Description: Induction on functions F : A --> B with finite support, or in other words the base set of the free module (see frlmelbas and frlmplusgval ). This theorem is structurally general for polynomial proof usage (see mplelbas and mpladd ). Note that hypothesis 0 is redundant when I is nonempty. (Contributed by SN, 18-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppind.b | |
|
fsuppind.z | |
||
fsuppind.p | |
||
fsuppind.g | |
||
fsuppind.v | |
||
fsuppind.0 | |
||
fsuppind.1 | |
||
fsuppind.2 | |
||
Assertion | fsuppind | |