Metamath Proof Explorer


Theorem dchrisum0flblem1

Description: Lemma for dchrisum0flb . Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0flb.r φX:BaseZ
dchrisum0flblem1.1 φP
dchrisum0flblem1.2 φA0
Assertion dchrisum0flblem1 φifPA10FPA

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0flb.r φX:BaseZ
10 dchrisum0flblem1.1 φP
11 dchrisum0flblem1.2 φA0
12 1red φXLP=1PA1
13 0red φXLP=1¬PA0
14 12 13 ifclda φXLP=1ifPA10
15 1red φXLP=11
16 fzfid φ0AFin
17 3 nnnn0d φN0
18 eqid BaseZ=BaseZ
19 1 18 2 znzrhfo N0L:ontoBaseZ
20 fof L:ontoBaseZL:BaseZ
21 17 19 20 3syl φL:BaseZ
22 prmz PP
23 10 22 syl φP
24 21 23 ffvelcdmd φLPBaseZ
25 9 24 ffvelcdmd φXLP
26 elfznn0 i0Ai0
27 reexpcl XLPi0XLPi
28 25 26 27 syl2an φi0AXLPi
29 16 28 fsumrecl φi=0AXLPi
30 29 adantr φXLP=1i=0AXLPi
31 breq1 1=ifPA1011ifPA101
32 breq1 0=ifPA1001ifPA101
33 1le1 11
34 0le1 01
35 31 32 33 34 keephyp ifPA101
36 35 a1i φXLP=1ifPA101
37 nn0uz 0=0
38 11 37 eleqtrdi φA0
39 fzn0 0AA0
40 38 39 sylibr φ0A
41 hashnncl 0AFin0A0A
42 16 41 syl φ0A0A
43 40 42 mpbird φ0A
44 43 adantr φXLP=10A
45 44 nnge1d φXLP=110A
46 simpr φXLP=1XLP=1
47 46 oveq1d φXLP=1XLPi=1i
48 elfzelz i0Ai
49 1exp i1i=1
50 48 49 syl i0A1i=1
51 47 50 sylan9eq φXLP=1i0AXLPi=1
52 51 sumeq2dv φXLP=1i=0AXLPi=i=0A1
53 fzfid φXLP=10AFin
54 ax-1cn 1
55 fsumconst 0AFin1i=0A1=0A1
56 53 54 55 sylancl φXLP=1i=0A1=0A1
57 44 nncnd φXLP=10A
58 57 mulridd φXLP=10A1=0A
59 52 56 58 3eqtrd φXLP=1i=0AXLPi=0A
60 45 59 breqtrrd φXLP=11i=0AXLPi
61 14 15 30 36 60 letrd φXLP=1ifPA10i=0AXLPi
62 oveq1 1=ifPA1011XLP=ifPA101XLP
63 62 breq1d 1=ifPA1011XLP1XLPA+1ifPA101XLP1XLPA+1
64 oveq1 0=ifPA1001XLP=ifPA101XLP
65 64 breq1d 0=ifPA1001XLP1XLPA+1ifPA101XLP1XLPA+1
66 1re 1
67 25 adantr φXLP1XLP
68 resubcl 1XLP1XLP
69 66 67 68 sylancr φXLP11XLP
70 69 adantr φXLP1PA1XLP
71 70 leidd φXLP1PA1XLP1XLP
72 69 recnd φXLP11XLP
73 72 adantr φXLP1PA1XLP
74 73 mullidd φXLP1PA11XLP=1XLP
75 nn0p1nn A0A+1
76 11 75 syl φA+1
77 76 ad3antrrr φXLP1PAXLP=0A+1
78 77 0expd φXLP1PAXLP=00A+1=0
79 simpr φXLP1PAXLP=0XLP=0
80 79 oveq1d φXLP1PAXLP=0XLPA+1=0A+1
81 78 80 79 3eqtr4d φXLP1PAXLP=0XLPA+1=XLP
