| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pibt2.x |
|
| 2 |
|
pibt2.19 |
|
| 3 |
|
pibt2.21 |
|
| 4 |
1 2
|
pibp19 |
|
| 5 |
4
|
simplbi |
|
| 6 |
|
eldif |
|
| 7 |
|
velpw |
|
| 8 |
7
|
anbi1i |
|
| 9 |
|
vex |
|
| 10 |
|
infinf |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
9
|
infcntss |
|
| 13 |
11 12
|
sylbi |
|
| 14 |
13
|
ad2antll |
|
| 15 |
|
sstr |
|
| 16 |
15
|
ancoms |
|
| 17 |
|
simplr |
|
| 18 |
|
simpll |
|
| 19 |
|
0ss |
|
| 20 |
|
sseq1 |
|
| 21 |
19 20
|
mpbiri |
|
| 22 |
21
|
adantl |
|
| 23 |
1
|
cldlp |
|
| 24 |
23
|
adantr |
|
| 25 |
22 24
|
mpbird |
|
| 26 |
5 25
|
sylanl1 |
|
| 27 |
26
|
adantllr |
|
| 28 |
|
simpr |
|
| 29 |
1
|
cldss |
|
| 30 |
1
|
nlpineqsn |
|
| 31 |
|
simpr |
|
| 32 |
31
|
reximi |
|
| 33 |
32
|
ralimi |
|
| 34 |
|
vex |
|
| 35 |
|
ineq1 |
|
| 36 |
35
|
eqeq1d |
|
| 37 |
34 36
|
ac6s |
|
| 38 |
|
fvineqsnf1 |
|
| 39 |
|
simpr |
|
| 40 |
38 39
|
jca |
|
| 41 |
40
|
eximi |
|
| 42 |
30 33 37 41
|
4syl |
|
| 43 |
29 42
|
syl3an2 |
|
| 44 |
5 43
|
syl3an1 |
|
| 45 |
44
|
3adant1r |
|
| 46 |
|
simpr |
|
| 47 |
|
vsnid |
|
| 48 |
|
eleq2 |
|
| 49 |
47 48
|
mpbiri |
|
| 50 |
49
|
elin1d |
|
| 51 |
50
|
ralimi |
|
| 52 |
|
ralssiun |
|
| 53 |
51 52
|
syl |
|
| 54 |
53
|
adantl |
|
| 55 |
|
f1fn |
|
| 56 |
|
fniunfv |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
adantr |
|
| 59 |
54 58
|
sseqtrd |
|
| 60 |
1
|
cldopn |
|
| 61 |
60
|
ad2antll |
|
| 62 |
61
|
anim1i |
|
| 63 |
62
|
ancomd |
|
| 64 |
29
|
ad2antll |
|
| 65 |
64
|
anim1i |
|
| 66 |
|
unisng |
|
| 67 |
66
|
eqcomd |
|
| 68 |
|
eqimss |
|
| 69 |
|
ssun4 |
|
| 70 |
|
uniun |
|
| 71 |
69 70
|
sseqtrrdi |
|
| 72 |
67 68 71
|
3syl |
|
| 73 |
|
ssun3 |
|
| 74 |
73 70
|
sseqtrrdi |
|
| 75 |
|
uncom |
|
| 76 |
|
undif1 |
|
| 77 |
75 76
|
eqtri |
|
| 78 |
|
ssequn2 |
|
| 79 |
78
|
biimpi |
|
| 80 |
77 79
|
eqtrid |
|
| 81 |
80
|
adantr |
|
| 82 |
|
unss12 |
|
| 83 |
|
unidm |
|
| 84 |
82 83
|
sseqtrdi |
|
| 85 |
84
|
adantl |
|
| 86 |
81 85
|
eqsstrrd |
|
| 87 |
74 86
|
sylanr1 |
|
| 88 |
72 87
|
sylanr2 |
|
| 89 |
88
|
adantl |
|
| 90 |
|
f1f |
|
| 91 |
|
frn |
|
| 92 |
90 91
|
