Metamath Proof Explorer


Theorem etransclem35

Description: P does not divide the P-1 -th derivative of F applied to 0 . This is case 2 of the proof in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem35.p φP
etransclem35.m φM0
etransclem35.f F=xxP1j=1MxjP
etransclem35.c C=n0c0n0M|j=0Mcj=n
etransclem35.d D=j0Mifj=0P10
Assertion etransclem35 φDnFP10=P1!j=1MjP

Proof

Step Hyp Ref Expression
1 etransclem35.p φP
2 etransclem35.m φM0
3 etransclem35.f F=xxP1j=1MxjP
4 etransclem35.c C=n0c0n0M|j=0Mcj=n
5 etransclem35.d D=j0Mifj=0P10
6 reelprrecn
7 6 a1i φ
8 reopn topGenran.
9 eqid TopOpenfld=TopOpenfld
10 9 tgioo2 topGenran.=TopOpenfld𝑡
11 8 10 eleqtri TopOpenfld𝑡
12 11 a1i φTopOpenfld𝑡
13 nnm1nn0 PP10
14 1 13 syl φP10
15 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
16 0red φ0
17 7 12 1 2 3 14 15 4 16 etransclem31 φDnFP10=cCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
18 nfv cφ
19 nfcv _cP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
20 4 14 etransclem16 φCP1Fin
21 simpr φcCP1cCP1
22 4 14 etransclem12 φCP1=c0P10M|j=0Mcj=P1
23 22 adantr φcCP1CP1=c0P10M|j=0Mcj=P1
24 21 23 eleqtrd φcCP1cc0P10M|j=0Mcj=P1
25 rabid cc0P10M|j=0Mcj=P1c0P10Mj=0Mcj=P1
26 24 25 sylib φcCP1c0P10Mj=0Mcj=P1
27 26 simprd φcCP1j=0Mcj=P1
28 27 eqcomd φcCP1P1=j=0Mcj
29 28 fveq2d φcCP1P1!=j=0Mcj!
30 29 oveq1d φcCP1P1!j=0Mcj!=j=0Mcj!j=0Mcj!
31 nfcv _jc
32 fzfid φcCP10MFin
33 nn0ex 0V
34 fzssnn0 0P10
35 mapss 0V0P100P10M00M
36 33 34 35 mp2an 0P10M00M
37 26 simpld φcCP1c0P10M
38 36 37 sselid φcCP1c00M
39 31 32 38 mccl φcCP1j=0Mcj!j=0Mcj!
40 30 39 eqeltrd φcCP1P1!j=0Mcj!
41 40 nnzd φcCP1P1!j=0Mcj!
42 1 adantr φcCP1P
43 2 adantr φcCP1M0
44 elmapi c0P10Mc:0M0P1
45 37 44 syl φcCP1c:0M0P1
46 0zd φcCP10
47 42 43 45 46 etransclem10 φcCP1ifP1<c00P1!P-1-c0!0P-1-c0
48 fzfid φcCP11MFin
49 1 ad2antrr φcCP1j1MP
50 45 adantr φcCP1j1Mc:0M0P1
51 fz1ssfz0 1M0M
52 51 sseli j1Mj0M
53 52 adantl φcCP1j1Mj0M
54 0zd φcCP1j1M0
55 49 50 53 54 etransclem3 φcCP1j1MifP<cj0P!Pcj!0jPcj
56 48 55 fprodzcl φcCP1j=1MifP<cj0P!Pcj!0jPcj
57 47 56 zmulcld φcCP1ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
58 41 57 zmulcld φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
59 58 zcnd φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
60 nn0uz 0=0
61 14 60 eleqtrdi φP10
62 eluzfz2 P10P10P1
63 61 62 syl φP10P1
64 eluzfz1 P1000P1
65 61 64 syl φ00P1
66 63 65 ifcld φifj=0P100P1
