran f X a ran f X a X ran f X a
88 72 87 sylanr2 a X a ran f X a J X ran f X a
89 88 adantl f : a 1-1 J J Top a Clsd J a X a ran f X a J X ran f X a
90 f1f f : a 1-1 J f : a J
91 frn f : a J ran f J
92 90 91 syl f : a 1-1 J ran f J
93 1 topopn J Top X J
94 1 difopn X J a Clsd J X a J
95 93 94 sylan J Top a Clsd J X a J
96 95 snssd J Top a Clsd J X a J
97 unss12 ran f J X a J ran f X a J J
98 unidm J J = J
99 97 98 sseqtrdi ran f J X a J ran f X a J
100 92 96 99 syl2an f : a 1-1 J J Top a Clsd J ran f X a J
101 uniss ran f X a J ran f X a J
102 101 1 sseqtrrdi ran f X a J ran f X a X
103 100 102 syl f : a 1-1 J J Top a Clsd J ran f X a X
104 103 adantr f : a 1-1 J J Top a Clsd J a X a ran f X a J ran f X a X
105 89 104 eqssd f : a 1-1 J J Top a Clsd J a X a ran f X a J X = ran f X a
106 65 105 syldan f : a 1-1 J J Top a Clsd J a ran f X a J X = ran f X a
107 63 106 syldan f : a 1-1 J J Top a Clsd J a ran f X = ran f X a
108 59 107 sylan2 f : a 1-1 J J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
109 108 ancom1s J Top a Clsd J f : a 1-1 J f : a 1-1 J p a f p a = p X = ran f X a
110 109 ex J Top a Clsd J f : a 1-1 J f : a 1-1 J p a f p a = p X = ran f X a
111 46 110 mpand J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
112 111 impr J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
113 112 adantlrr J Top a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a
114 5 113 sylanl1 J C a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a
115 vex f V
116 f1f1orn f : a 1-1 J f : a 1-1 onto ran f
117 f1oen3g f V f : a 1-1 onto ran f a ran f
118 115 116 117 sylancr f : a 1-1 J a ran f
119 enen1 a ran f a ω ran f ω
120 endom ran f ω ran f ω
121 snfi X a Fin
122 isfinite X a Fin X a ω
123 121 122 mpbi X a ω
124 sdomdom X a ω X a ω
125 123 124 ax-mp X a ω
126 unctb ran f ω X a ω ran f X a ω
127 120 125 126 sylancl ran f ω ran f X a ω
128 119 127 biimtrdi a ran f a ω ran f X a ω
129 118 128 syl f : a 1-1 J a ω ran f X a ω
130 129 impcom a ω f : a 1-1 J ran f X a ω
131 130 adantll a Clsd J a ω f : a 1-1 J ran f X a ω
132 131 ad2ant2lr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a ω
133 100 ancoms J Top a Clsd J f : a 1-1 J ran f X a J
134 133 adantrr J Top a Clsd J f : a 1-1 J p a f p a = p ran f X a J
135 134 adantlrr J Top a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J
136 5 135 sylanl1 J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J
137 elpw2g J C ran f X a 𝒫 J ran f X a J
138 137 biimprd J C ran f X a J ran f X a 𝒫 J
139 138 ad2antrr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J ran f X a 𝒫 J
140 136 139 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a 𝒫 J
141 4 simprbi J C y 𝒫 J X = y y ω z 𝒫 y Fin X = z
142 unieq s = z s = z
143 142 eqeq2d s = z X = s X = z
144 143 cbvrexvw s 𝒫 y Fin X = s z 𝒫 y Fin X = z
145 144 imbi2i X = y y ω s 𝒫 y Fin X = s X = y y ω z 𝒫 y Fin X = z
146 145 ralbii y 𝒫 J X = y y ω s 𝒫 y Fin X = s y 𝒫 J X = y y ω z 𝒫 y Fin X = z
