Metamath Proof Explorer


Theorem fsuppind

Description: Induction on functions F : A --> B with finite support, or in other words the base set of the free module (see frlmelbas and frlmplusgval ). This theorem is structurally general for polynomial proof usage (see mplelbas and mpladd ). Note that hypothesis 0 is redundant when I is nonempty. (Contributed by SN, 18-May-2024)

Ref Expression
Hypotheses fsuppind.b B=BaseG
fsuppind.z 0˙=0G
fsuppind.p +˙=+G
fsuppind.g φGGrp
fsuppind.v φIV
fsuppind.0 φI×0˙H
fsuppind.1 φaIbBxIifx=ab0˙H
fsuppind.2 φxHyHx+˙fyH
Assertion fsuppind φX:IBfinSupp0˙XXH

Proof

Step Hyp Ref Expression
1 fsuppind.b B=BaseG
2 fsuppind.z 0˙=0G
3 fsuppind.p +˙=+G
4 fsuppind.g φGGrp
5 fsuppind.v φIV
6 fsuppind.0 φI×0˙H
7 fsuppind.1 φaIbBxIifx=ab0˙H
8 fsuppind.2 φxHyHx+˙fyH
9 1 fvexi BV
10 9 a1i φBV
11 10 5 elmapd φXBIX:IB
12 11 adantr φXsupp0˙XBIX:IB
13 eqeq1 i=1i=hsupp0˙1=hsupp0˙
14 13 imbi1d i=1i=hsupp0˙hH1=hsupp0˙hH
15 14 ralbidv i=1hBIi=hsupp0˙hHhBI1=hsupp0˙hH
16 eqeq1 i=ji=hsupp0˙j=hsupp0˙
17 16 imbi1d i=ji=hsupp0˙hHj=hsupp0˙hH
18 17 ralbidv i=jhBIi=hsupp0˙hHhBIj=hsupp0˙hH
19 eqeq1 i=j+1i=hsupp0˙j+1=hsupp0˙
20 19 imbi1d i=j+1i=hsupp0˙hHj+1=hsupp0˙hH
21 20 ralbidv i=j+1hBIi=hsupp0˙hHhBIj+1=hsupp0˙hH
22 eqeq1 i=ni=hsupp0˙n=hsupp0˙
23 22 imbi1d i=ni=hsupp0˙hHn=hsupp0˙hH
24 23 ralbidv i=nhBIi=hsupp0˙hHhBIn=hsupp0˙hH
25 eqcom 1=hsupp0˙hsupp0˙=1
26 ovex hsupp0˙V
27 euhash1 hsupp0˙Vhsupp0˙=1∃!ccsupp0˙h
28 26 27 ax-mp hsupp0˙=1∃!ccsupp0˙h
29 25 28 bitri 1=hsupp0˙∃!ccsupp0˙h
30 elmapfn hBIhFnI
31 30 adantl φhBIhFnI
32 5 adantr φhBIIV
33 2 fvexi 0˙V
34 33 a1i φhBI0˙V
35 elsuppfn hFnIIV0˙Vcsupp0˙hcIhc0˙
36 31 32 34 35 syl3anc φhBIcsupp0˙hcIhc0˙
37 36 eubidv φhBI∃!ccsupp0˙h∃!ccIhc0˙
38 df-reu ∃!cIhc0˙∃!ccIhc0˙
39 37 38 bitr4di φhBI∃!ccsupp0˙h∃!cIhc0˙
40 30 ad2antlr φhBI∃!cIhc0˙hFnI
41 fvex hxV
42 41 33 ifex ifx=ιcI|hc0˙hx0˙V
43 eqid xIifx=ιcI|hc0˙hx0˙=xIifx=ιcI|hc0˙hx0˙
44 42 43 fnmpti xIifx=ιcI|hc0˙hx0˙FnI
45 44 a1i φhBI∃!cIhc0˙xIifx=ιcI|hc0˙hx0˙FnI
46 eqeq1 x=vx=ιcI|hc0˙v=ιcI|hc0˙
47 fveq2 x=vhx=hv
48 46 47 ifbieq1d x=vifx=ιcI|hc0˙hx0˙=ifv=ιcI|hc0˙hv0˙
49 48 43 42 fvmpt3i vIxIifx=ιcI|hc0˙hx0˙v=ifv=ιcI|hc0˙hv0˙
50 49 adantl φhBI∃!cIhc0˙vIxIifx=ιcI|hc0˙hx0˙v=ifv=ιcI|hc0˙hv0˙
51 eqidd φhBI∃!cIhc0˙vIv=ιcI|hc0˙hv=hv
52 simpr φhBI∃!cIhc0˙vIvI
53 simplr φhBI∃!cIhc0˙vI∃!cIhc0˙
54 fveq2 c=vhc=hv
55 54 neeq1d c=vhc0˙hv0˙
56 55 riota2 vI∃!cIhc0˙hv0˙ιcI|hc0˙=v
57 52 53 56 syl2anc φhBI∃!cIhc0˙vIhv0˙ιcI|hc0˙=v
58 necom 0˙hvhv0˙
59 eqcom v=ιcI|hc0˙ιcI|hc0˙=v
60 57 58 59 3bitr4g φhBI∃!cIhc0˙vI0˙hvv=ιcI|hc0˙