67 66 adantr φj0Mifj=0P100P1
68 67 5 fmptd φD:0M0P1
69 ovex 0P1V
70 ovex 0MV
71 69 70 elmap D0P10MD:0M0P1
72 68 71 sylibr φD0P10M
73 2 60 eleqtrdi φM0
74 fzsscn 0P1
75 68 ffvelcdmda φj0MDj0P1
76 74 75 sselid φj0MDj
77 fveq2 j=0Dj=D0
78 73 76 77 fsum1p φj=0MDj=D0+j=0+1MDj
79 5 a1i φD=j0Mifj=0P10
80 simpr φj=0j=0
81 80 iftrued φj=0ifj=0P10=P1
82 eluzfz1 M000M
83 73 82 syl φ00M
84 79 81 83 14 fvmptd φD0=P1
85 0p1e1 0+1=1
86 85 oveq1i 0+1M=1M
87 86 sumeq1i j=0+1MDj=j=1MDj
88 87 a1i φj=0+1MDj=j=1MDj
89 5 fvmpt2 j0Mifj=0P100P1Dj=ifj=0P10
90 52 66 89 syl2anr φj1MDj=ifj=0P10
91 0red j1M0
92 1red j1M1
93 elfzelz j1Mj
94 93 zred j1Mj
95 0lt1 0<1
96 95 a1i j1M0<1
97 elfzle1 j1M1j
98 91 92 94 96 97 ltletrd j1M0<j
99 91 98 gtned j1Mj0
100 99 neneqd j1M¬j=0
101 100 iffalsed j1Mifj=0P10=0
102 101 adantl φj1Mifj=0P10=0
103 90 102 eqtrd φj1MDj=0
104 103 sumeq2dv φj=1MDj=j=1M0
105 fzfi 1MFin
106 105 olci 1MA1MFin
107 sumz 1MA1MFinj=1M0=0
108 106 107 mp1i φj=1M0=0
109 88 104 108 3eqtrd φj=0+1MDj=0
110 84 109 oveq12d φD0+j=0+1MDj=P-1+0
111 1 nncnd φP
112 1cnd φ1
113 111 112 subcld φP1
114 113 addridd φP-1+0=P1
115 78 110 114 3eqtrd φj=0MDj=P1
116 fveq1 c=Dcj=Dj
117 116 sumeq2sdv c=Dj=0Mcj=j=0MDj
118 117 eqeq1d c=Dj=0Mcj=P1j=0MDj=P1
119 118 elrab Dc0P10M|j=0Mcj=P1D0P10Mj=0MDj=P1
120 72 115 119 sylanbrc φDc0P10M|j=0Mcj=P1
121 120 22 eleqtrrd φDCP1
122 116 fveq2d c=Dcj!=Dj!
123 122 prodeq2ad c=Dj=0Mcj!=j=0MDj!
124 123 oveq2d c=DP1!j=0Mcj!=P1!j=0MDj!
125 fveq1 c=Dc0=D0
126 125 breq2d c=DP1<c0P1<D0
127 125 oveq2d c=DP-1-c0=P-1-D0
128 127 fveq2d c=DP-1-c0!=P-1-D0!
129 128 oveq2d c=DP1!P-1-c0!=P1!P-1-D0!
130 127 oveq2d c=D0P-1-c0=0P-1-D0
131 129 130 oveq12d c=DP1!P-1-c0!0P-1-c0=P1!P-1-D0!0P-1-D0
132 126 131 ifbieq2d c=DifP1<c00P1!P-1-c0!0P-1-c0=ifP1<D00P1!P-1-D0!0P-1-D0
133 116 breq2d c=DP<cjP<Dj
134 116 oveq2d c=DPcj=PDj
135 134 fveq2d c=DPcj!=PDj!
136 135 oveq2d c=DP!Pcj!=P!PDj!
137 134 oveq2d c=D0jPcj=0jPDj
138 136 137 oveq12d c=DP!Pcj!0jPcj=P!PDj!0jPDj
139 133 138 ifbieq2d c=DifP<cj0P!Pcj!0jPcj=ifP<Dj0P!PDj!0jPDj
140 139 prodeq2ad c=Dj=1MifP<cj0P!Pcj!0jPcj=j=1MifP<Dj0P!PDj!0jPDj
141 132 140 oveq12d c=DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
142 124 141 oveq12d c=DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
143 18 19 20 59 121 142 fsumsplit1 φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
144 34 75 sselid φj0MDj0
145 144 faccld φj0MDj!
146 145 nncnd φj0MDj!