147 141 146 sylibr J C y 𝒫 J X = y y ω s 𝒫 y Fin X = s
148 unieq y = ran f X a y = ran f X a
149 148 eqeq2d y = ran f X a X = y X = ran f X a
150 breq1 y = ran f X a y ω ran f X a ω
151 149 150 anbi12d y = ran f X a X = y y ω X = ran f X a ran f X a ω
152 pweq y = ran f X a 𝒫 y = 𝒫 ran f X a
153 152 ineq1d y = ran f X a 𝒫 y Fin = 𝒫 ran f X a Fin
154 153 rexeqdv y = ran f X a s 𝒫 y Fin X = s s 𝒫 ran f X a Fin X = s
155 151 154 imbi12d y = ran f X a X = y y ω s 𝒫 y Fin X = s X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
156 155 rspccv y 𝒫 J X = y y ω s 𝒫 y Fin X = s ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
157 147 156 syl J C ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
158 157 ad2antrr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
159 140 158 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
160 114 132 159 mp2and J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s
161 df-rex s 𝒫 ran f X a Fin X = s s s 𝒫 ran f X a Fin X = s
162 elinel1 s 𝒫 ran f X a Fin s 𝒫 ran f X a
163 velpw s 𝒫 ran f X a s ran f X a
164 ssdif s ran f X a s X a ran f X a X a
165 difun2 ran f X a X a = ran f X a
166 164 165 sseqtrdi s ran f X a s X a ran f X a
167 166 difss2d s ran f X a s X a ran f
168 163 167 sylbi s 𝒫 ran f X a s X a ran f
169 162 168 syl s 𝒫 ran f X a Fin s X a ran f
170 169 a1i J Top a X s 𝒫 ran f X a Fin s X a ran f
171 sseq2 X = s a X a s
172 uniexg J Top J V
173 1 172 eqeltrid J Top X V
174 difexg X V X a V
175 unisng X a V X a = X a
176 173 174 175 3syl J Top X a = X a
177 176 ineq2d J Top a X a = a X a
178 disjdif a X a =
179 177 178 eqtrdi J Top a X a =
180 inunissunidif a X a = a s a s X a
181 179 180 syl J Top a s a s X a
182 171 181 sylan9bbr J Top X = s a X a s X a
183 182 biimpd J Top X = s a X a s X a
184 183 impancom J Top a X X = s a s X a
185 170 184 anim12d J Top a X s 𝒫 ran f X a Fin X = s s X a ran f a s X a
186 5 29 185 syl2an J C a Clsd J s 𝒫 ran f X a Fin X = s s X a ran f a s X a
187 186 adantrr J C a Clsd J a ω s 𝒫 ran f X a Fin X = s s X a ran f a s X a
188 187 anim2d J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s f : a 1-1 J p a f p a = p s X a ran f a s X a
189 118 ad2antrr f : a 1-1 J p a f p a = p s X a ran f a s X a a ran f
190 fvineqsneq f Fn a p a f p a = p s X a ran f a s X a s X a = ran f
191 55 190 sylanl1 f : a 1-1 J p a f p a = p s X a ran f a s X a s X a = ran f
192 vex s V
193 difss s X a s
194 ssdomg s V s X a s s X a s
195 192 193 194 mp2 s X a s
196 191 195 eqbrtrrdi f : a 1-1 J p a f p a = p s X a ran f a s X a ran f s
197 endomtr a ran f ran f s a s
198 189 196 197 syl2anc f : a 1-1 J p a f p a = p s X a ran f a s X a a s
199 188 198 syl6 J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s
200 199 expdimp J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s
201 elinel2 s 𝒫 ran f X a Fin s Fin
202 201 adantr s 𝒫 ran f X a Fin X = s s Fin
203 202 a1i J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s s Fin