82 neg1cn 1
83 11 ad2antrr φXLP1PAA0
84 expp1 1A01A+1=1A-1
85 82 83 84 sylancr φXLP1PA1A+1=1A-1
86 prmnn PP
87 10 86 syl φP
88 87 11 nnexpcld φPA
89 88 nncnd φPA
90 89 ad2antrr φXLP1PAPA
91 90 sqsqrtd φXLP1PAPA2=PA
92 91 oveq2d φXLP1PAPpCntPA2=PpCntPA
93 10 ad2antrr φXLP1PAP
94 nnq PAPA
95 94 adantl φXLP1PAPA
96 nnne0 PAPA0
97 96 adantl φXLP1PAPA0
98 2z 2
99 98 a1i φXLP1PA2
100 pcexp PPAPA02PpCntPA2=2PpCntPA
101 93 95 97 99 100 syl121anc φXLP1PAPpCntPA2=2PpCntPA
102 83 nn0zd φXLP1PAA
103 pcid PAPpCntPA=A
104 93 102 103 syl2anc φXLP1PAPpCntPA=A
105 92 101 104 3eqtr3rd φXLP1PAA=2PpCntPA
106 105 oveq2d φXLP1PA1A=12PpCntPA
107 82 a1i φXLP1PA1
108 simpr φXLP1PAPA
109 93 108 pccld φXLP1PAPpCntPA0
110 2nn0 20
111 110 a1i φXLP1PA20
112 107 109 111 expmuld φXLP1PA12PpCntPA=-12PpCntPA
113 neg1sqe1 12=1
114 113 oveq1i -12PpCntPA=1PpCntPA
115 109 nn0zd φXLP1PAPpCntPA
116 1exp PpCntPA1PpCntPA=1
117 115 116 syl φXLP1PA1PpCntPA=1
118 114 117 eqtrid φXLP1PA-12PpCntPA=1
119 106 112 118 3eqtrd φXLP1PA1A=1
120 119 oveq1d φXLP1PA1A-1=1-1
121 82 mullidi 1-1=1
122 120 121 eqtrdi φXLP1PA1A-1=1
123 85 122 eqtrd φXLP1PA1A+1=1
124 123 adantr φXLP1PAXLP01A+1=1
125 25 recnd φXLP
126 125 adantr φXLP1XLP
127 126 ad2antrr φXLP1PAXLP0XLP
128 127 negnegd φXLP1PAXLP0XLP=XLP
129 simpr φXLP1XLP1
130 129 ad2antrr φXLP1PAXLP0XLP1
131 8 ad3antrrr φXLP1PAXLP0XD
132 eqid UnitZ=UnitZ
133 4 1 5 18 132 8 24 dchrn0 φXLP0LPUnitZ
134 133 ad2antrr φXLP1PAXLP0LPUnitZ
135 134 biimpa φXLP1PAXLP0LPUnitZ
136 4 5 131 1 132 135 dchrabs φXLP1PAXLP0XLP=1
137 eqeq1 XLP=XLPXLP=1XLP=1
138 136 137 syl5ibcom φXLP1PAXLP0XLP=XLPXLP=1
139 138 necon3ad φXLP1PAXLP0XLP1¬XLP=XLP
140 130 139 mpd φXLP1PAXLP0¬XLP=XLP
141 67 ad2antrr φXLP1PAXLP0XLP
142 141 absord φXLP1PAXLP0XLP=XLPXLP=XLP
143 142 ord φXLP1PAXLP0¬XLP=XLPXLP=XLP
144 140 143 mpd φXLP1PAXLP0XLP=XLP
145 144 136 eqtr3d φXLP1PAXLP0XLP=1
146 145 negeqd φXLP1PAXLP0XLP=1
147 128 146 eqtr3d φXLP1PAXLP0XLP=1
148 147 oveq1d φXLP1PAXLP0XLPA+1=1A+1
149 124 148 147 3eqtr4d φXLP1PAXLP0XLPA+1=XLP
150 81 149 pm2.61dane φXLP1PAXLPA+1=XLP
151 150 oveq2d φXLP1PA1XLPA+1=1XLP