61 60 biimpd φhBI∃!cIhc0˙vI0˙hvv=ιcI|hc0˙
62 61 necon1bd φhBI∃!cIhc0˙vI¬v=ιcI|hc0˙0˙=hv
63 62 imp φhBI∃!cIhc0˙vI¬v=ιcI|hc0˙0˙=hv
64 51 63 ifeqda φhBI∃!cIhc0˙vIifv=ιcI|hc0˙hv0˙=hv
65 50 64 eqtr2d φhBI∃!cIhc0˙vIhv=xIifx=ιcI|hc0˙hx0˙v
66 40 45 65 eqfnfvd φhBI∃!cIhc0˙h=xIifx=ιcI|hc0˙hx0˙
67 riotacl ∃!cIhc0˙ιcI|hc0˙I
68 67 adantl φhBI∃!cIhc0˙ιcI|hc0˙I
69 elmapi hBIh:IB
70 69 ad2antlr φhBI∃!cIhc0˙h:IB
71 70 68 ffvelcdmd φhBI∃!cIhc0˙hιcI|hc0˙B
72 7 ralrimivva φaIbBxIifx=ab0˙H
73 72 ad2antrr φhBI∃!cIhc0˙aIbBxIifx=ab0˙H
74 eqeq2 a=ιcI|hc0˙x=ax=ιcI|hc0˙
75 74 ifbid a=ιcI|hc0˙ifx=ab0˙=ifx=ιcI|hc0˙b0˙
76 75 mpteq2dv a=ιcI|hc0˙xIifx=ab0˙=xIifx=ιcI|hc0˙b0˙
77 76 eleq1d a=ιcI|hc0˙xIifx=ab0˙HxIifx=ιcI|hc0˙b0˙H
78 fveq2 x=ιcI|hc0˙hx=hιcI|hc0˙
79 78 eqeq2d x=ιcI|hc0˙b=hxb=hιcI|hc0˙
80 79 biimparc b=hιcI|hc0˙x=ιcI|hc0˙b=hx
81 80 ifeq1da b=hιcI|hc0˙ifx=ιcI|hc0˙b0˙=ifx=ιcI|hc0˙hx0˙
82 81 mpteq2dv b=hιcI|hc0˙xIifx=ιcI|hc0˙b0˙=xIifx=ιcI|hc0˙hx0˙
83 82 eleq1d b=hιcI|hc0˙xIifx=ιcI|hc0˙b0˙HxIifx=ιcI|hc0˙hx0˙H
84 77 83 rspc2va ιcI|hc0˙IhιcI|hc0˙BaIbBxIifx=ab0˙HxIifx=ιcI|hc0˙hx0˙H
85 68 71 73 84 syl21anc φhBI∃!cIhc0˙xIifx=ιcI|hc0˙hx0˙H
86 66 85 eqeltrd φhBI∃!cIhc0˙hH
87 86 ex φhBI∃!cIhc0˙hH
88 39 87 sylbid φhBI∃!ccsupp0˙hhH
89 29 88 biimtrid φhBI1=hsupp0˙hH
90 89 ralrimiva φhBI1=hsupp0˙hH
91 1 2 grpidcl GGrp0˙B
92 4 91 syl φ0˙B
93 92 ad5antr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xI0˙B
94 eqid BI=BI
95 simprl φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lBI
96 95 ad2antrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIlBI
97 simpr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIxI
98 94 96 97 mapfvd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIlxB
99 93 98 ifcld φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIifx=z0˙lxB
100 99 fmpttd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIifx=z0˙lx:IB
101 9 a1i φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙BV
102 5 ad4antr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙IV
103 101 102 elmapd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIifx=z0˙lxBIxIifx=z0˙lx:IB
104 100 103 mpbird φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lz0˙xIifx=z0˙lxBI
105 104 adantrl φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zIlz0˙xIifx=z0˙lxBI
106 fvoveq1 m=xIifx=z0˙lxmsupp0˙=xIifx=z0˙lxsupp0˙
107 106 eqeq2d m=xIifx=z0˙lxj=msupp0˙j=xIifx=z0˙lxsupp0˙
108 oveq1 m=xIifx=z0˙lxm+˙fxIifx=zlx0˙=xIifx=z0˙lx+˙fxIifx=zlx0˙
109 108 eqeq2d m=xIifx=z0˙lxl=m+˙fxIifx=zlx0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