147 77 fveq2d j=0Dj!=D0!
148 73 146 147 fprod1p φj=0MDj!=D0!j=0+1MDj!
149 84 fveq2d φD0!=P1!
150 86 prodeq1i j=0+1MDj!=j=1MDj!
151 150 a1i φj=0+1MDj!=j=1MDj!
152 103 fveq2d φj1MDj!=0!
153 fac0 0!=1
154 152 153 eqtrdi φj1MDj!=1
155 154 prodeq2dv φj=1MDj!=j=1M1
156 prod1 1MA1MFinj=1M1=1
157 106 156 mp1i φj=1M1=1
158 151 155 157 3eqtrd φj=0+1MDj!=1
159 149 158 oveq12d φD0!j=0+1MDj!=P1!1
160 14 faccld φP1!
161 160 nncnd φP1!
162 161 mulridd φP1!1=P1!
163 148 159 162 3eqtrd φj=0MDj!=P1!
164 163 oveq2d φP1!j=0MDj!=P1!P1!
165 160 nnne0d φP1!0
166 161 165 dividd φP1!P1!=1
167 164 166 eqtrd φP1!j=0MDj!=1
168 14 nn0red φP1
169 84 168 eqeltrd φD0
170 169 168 lttri3d φD0=P1¬D0<P1¬P1<D0
171 84 170 mpbid φ¬D0<P1¬P1<D0
172 171 simprd φ¬P1<D0
173 172 iffalsed φifP1<D00P1!P-1-D0!0P-1-D0=P1!P-1-D0!0P-1-D0
174 84 eqcomd φP1=D0
175 113 174 subeq0bd φP-1-D0=0
176 175 fveq2d φP-1-D0!=0!
177 176 153 eqtrdi φP-1-D0!=1
178 177 oveq2d φP1!P-1-D0!=P1!1
179 161 div1d φP1!1=P1!
180 178 179 eqtrd φP1!P-1-D0!=P1!
181 175 oveq2d φ0P-1-D0=00
182 0cnd φ0
183 182 exp0d φ00=1
184 181 183 eqtrd φ0P-1-D0=1
185 180 184 oveq12d φP1!P-1-D0!0P-1-D0=P1!1
186 173 185 162 3eqtrd φifP1<D00P1!P-1-D0!0P-1-D0=P1!
187 fzssre 0P1
188 68 adantr φj1MD:0M0P1
189 52 adantl φj1Mj0M
190 188 189 ffvelcdmd φj1MDj0P1
191 187 190 sselid φj1MDj
192 1 nnred φP
193 192 adantr φj1MP
194 1 nngt0d φ0<P
195 16 192 194 ltled φ0P
196 195 adantr φj1M0P
197 103 196 eqbrtrd φj1MDjP
198 191 193 197 lensymd φj1M¬P<Dj
199 198 iffalsed φj1MifP<Dj0P!PDj!0jPDj=P!PDj!0jPDj
200 103 oveq2d φj1MPDj=P0
201 111 adantr φj1MP
202 201 subid1d φj1MP0=P
203 200 202 eqtrd φj1MPDj=P
204 203 fveq2d φj1MPDj!=P!
205 204 oveq2d φj1MP!PDj!=P!P!
206 1 nnnn0d φP0
207 206 faccld φP!
208 207 nncnd φP!