152 71 74 151 3brtr4d φXLP1PA11XLP1XLPA+1
153 72 mul02d φXLP101XLP=0
154 peano2nn0 A0A+10
155 11 154 syl φA+10
156 25 155 reexpcld φXLPA+1
157 156 adantr φXLP1XLPA+1
158 157 recnd φXLP1XLPA+1
159 158 abscld φXLP1XLPA+1
160 1red φXLP11
161 157 leabsd φXLP1XLPA+1XLPA+1
162 155 adantr φXLP1A+10
163 126 162 absexpd φXLP1XLPA+1=XLPA+1
164 126 abscld φXLP1XLP
165 126 absge0d φXLP10XLP
166 4 5 1 18 8 24 dchrabs2 φXLP1
167 166 adantr φXLP1XLP1
168 exple1 XLP0XLPXLP1A+10XLPA+11
169 164 165 167 162 168 syl31anc φXLP1XLPA+11
170 163 169 eqbrtrd φXLP1XLPA+11
171 157 159 160 161 170 letrd φXLP1XLPA+11
172 subge0 1XLPA+101XLPA+1XLPA+11
173 66 157 172 sylancr φXLP101XLPA+1XLPA+11
174 171 173 mpbird φXLP101XLPA+1
175 153 174 eqbrtrd φXLP101XLP1XLPA+1
176 175 adantr φXLP1¬PA01XLP1XLPA+1
177 63 65 152 176 ifbothda φXLP1ifPA101XLP1XLPA+1
178 0re 0
179 66 178 ifcli ifPA10
180 179 a1i φXLP1ifPA10
181 resubcl 1XLPA+11XLPA+1
182 66 157 181 sylancr φXLP11XLPA+1
183 67 leabsd φXLP1XLPXLP
184 67 164 160 183 167 letrd φXLP1XLP1
185 129 necomd φXLP11XLP
186 67 160 184 185 leneltd φXLP1XLP<1
187 posdif XLP1XLP<10<1XLP
188 67 66 187 sylancl φXLP1XLP<10<1XLP
189 186 188 mpbid φXLP10<1XLP
190 lemuldiv ifPA101XLPA+11XLP0<1XLPifPA101XLP1XLPA+1ifPA101XLPA+11XLP
191 180 182 69 189 190 syl112anc φXLP1ifPA101XLP1XLPA+1ifPA101XLPA+11XLP
192 177 191 mpbid φXLP1ifPA101XLPA+11XLP
193 11 nn0zd φA
194 fzval3 A0A=0..^A+1
195 193 194 syl φ0A=0..^A+1
196 195 adantr φXLP10A=0..^A+1
197 196 sumeq1d φXLP1i=0AXLPi=i0..^A+1XLPi
198 0nn0 00
199 198 a1i φXLP100
200 155 37 eleqtrdi φA+10
201 200 adantr φXLP1A+10
202 126 129 199 201 geoserg φXLP1i0..^A+1XLPi=XLP0XLPA+11XLP
203 126 exp0d φXLP1XLP0=1
204 203 oveq1d φXLP1XLP0XLPA+1=1XLPA+1
205 204 oveq1d φXLP1XLP0XLPA+11XLP=1XLPA+11XLP
206 197 202 205 3eqtrd φXLP1i=0AXLPi=1XLPA+11XLP
207 192 206 breqtrrd φXLP1ifPA10i=0AXLPi
208 61 207 pm2.61dane φifPA10i=0AXLPi
209 1 2 3 4 5 6 7 dchrisum0fval PAFPA=kq|qPAXLk
210 88 209 syl φFPA=kq|qPAXLk
211 2fveq3 k=PiXLk=XLPi
212 eqid b0APb=b0APb
213 212 dvdsppwf1o PA0b0APb:0A1-1 ontoq|qPA
214 10 11 213 syl2anc φb0APb:0A1-1 ontoq|qPA