syl |
|
| 93 |
1
|
topopn |
|
| 94 |
1
|
difopn |
|
| 95 |
93 94
|
sylan |
|
| 96 |
95
|
snssd |
|
| 97 |
|
unss12 |
|
| 98 |
|
unidm |
|
| 99 |
97 98
|
sseqtrdi |
|
| 100 |
92 96 99
|
syl2an |
|
| 101 |
|
uniss |
|
| 102 |
101 1
|
sseqtrrdi |
|
| 103 |
100 102
|
syl |
|
| 104 |
103
|
adantr |
|
| 105 |
89 104
|
eqssd |
|
| 106 |
65 105
|
syldan |
|
| 107 |
63 106
|
syldan |
|
| 108 |
59 107
|
sylan2 |
|
| 109 |
108
|
ancom1s |
|
| 110 |
109
|
ex |
|
| 111 |
46 110
|
mpand |
|
| 112 |
111
|
impr |
|
| 113 |
112
|
adantlrr |
|
| 114 |
5 113
|
sylanl1 |
|
| 115 |
|
vex |
|
| 116 |
|
f1f1orn |
|
| 117 |
|
f1oen3g |
|
| 118 |
115 116 117
|
sylancr |
|
| 119 |
|
enen1 |
|
| 120 |
|
endom |
|
| 121 |
|
snfi |
|
| 122 |
|
isfinite |
|
| 123 |
121 122
|
mpbi |
|
| 124 |
|
sdomdom |
|
| 125 |
123 124
|
ax-mp |
|
| 126 |
|
unctb |
|
| 127 |
120 125 126
|
sylancl |
|
| 128 |
119 127
|
biimtrdi |
|
| 129 |
118 128
|
syl |
|
| 130 |
129
|
impcom |
|
| 131 |
130
|
adantll |
|
| 132 |
131
|
ad2ant2lr |
|
| 133 |
100
|
ancoms |
|
| 134 |
133
|
adantrr |
|
| 135 |
134
|
adantlrr |
|
| 136 |
5 135
|
sylanl1 |
|
| 137 |
|
elpw2g |
|
| 138 |
137
|
biimprd |
|
| 139 |
138
|
ad2antrr |
|
| 140 |
136 139
|
mpd |
|
| 141 |
4
|
simprbi |
|
| 142 |
|
unieq |
|
| 143 |
142
|
eqeq2d |
|
| 144 |
143
|
cbvrexvw |
|
| 145 |
144
|
imbi2i |
|
| 146 |
145
|
ralbii |
|
| 147 |
141 146
|
sylibr |
|
| 148 |
|
unieq |
|
| 149 |
148
|
eqeq2d |
|
| 150 |
|
breq1 |
|
| 151 |
149 150
|
anbi12d |
|
| 152 |
|
pweq |
|
| 153 |
152
|
ineq1d |
|
| 154 |
153
|
rexeqdv |
|
| 155 |
151 154
|
imbi12d |
|
| 156 |
155
|
rspccv |
|
| 157 |
147 156
|
syl |
|
| 158 |
157
|
ad2antrr |
|
| 159 |
140 158
|
mpd |
|
| 160 |
114 132 159
|
mp2and |
|
| 161 |
|
df-rex |
|
| 162 |
|
elinel1 |
|
| 163 |
|
velpw |
|
| 164 |
|
ssdif |
|
| 165 |
|
difun2 |
|
| 166 |
164 165
|
sseqtrdi |
|
| 167 |
166
|
difss2d |
|
| 168 |
163 167
|
sylbi |
|
| 169 |
162 168
|
syl |
|
| 170 |
169
|
a1i |
|
| 171 |
|
sseq2 |
|
| 172 |
|
uniexg |
|
| 173 |
1 172
|
eqeltrid |
|
| 174 |
|
difexg |
|
| 175 |
|
unisng |
|
| 176 |
173 174 175
|
3syl |
|
| 177 |
176
|
ineq2d |
|
| 178 |
|