110 107 109 anbi12d m=xIifx=z0˙lxj=msupp0˙l=m+˙fxIifx=zlx0˙j=xIifx=z0˙lxsupp0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
111 110 adantl φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zIlz0˙m=xIifx=z0˙lxj=msupp0˙l=m+˙fxIifx=zlx0˙j=xIifx=z0˙lxsupp0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
112 ovexd φjlBIj+1=lsupp0˙zIlz0˙lsupp0˙V
113 simprl φjlBIj+1=lsupp0˙zIlz0˙zI
114 simprr φjlBIj+1=lsupp0˙zIlz0˙lz0˙
115 elmapfn lBIlFnI
116 115 ad2antrl φjlBIj+1=lsupp0˙lFnI
117 116 adantr φjlBIj+1=lsupp0˙zIlz0˙lFnI
118 5 ad3antrrr φjlBIj+1=lsupp0˙zIlz0˙IV
119 33 a1i φjlBIj+1=lsupp0˙zIlz0˙0˙V
120 elsuppfn lFnIIV0˙Vzsupp0˙lzIlz0˙
121 117 118 119 120 syl3anc φjlBIj+1=lsupp0˙zIlz0˙zsupp0˙lzIlz0˙
122 113 114 121 mpbir2and φjlBIj+1=lsupp0˙zIlz0˙zsupp0˙l
123 simpllr φjlBIj+1=lsupp0˙zIlz0˙j
124 123 nnnn0d φjlBIj+1=lsupp0˙zIlz0˙j0
125 simplrr φjlBIj+1=lsupp0˙zIlz0˙j+1=lsupp0˙
126 125 eqcomd φjlBIj+1=lsupp0˙zIlz0˙lsupp0˙=j+1
127 hashdifsnp1 lsupp0˙Vzsupp0˙lj0lsupp0˙=j+1supp0˙lz=j
128 127 imp lsupp0˙Vzsupp0˙lj0lsupp0˙=j+1supp0˙lz=j
129 112 122 124 126 128 syl31anc φjlBIj+1=lsupp0˙zIlz0˙supp0˙lz=j
130 eldifsn vsupp0˙lzvsupp0˙lvz
131 fvex lxV
132 33 131 ifex ifx=z0˙lxV
133 eqid xIifx=z0˙lx=xIifx=z0˙lx
134 132 133 fnmpti xIifx=z0˙lxFnI
135 134 a1i φjlBIj+1=lsupp0˙lz0˙xIifx=z0˙lxFnI
136 5 ad3antrrr φjlBIj+1=lsupp0˙lz0˙IV
137 33 a1i φjlBIj+1=lsupp0˙lz0˙0˙V
138 elsuppfn xIifx=z0˙lxFnIIV0˙Vvsupp0˙xIifx=z0˙lxvIxIifx=z0˙lxv0˙
139 135 136 137 138 syl3anc φjlBIj+1=lsupp0˙lz0˙vsupp0˙xIifx=z0˙lxvIxIifx=z0˙lxv0˙
140 iftrue v=zifv=z0˙lv=0˙
141 olc v=zlv=0˙v=z
142 140 141 2thd v=zifv=z0˙lv=0˙lv=0˙v=z
143 iffalse ¬v=zifv=z0˙lv=lv
144 143 eqeq1d ¬v=zifv=z0˙lv=0˙lv=0˙
145 biorf ¬v=zlv=0˙v=zlv=0˙
146 orcom lv=0˙v=zv=zlv=0˙
147 145 146 bitr4di ¬v=zlv=0˙lv=0˙v=z
148 144 147 bitrd ¬v=zifv=z0˙lv=0˙lv=0˙v=z
149 142 148 pm2.61i ifv=z0˙lv=0˙lv=0˙v=z
150 149 a1i φjlBIj+1=lsupp0˙lz0˙ifv=z0˙lv=0˙lv=0˙v=z
151 150 necon3abid φjlBIj+1=lsupp0˙lz0˙ifv=z0˙lv0˙¬lv=0˙v=z
152 neanior lv0˙vz¬lv=0˙v=z
153 151 152 bitr4di φjlBIj+1=lsupp0˙lz0˙ifv=z0˙lv0˙lv0˙vz
154 153 anbi2d φjlBIj+1=lsupp0˙lz0˙vIifv=z0˙lv0˙vIlv0˙vz
155 anass vIlv0˙vzvIlv0˙vz
156 154 155 bitr4di φjlBIj+1=lsupp0˙lz0˙vIifv=z0˙lv0˙vIlv0˙vz
157 equequ1 x=vx=zv=z
158 fveq2 x=vlx=lv
159 157 158 ifbieq2d x=vifx=z0˙lx=ifv=z0˙lv
160 159 133 132 fvmpt3i vIxIifx=z0˙lxv=ifv=z0˙lv
161 160 adantl φjlBIj+1=lsupp0˙lz0˙vIxIifx=z0˙lxv=ifv=z0˙lv
162 161 neeq1d φjlBIj+1=lsupp0˙lz0˙vIxIifx=z0˙lxv0˙ifv=z0˙lv0˙
163 162 pm5.32da φjlBIj+1=lsupp0˙lz0˙vIxIifx=z0˙lxv0˙vIifv=z0˙lv0˙