209 207 nnne0d φP!0
210 208 209 dividd φP!P!=1
211 210 adantr φj1MP!P!=1
212 205 211 eqtrd φj1MP!PDj!=1
213 df-neg j=0j
214 213 eqcomi 0j=j
215 214 a1i φj1M0j=j
216 215 203 oveq12d φj1M0jPDj=jP
217 212 216 oveq12d φj1MP!PDj!0jPDj=1jP
218 93 znegcld j1Mj
219 218 zcnd j1Mj
220 219 adantl φj1Mj
221 206 adantr φj1MP0
222 220 221 expcld φj1MjP
223 222 mullidd φj1M1jP=jP
224 199 217 223 3eqtrd φj1MifP<Dj0P!PDj!0jPDj=jP
225 224 prodeq2dv φj=1MifP<Dj0P!PDj!0jPDj=j=1MjP
226 186 225 oveq12d φifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=P1!j=1MjP
227 167 226 oveq12d φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=1P1!j=1MjP
228 fzfid φ1MFin
229 zexpcl jP0jP
230 218 206 229 syl2anr φj1MjP
231 228 230 fprodzcl φj=1MjP
232 231 zcnd φj=1MjP
233 161 232 mulcld φP1!j=1MjP
234 233 mullidd φ1P1!j=1MjP=P1!j=1MjP
235 227 234 eqtrd φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=P1!j=1MjP
236 eldifi cCP1DcCP1
237 83 adantr φcCP100M
238 45 237 ffvelcdmd φcCP1c00P1
239 236 238 sylan2 φcCP1Dc00P1
240 187 239 sselid φcCP1Dc0
241 168 adantr φcCP1DP1
242 elfzle2 c00P1c0P1
243 239 242 syl φcCP1Dc0P1
244 240 241 243 lensymd φcCP1D¬P1<c0
245 244 iffalsed φcCP1DifP1<c00P1!P-1-c0!0P-1-c0=P1!P-1-c0!0P-1-c0
246 14 nn0zd φP1
247 246 adantr φcCP1DP1
248 239 elfzelzd φcCP1Dc0
249 247 248 zsubcld φcCP1DP-1-c0
250 45 ffnd φcCP1cFn0M
251 250 adantr φcCP1P1=c0cFn0M
252 68 ffnd φDFn0M
253 252 ad2antrr φcCP1P1=c0DFn0M
254 fveq2 j=0cj=c0
255 254 adantl φP1=c0j=0cj=c0
256 id P1=c0P1=c0
257 256 eqcomd P1=c0c0=P1
258 257 ad2antlr φP1=c0j=0c0=P1
259 77 adantl φj=0Dj=D0
260 84 adantr φj=0D0=P1
261 259 260 eqtr2d φj=0P1=Dj
262 261 adantlr φP1=c0j=0P1=Dj
263 255 258 262 3eqtrd φP1=c0j=0cj=Dj
264 263 adantllr φcCP1P1=c0j=0cj=Dj
265 264 adantlr φcCP1P1=c0j0Mj=0cj=Dj
266 27 ad4antr φcCP1P1=c0j0M¬j=0¬cj=0j=0Mcj=P1
267 168 ad5antr φcCP1P1=c0j0M¬j=0¬cj=0P1
268 168 ad4antr φcCP1j0M¬j=0¬cj=0P1
269 45 adantr φcCP1k1Mc:0M0P1
270 51 sseli k1Mk0M
271 270 adantl φcCP1k1Mk0M
272 269 271 ffvelcdmd φcCP1k1Mck0P1
273 34 272 sselid φcCP1k1Mck0
274 48 273 fsumnn0cl φcCP1k=1Mck0
275 274 nn0red φcCP1k=1Mck
276 275 ad3antrrr φcCP1j0M¬j=0¬cj=0k=1Mck
277 0red φcCP1j0M¬j=0¬cj=00
278 45 ffvelcdmda φcCP1j0Mcj0P1
279 187 278 sselid φcCP1j0Mcj
280 279 ad2antrr φcCP1j0M¬j=0¬cj=0cj
281 nfv kφcCP1j0M¬j=0¬cj=0
282 nfcv _kcj
283 fzfid φcCP1j0M¬j=0¬cj=01MFin
284 simp-4l φcCP1j0M¬j=0¬cj=0k1MφcCP1
285 74 272 sselid φcCP1k1Mck
286 284 285 sylancom φcCP1j0M¬j=0¬cj=0k1Mck