disjdif |
|
| 179 |
177 178
|
eqtrdi |
|
| 180 |
|
inunissunidif |
|
| 181 |
179 180
|
syl |
|
| 182 |
171 181
|
sylan9bbr |
|
| 183 |
182
|
biimpd |
|
| 184 |
183
|
impancom |
|
| 185 |
170 184
|
anim12d |
|
| 186 |
5 29 185
|
syl2an |
|
| 187 |
186
|
adantrr |
|
| 188 |
187
|
anim2d |
|
| 189 |
118
|
ad2antrr |
|
| 190 |
|
fvineqsneq |
|
| 191 |
55 190
|
sylanl1 |
|
| 192 |
|
vex |
|
| 193 |
|
difss |
|
| 194 |
|
ssdomg |
|
| 195 |
192 193 194
|
mp2 |
|
| 196 |
191 195
|
eqbrtrrdi |
|
| 197 |
|
endomtr |
|
| 198 |
189 196 197
|
syl2anc |
|
| 199 |
188 198
|
syl6 |
|
| 200 |
199
|
expdimp |
|
| 201 |
|
elinel2 |
|
| 202 |
201
|
adantr |
|
| 203 |
202
|
a1i |
|
| 204 |
200 203
|
jcad |
|
| 205 |
204
|
eximdv |
|
| 206 |
161 205
|
biimtrid |
|
| 207 |
160 206
|
mpd |
|
| 208 |
207
|
ex |
|
| 209 |
208
|
exlimdv |
|
| 210 |
209
|
anass1rs |
|
| 211 |
210
|
3adant3 |
|
| 212 |
45 211
|
mpd |
|
| 213 |
18 27 28 212
|
syl3anc |
|
| 214 |
213
|
anasss |
|
| 215 |
|
isfinite |
|
| 216 |
|
domsdomtr |
|
| 217 |
215 216
|
sylan2b |
|
| 218 |
217
|
exlimiv |
|
| 219 |
|
sdomnen |
|
| 220 |
214 218 219
|
3syl |
|
| 221 |
17 220
|
pm2.65da |
|
| 222 |
|
imnan |
|
| 223 |
221 222
|
sylibr |
|
| 224 |
223
|
imp |
|
| 225 |
|
neq0 |
|
| 226 |
224 225
|
sylib |
|
| 227 |
1
|
lpss |
|
| 228 |
5 227
|
sylan |
|
| 229 |
228
|
adantlr |
|
| 230 |
229
|
sseld |
|
| 231 |
230
|
ancrd |
|
| 232 |
231
|
eximdv |
|
| 233 |
|
df-rex |
|
| 234 |
232 233
|
imbitrrdi |
|
| 235 |
226 234
|
mpd |
|
| 236 |
16 235
|
sylan2 |
|
| 237 |
1
|
lpss3 |
|
| 238 |
237
|
3expb |
|
| 239 |
5 238
|
sylan |
|
| 240 |
239
|
adantlr |
|
| 241 |
240
|
sseld |
|
| 242 |
241
|
reximdv |
|
| 243 |
236 242
|
mpd |
|
| 244 |
243
|
an42s |
|
| 245 |
244
|
ex |
|
| 246 |
245
|
exlimdv |
|
| 247 |
246
|
adantrr |
|
| 248 |
14 247
|
mpd |
|
| 249 |
8 248
|
sylan2b |
|
| 250 |
6 249
|
sylan2b |
|
| 251 |
250
|
ralrimiva |
|
| 252 |
|
simpr |
|
| 253 |
|
fveq2 |
|
| 254 |
253
|
adantr |
|
| 255 |
252 254
|
eleq12d |
|
| 256 |
255
|
cbvrexdva |
|
| 257 |
256
|
cbvralvw |
|
| 258 |
251 257
|
sylibr |
|
| 259 |
1 3
|
pibp21 |
|
| 260 |
5 258 259
|
sylanbrc |
|