215 oveq2 b=iPb=Pi
216 ovex PbV
217 215 212 216 fvmpt3i i0Ab0APbi=Pi
218 217 adantl φi0Ab0APbi=Pi
219 9 adantr φkq|qPAX:BaseZ
220 elrabi kq|qPAk
221 220 nnzd kq|qPAk
222 ffvelcdm L:BaseZkLkBaseZ
223 21 221 222 syl2an φkq|qPALkBaseZ
224 219 223 ffvelcdmd φkq|qPAXLk
225 224 recnd φkq|qPAXLk
226 211 16 214 218 225 fsumf1o φkq|qPAXLk=i=0AXLPi
227 zsubrg SubRingfld
228 eqid mulGrpfld=mulGrpfld
229 228 subrgsubm SubRingfldSubMndmulGrpfld
230 227 229 mp1i φi0ASubMndmulGrpfld
231 26 adantl φi0Ai0
232 23 adantr φi0AP
233 eqid mulGrpfld=mulGrpfld
234 zringmpg mulGrpfld𝑠=mulGrpring
235 234 eqcomi mulGrpring=mulGrpfld𝑠
236 eqid mulGrpring=mulGrpring
237 233 235 236 submmulg SubMndmulGrpfldi0PimulGrpfldP=imulGrpringP
238 230 231 232 237 syl3anc φi0AimulGrpfldP=imulGrpringP
239 87 nncnd φP
240 cnfldexp Pi0imulGrpfldP=Pi
241 239 26 240 syl2an φi0AimulGrpfldP=Pi
242 238 241 eqtr3d φi0AimulGrpringP=Pi
243 242 fveq2d φi0ALimulGrpringP=LPi
244 1 zncrng N0ZCRing
245 crngring ZCRingZRing
246 17 244 245 3syl φZRing
247 2 zrhrhm ZRingLringRingHomZ
248 eqid mulGrpring=mulGrpring
249 eqid mulGrpZ=mulGrpZ
250 248 249 rhmmhm LringRingHomZLmulGrpringMndHommulGrpZ
251 246 247 250 3syl φLmulGrpringMndHommulGrpZ
252 251 adantr φi0ALmulGrpringMndHommulGrpZ
253 zringbas =Basering
254 248 253 mgpbas =BasemulGrpring
255 eqid mulGrpZ=mulGrpZ
256 254 236 255 mhmmulg LmulGrpringMndHommulGrpZi0PLimulGrpringP=imulGrpZLP
257 252 231 232 256 syl3anc φi0ALimulGrpringP=imulGrpZLP
258 243 257 eqtr3d φi0ALPi=imulGrpZLP
259 258 fveq2d φi0AXLPi=XimulGrpZLP
260 4 1 5 dchrmhm DmulGrpZMndHommulGrpfld
261 260 8 sselid φXmulGrpZMndHommulGrpfld
262 261 adantr φi0AXmulGrpZMndHommulGrpfld
263 24 adantr φi0ALPBaseZ
264 249 18 mgpbas BaseZ=BasemulGrpZ
265 264 255 233 mhmmulg XmulGrpZMndHommulGrpfldi0LPBaseZXimulGrpZLP=imulGrpfldXLP
266 262 231 263 265 syl3anc φi0AXimulGrpZLP=imulGrpfldXLP
267 cnfldexp XLPi0imulGrpfldXLP=XLPi
268 125 26 267 syl2an φi0AimulGrpfldXLP=XLPi
269 259 266 268 3eqtrd φi0AXLPi=XLPi
270 269 sumeq2dv φi=0AXLPi=i=0AXLPi
271 210 226 270 3eqtrd φFPA=i=0AXLPi
272 208 271 breqtrrd φifPA10FPA