164 116 adantr φjlBIj+1=lsupp0˙lz0˙lFnI
165 elsuppfn lFnIIV0˙Vvsupp0˙lvIlv0˙
166 164 136 137 165 syl3anc φjlBIj+1=lsupp0˙lz0˙vsupp0˙lvIlv0˙
167 166 anbi1d φjlBIj+1=lsupp0˙lz0˙vsupp0˙lvzvIlv0˙vz
168 156 163 167 3bitr4d φjlBIj+1=lsupp0˙lz0˙vIxIifx=z0˙lxv0˙vsupp0˙lvz
169 139 168 bitr2d φjlBIj+1=lsupp0˙lz0˙vsupp0˙lvzvsupp0˙xIifx=z0˙lx
170 130 169 bitrid φjlBIj+1=lsupp0˙lz0˙vsupp0˙lzvsupp0˙xIifx=z0˙lx
171 170 eqrdv φjlBIj+1=lsupp0˙lz0˙supp0˙lz=xIifx=z0˙lxsupp0˙
172 171 fveq2d φjlBIj+1=lsupp0˙lz0˙supp0˙lz=xIifx=z0˙lxsupp0˙
173 172 adantrl φjlBIj+1=lsupp0˙zIlz0˙supp0˙lz=xIifx=z0˙lxsupp0˙
174 129 173 eqtr3d φjlBIj+1=lsupp0˙zIlz0˙j=xIifx=z0˙lxsupp0˙
175 131 33 ifex ifx=zlx0˙V
176 eqid xIifx=zlx0˙=xIifx=zlx0˙
177 175 176 fnmpti xIifx=zlx0˙FnI
178 177 a1i φjlBIj+1=lsupp0˙lz0˙xIifx=zlx0˙FnI
179 inidm II=I
180 135 178 136 136 179 offn φjlBIj+1=lsupp0˙lz0˙xIifx=z0˙lx+˙fxIifx=zlx0˙FnI
181 157 158 ifbieq1d x=vifx=zlx0˙=ifv=zlv0˙
182 181 176 175 fvmpt3i vIxIifx=zlx0˙v=ifv=zlv0˙
183 182 adantl φjlBIj+1=lsupp0˙lz0˙vIxIifx=zlx0˙v=ifv=zlv0˙
184 135 178 136 136 179 161 183 ofval φjlBIj+1=lsupp0˙lz0˙vIxIifx=z0˙lx+˙fxIifx=zlx0˙v=ifv=z0˙lv+˙ifv=zlv0˙
185 4 ad4antr φjlBIj+1=lsupp0˙lz0˙vIGGrp
186 simplrl φjlBIj+1=lsupp0˙lz0˙vIlBI
187 186 anassrs φjlBIj+1=lsupp0˙lz0˙vIlBI
188 simpr φjlBIj+1=lsupp0˙lz0˙vIvI
189 94 187 188 mapfvd φjlBIj+1=lsupp0˙lz0˙vIlvB
190 1 3 2 grplid GGrplvB0˙+˙lv=lv
191 1 3 2 grprid GGrplvBlv+˙0˙=lv
192 190 191 ifeq12d GGrplvBifv=z0˙+˙lvlv+˙0˙=ifv=zlvlv
193 185 189 192 syl2anc φjlBIj+1=lsupp0˙lz0˙vIifv=z0˙+˙lvlv+˙0˙=ifv=zlvlv
194 ovif12 ifv=z0˙lv+˙ifv=zlv0˙=ifv=z0˙+˙lvlv+˙0˙
195 ifid ifv=zlvlv=lv
196 195 eqcomi lv=ifv=zlvlv
197 193 194 196 3eqtr4g φjlBIj+1=lsupp0˙lz0˙vIifv=z0˙lv+˙ifv=zlv0˙=lv
198 184 197 eqtr2d φjlBIj+1=lsupp0˙lz0˙vIlv=xIifx=z0˙lx+˙fxIifx=zlx0˙v
199 164 180 198 eqfnfvd φjlBIj+1=lsupp0˙lz0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
200 199 adantrl φjlBIj+1=lsupp0˙zIlz0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
201 174 200 jca φjlBIj+1=lsupp0˙zIlz0˙j=xIifx=z0˙lxsupp0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
202 201 adantllr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zIlz0˙j=xIifx=z0˙lxsupp0˙l=xIifx=z0˙lx+˙fxIifx=zlx0˙
203 105 111 202 rspcedvd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zIlz0˙mBIj=msupp0˙l=m+˙fxIifx=zlx0˙
204 115 ad2antrl φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lFnI
205 5 ad3antrrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙IV
206 33 a1i φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙0˙V