287 1zzd j0M¬j=01
288 elfzel2 j0MM
289 288 adantr j0M¬j=0M
290 elfzelz j0Mj
291 290 adantr j0M¬j=0j
292 elfznn0 j0Mj0
293 292 adantr j0M¬j=0j0
294 neqne ¬j=0j0
295 294 adantl j0M¬j=0j0
296 elnnne0 jj0j0
297 293 295 296 sylanbrc j0M¬j=0j
298 297 nnge1d j0M¬j=01j
299 elfzle2 j0MjM
300 299 adantr j0M¬j=0jM
301 287 289 291 298 300 elfzd j0M¬j=0j1M
302 301 adantr j0M¬j=0¬cj=0j1M
303 302 adantlll φcCP1j0M¬j=0¬cj=0j1M
304 fveq2 k=jck=cj
305 281 282 283 286 303 304 fsumsplit1 φcCP1j0M¬j=0¬cj=0k=1Mck=cj+k1Mjck
306 305 eqcomd φcCP1j0M¬j=0¬cj=0cj+k1Mjck=k=1Mck
307 306 276 eqeltrd φcCP1j0M¬j=0¬cj=0cj+k1Mjck
308 elfzle1 cj0P10cj
309 278 308 syl φcCP1j0M0cj
310 309 ad2antrr φcCP1j0M¬j=0¬cj=00cj
311 neqne ¬cj=0cj0
312 311 adantl φcCP1j0M¬j=0¬cj=0cj0
313 277 280 310 312 leneltd φcCP1j0M¬j=0¬cj=00<cj
314 diffi 1MFin1MjFin
315 105 314 mp1i φcCP11MjFin
316 eldifi k1Mjk1M
317 316 adantl φcCP1k1Mjk1M
318 51 317 sselid φcCP1k1Mjk0M
319 45 ffvelcdmda φcCP1k0Mck0P1
320 187 319 sselid φcCP1k0Mck
321 318 320 syldan φcCP1k1Mjck
322 elfzle1 ck0P10ck
323 319 322 syl φcCP1k0M0ck
324 318 323 syldan φcCP1k1Mj0ck
325 315 321 324 fsumge0 φcCP10k1Mjck
326 325 adantr φcCP1j0M0k1Mjck
327 315 321 fsumrecl φcCP1k1Mjck
328 327 adantr φcCP1j0Mk1Mjck
329 279 328 addge01d φcCP1j0M0k1Mjckcjcj+k1Mjck
330 326 329 mpbid φcCP1j0Mcjcj+k1Mjck
331 330 ad2antrr φcCP1j0M¬j=0¬cj=0cjcj+k1Mjck
332 277 280 307 313 331 ltletrd φcCP1j0M¬j=0¬cj=00<cj+k1Mjck
333 332 306 breqtrd φcCP1j0M¬j=0¬cj=00<k=1Mck
334 276 333 elrpd φcCP1j0M¬j=0¬cj=0k=1Mck+
335 268 334 ltaddrpd φcCP1j0M¬j=0¬cj=0P1<P-1+k=1Mck
336 335 adantl3r φcCP1P1=c0j0M¬j=0¬cj=0P1<P-1+k=1Mck
337 fveq2 j=kcj=ck
338 337 cbvsumv j=0Mcj=k=0Mck
339 338 a1i φcCP1P1=c0j0M¬j=0¬cj=0j=0Mcj=k=0Mck
340 73 ad5antr φcCP1P1=c0j0M¬j=0¬cj=0M0
341 simp-5l φcCP1P1=c0j0M¬j=0¬cj=0k0MφcCP1
342 74 319 sselid φcCP1k0Mck
343 341 342 sylancom φcCP1P1=c0j0M¬j=0¬cj=0k0Mck
344 fveq2 k=0ck=c0
345 340 343 344 fsum1p φcCP1P1=c0j0M¬j=0¬cj=0k=0Mck=c0+k=0+1Mck
346 257 ad4antlr φcCP1P1=c0j0M¬j=0¬cj=0c0=P1
347 86 sumeq1i k=0+1Mck=k=1Mck
348 347 a1i φcCP1P1=c0j0M¬j=0¬cj=0k=0+1Mck=k=1Mck
349 346 348 oveq12d φcCP1P1=c0j0M¬j=0¬cj=0c0+k=0+1Mck=P-1+k=1Mck
350 339 345 349 3eqtrrd φcCP1P1=c0j0M¬j=0¬cj=0P-1+k=1Mck=j=0Mcj
351 336 350 breqtrd φcCP1P1=c0j0M¬j=0¬cj=0P1<j=0Mcj
352 267 351 gtned φcCP1P1=c0j0M¬j=0¬cj=0j=0McjP1
353 352 neneqd φcCP1P1=c0j0M¬j=0¬cj=0¬j=0Mcj=P1
354 266 353 condan φcCP1P1=c0j0M¬j=0cj=0
355 simpr φj0Mj0M
356 34 67 sselid φj0Mifj=0P100