204 200 203 jcad J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s s Fin
205 204 eximdv J C a Clsd J a ω f : a 1-1 J p a f p a = p s s 𝒫 ran f X a Fin X = s s a s s Fin
206 161 205 biimtrid J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s s a s s Fin
207 160 206 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p s a s s Fin
208 207 ex J C a Clsd J a ω f : a 1-1 J p a f p a = p s a s s Fin
209 208 exlimdv J C a Clsd J a ω f f : a 1-1 J p a f p a = p s a s s Fin
210 209 anass1rs J C a ω a Clsd J f f : a 1-1 J p a f p a = p s a s s Fin
211 210 3adant3 J C a ω a Clsd J limPt J a = f f : a 1-1 J p a f p a = p s a s s Fin
212 45 211 mpd J C a ω a Clsd J limPt J a = s a s s Fin
213 18 27 28 212 syl3anc J C a ω a X limPt J a = s a s s Fin
214 213 anasss J C a ω a X limPt J a = s a s s Fin
215 isfinite s Fin s ω
216 domsdomtr a s s ω a ω
217 215 216 sylan2b a s s Fin a ω
218 217 exlimiv s a s s Fin a ω
219 sdomnen a ω ¬ a ω
220 214 218 219 3syl J C a ω a X limPt J a = ¬ a ω
221 17 220 pm2.65da J C a ω ¬ a X limPt J a =
222 imnan a X ¬ limPt J a = ¬ a X limPt J a =
223 221 222 sylibr J C a ω a X ¬ limPt J a =
224 223 imp J C a ω a X ¬ limPt J a =
225 neq0 ¬ limPt J a = s s limPt J a
226 224 225 sylib J C a ω a X s s limPt J a
227 1 lpss J Top a X limPt J a X
228 5 227 sylan J C a X limPt J a X
229 228 adantlr J C a ω a X limPt J a X
230 229 sseld J C a ω a X s limPt J a s X
231 230 ancrd J C a ω a X s limPt J a s X s limPt J a
232 231 eximdv J C a ω a X s s limPt J a s s X s limPt J a
233 df-rex s X s limPt J a s s X s limPt J a
234 232 233 imbitrrdi J C a ω a X s s limPt J a s X s limPt J a
235 226 234 mpd J C a ω a X s X s limPt J a
236 16 235 sylan2 J C a ω b X a b s X s limPt J a
237 1 lpss3 J Top b X a b limPt J a limPt J b
238 237 3expb J Top b X a b limPt J a limPt J b
239 5 238 sylan J C b X a b limPt J a limPt J b
240 239 adantlr J C a ω b X a b limPt J a limPt J b
241 240 sseld J C a ω b X a b s limPt J a s limPt J b
242 241 reximdv J C a ω b X a b s X s limPt J a s X s limPt J b
243 236 242 mpd J C a ω b X a b s X s limPt J b
244 243 an42s J C b X a b a ω s X s limPt J b
245 244 ex J C b X a b a ω s X s limPt J b
246 245 exlimdv J C b X a a b a ω s X s limPt J b
247 246 adantrr J C b X ¬ b Fin a a b a ω s X s limPt J b
248 14 247 mpd J C b X ¬ b Fin s X s limPt J b
249 8 248 sylan2b J C b 𝒫 X ¬ b Fin s X s limPt J b
250 6 249 sylan2b J C b 𝒫 X Fin s X s limPt J b
251 250 ralrimiva J C b 𝒫 X Fin s X s limPt J b
252 simpr y = b z = s z = s
253 fveq2 y = b limPt J y = limPt J b
254 253 adantr y = b z = s limPt J y = limPt J b
255 252 254 eleq12d y = b z = s z limPt J y s limPt J b
256 255 cbvrexdva y = b z X z limPt J y s X s limPt J b
257 256 cbvralvw y 𝒫 X Fin z X z limPt J y b 𝒫 X Fin s X s limPt J b
258 251 257 sylibr J C y 𝒫 X Fin z X z limPt J y
259 1 3 pibp21 J W J Top y 𝒫 X Fin z X z limPt J y
260 5 258 259 sylanbrc J C J W