207 suppvalfn lFnIIV0˙Vlsupp0˙=zI|lz0˙
208 204 205 206 207 syl3anc φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lsupp0˙=zI|lz0˙
209 simprr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙j+1=lsupp0˙
210 peano2nn jj+1
211 210 ad3antlr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙j+1
212 211 nnne0d φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙j+10
213 209 212 eqnetrrd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lsupp0˙0
214 ovex lsupp0˙V
215 hasheq0 lsupp0˙Vlsupp0˙=0lsupp0˙=
216 215 necon3bid lsupp0˙Vlsupp0˙0lsupp0˙
217 214 216 mp1i φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lsupp0˙0lsupp0˙
218 213 217 mpbid φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lsupp0˙
219 208 218 eqnetrrd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zI|lz0˙
220 rabn0 zI|lz0˙zIlz0˙
221 219 220 sylib φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zIlz0˙
222 203 221 reximddv φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙zImBIj=msupp0˙l=m+˙fxIifx=zlx0˙
223 rexcom zImBIj=msupp0˙l=m+˙fxIifx=zlx0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙
224 222 223 sylib φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙
225 simprr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙l=m+˙fxIifx=zlx0˙
226 fvoveq1 h=mhsupp0˙=msupp0˙
227 226 eqeq2d h=mj=hsupp0˙j=msupp0˙
228 eleq1w h=mhHmH
229 227 228 imbi12d h=mj=hsupp0˙hHj=msupp0˙mH
230 229 rspccva hBIj=hsupp0˙hHmBIj=msupp0˙mH
231 230 adantll φjhBIj=hsupp0˙hHmBIj=msupp0˙mH
232 231 imp φjhBIj=hsupp0˙hHmBIj=msupp0˙mH
233 232 adantllr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIj=msupp0˙mH
234 233 adantlrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙mH
235 234 adantrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙mH
236 simplrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙zI
237 95 ad2antrr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙lBI
238 94 237 236 mapfvd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙lzB
239 72 ad5antr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙aIbBxIifx=ab0˙H
240 equequ2 a=zx=ax=z
241 240 ifbid a=zifx=ab0˙=ifx=zb0˙
242 241 mpteq2dv a=zxIifx=ab0˙=xIifx=zb0˙
243 242 eleq1d a=zxIifx=ab0˙HxIifx=zb0˙H
244 fveq2 x=zlx=lz
245 244 eqeq2d x=zb=lxb=lz
246 245 biimparc b=lzx=zb=lx
247 246 ifeq1da b=lzifx=zb0˙=ifx=zlx0˙
248 247 mpteq2dv b=lzxIifx=zb0˙=xIifx=zlx0˙
249 248 eleq1d b=lzxIifx=zb0˙HxIifx=zlx0˙H
250 243 249 rspc2va zIlzBaIbBxIifx=ab0˙HxIifx=zlx0˙H