357 5 fvmpt2 j0Mifj=0P100Dj=ifj=0P10
358 355 356 357 syl2anc φj0MDj=ifj=0P10
359 358 adantr φj0M¬j=0Dj=ifj=0P10
360 simpr φj0M¬j=0¬j=0
361 360 iffalsed φj0M¬j=0ifj=0P10=0
362 359 361 eqtr2d φj0M¬j=00=Dj
363 362 adantllr φcCP1j0M¬j=00=Dj
364 363 adantllr φcCP1P1=c0j0M¬j=00=Dj
365 354 364 eqtrd φcCP1P1=c0j0M¬j=0cj=Dj
366 265 365 pm2.61dan φcCP1P1=c0j0Mcj=Dj
367 251 253 366 eqfnfvd φcCP1P1=c0c=D
368 236 367 sylanl2 φcCP1DP1=c0c=D
369 eldifsni cCP1DcD
370 369 neneqd cCP1D¬c=D
371 370 ad2antlr φcCP1DP1=c0¬c=D
372 368 371 pm2.65da φcCP1D¬P1=c0
373 372 neqned φcCP1DP1c0
374 240 241 243 373 leneltd φcCP1Dc0<P1
375 240 241 posdifd φcCP1Dc0<P10<P-1-c0
376 374 375 mpbid φcCP1D0<P-1-c0
377 elnnz P-1-c0P-1-c00<P-1-c0
378 249 376 377 sylanbrc φcCP1DP-1-c0
379 378 0expd φcCP1D0P-1-c0=0
380 379 oveq2d φcCP1DP1!P-1-c0!0P-1-c0=P1!P-1-c0!0
381 161 adantr φcCP1DP1!
382 378 nnnn0d φcCP1DP-1-c00
383 382 faccld φcCP1DP-1-c0!
384 383 nncnd φcCP1DP-1-c0!
385 383 nnne0d φcCP1DP-1-c0!0
386 381 384 385 divcld φcCP1DP1!P-1-c0!
387 386 mul01d φcCP1DP1!P-1-c0!0=0
388 245 380 387 3eqtrd φcCP1DifP1<c00P1!P-1-c0!0P-1-c0=0
389 388 oveq1d φcCP1DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0j=1MifP<cj0P!Pcj!0jPcj
390 236 56 sylan2 φcCP1Dj=1MifP<cj0P!Pcj!0jPcj
391 390 zcnd φcCP1Dj=1MifP<cj0P!Pcj!0jPcj
392 391 mul02d φcCP1D0j=1MifP<cj0P!Pcj!0jPcj=0
393 389 392 eqtrd φcCP1DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
394 393 oveq2d φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0Mcj!0
395 fzfid φcCP1D0MFin
396 34 278 sselid φcCP1j0Mcj0
397 236 396 sylanl2 φcCP1Dj0Mcj0
398 397 faccld φcCP1Dj0Mcj!
399 395 398 fprodnncl φcCP1Dj=0Mcj!
400 399 nncnd φcCP1Dj=0Mcj!
401 399 nnne0d φcCP1Dj=0Mcj!0
402 381 400 401 divcld φcCP1DP1!j=0Mcj!
403 402 mul01d φcCP1DP1!j=0Mcj!0=0
404 394 403 eqtrd φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
405 404 sumeq2dv φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=cCP1D0
406 diffi CP1FinCP1DFin
407 20 406 syl φCP1DFin
408 407 olcd φCP1D0CP1DFin
409 sumz CP1D0CP1DFincCP1D0=0
410 408 409 syl φcCP1D0=0
411 405 410 eqtrd φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
412 235 411 oveq12d φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=1MjP+0
413 233 addridd φP1!j=1MjP+0=P1!j=1MjP
414 nfv jφ
415 414 206 228 220 fprodexp φj=1MjP=j=1MjP
416 415 oveq2d φP1!j=1MjP=P1!j=1MjP
417 412 413 416 3eqtrd φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=1MjP
418 17 143 417 3eqtrd φDnFP10=P1!j=1MjP