251 236 238 239 250 syl21anc φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙xIifx=zlx0˙H
252 8 ralrimivva φxHyHx+˙fyH
253 252 ad5antr φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙xHyHx+˙fyH
254 ovrspc2v mHxIifx=zlx0˙HxHyHx+˙fyHm+˙fxIifx=zlx0˙H
255 235 251 253 254 syl21anc φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙m+˙fxIifx=zlx0˙H
256 225 255 eqeltrd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙lH
257 256 ex φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙lH
258 257 rexlimdvva φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙mBIzIj=msupp0˙l=m+˙fxIifx=zlx0˙lH
259 224 258 mpd φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lH
260 259 exp32 φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lH
261 260 ralrimiv φjhBIj=hsupp0˙hHlBIj+1=lsupp0˙lH
262 fvoveq1 l=hlsupp0˙=hsupp0˙
263 262 eqeq2d l=hj+1=lsupp0˙j+1=hsupp0˙
264 eleq1w l=hlHhH
265 263 264 imbi12d l=hj+1=lsupp0˙lHj+1=hsupp0˙hH
266 265 cbvralvw lBIj+1=lsupp0˙lHhBIj+1=hsupp0˙hH
267 261 266 sylib φjhBIj=hsupp0˙hHhBIj+1=hsupp0˙hH
268 15 18 21 24 90 267 nnindd φnhBIn=hsupp0˙hH
269 268 ralrimiva φnhBIn=hsupp0˙hH
270 ralcom nhBIn=hsupp0˙hHhBInn=hsupp0˙hH
271 269 270 sylib φhBInn=hsupp0˙hH
272 biidd n=hsupp0˙hHhH
273 272 ceqsralv hsupp0˙nn=hsupp0˙hHhH
274 273 biimpcd nn=hsupp0˙hHhsupp0˙hH
275 274 ralimi hBInn=hsupp0˙hHhBIhsupp0˙hH
276 271 275 syl φhBIhsupp0˙hH
277 fvoveq1 h=Xhsupp0˙=Xsupp0˙
278 277 eleq1d h=Xhsupp0˙Xsupp0˙
279 eleq1 h=XhHXH
280 278 279 imbi12d h=Xhsupp0˙hHXsupp0˙XH
281 280 rspcv XBIhBIhsupp0˙hHXsupp0˙XH
282 276 281 syl5com φXBIXsupp0˙XH
283 282 com23 φXsupp0˙XBIXH
284 283 imp φXsupp0˙XBIXH
285 12 284 sylbird φXsupp0˙X:IBXH
286 285 imp φXsupp0˙X:IBXH
287 286 an32s φX:IBXsupp0˙XH
288 287 adantlr φX:IBfinSupp0˙XXsupp0˙XH
289 ovex Xsupp0˙V
290 hasheq0 Xsupp0˙VXsupp0˙=0Xsupp0˙=
291 289 290 ax-mp Xsupp0˙=0Xsupp0˙=
292 ffn X:IBXFnI
293 292 ad2antlr φX:IBfinSupp0˙XXFnI
294 5 ad2antrr φX:IBfinSupp0˙XIV
295 33 a1i φX:IBfinSupp0˙X0˙V
296 fnsuppeq0 XFnIIV0˙VXsupp0˙=X=I×0˙
297 293 294 295 296 syl3anc φX:IBfinSupp0˙XXsupp0˙=X=I×0˙
298 297 biimpa φX:IBfinSupp0˙XXsupp0˙=X=I×0˙
299 6 ad3antrrr φX:IBfinSupp0˙XXsupp0˙=I×0˙H
300 298 299 eqeltrd φX:IBfinSupp0˙XXsupp0˙=XH
301 291 300 sylan2b φX:IBfinSupp0˙XXsupp0˙=0XH
302 simpr φX:IBfinSupp0˙XfinSupp0˙X
303 302 fsuppimpd φX:IBfinSupp0˙XXsupp0˙Fin
304 hashcl Xsupp0˙FinXsupp0˙0
305 303 304 syl φX:IBfinSupp0˙XXsupp0˙0
306 elnn0 Xsupp0˙0Xsupp0˙Xsupp0˙=0
307 305 306 sylib φX:IBfinSupp0˙XXsupp0˙Xsupp0˙=0
308 288 301 307 mpjaodan φX:IBfinSupp0˙XXH
309 308 anasss φX:IBfinSupp0˙XXH