Metamath Proof Explorer


Theorem gg-dvfsumlem2

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016) Use mpomulcn instead of mulcn as direct dependency. (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-dvfsum.s S=T+∞
gg-dvfsum.z Z=M
gg-dvfsum.m φM
gg-dvfsum.d φD
gg-dvfsum.md φMD+1
gg-dvfsum.t φT
gg-dvfsum.a φxSA
gg-dvfsum.b1 φxSBV
gg-dvfsum.b2 φxZB
gg-dvfsum.b3 φdxSAdx=xSB
gg-dvfsum.c x=kB=C
gg-dvfsum.u φU*
gg-dvfsum.l φxSkSDxxkkUCB
gg-dvfsum.h H=xSxxB+k=MxC-A
gg-dvfsumlem1.1 φXS
gg-dvfsumlem1.2 φYS
gg-dvfsumlem1.3 φDX
gg-dvfsumlem1.4 φXY
gg-dvfsumlem1.5 φYU
gg-dvfsumlem1.6 φYX+1
Assertion gg-dvfsumlem2 φHYHXHXX/xBHYY/xB

Proof

Step Hyp Ref Expression
1 gg-dvfsum.s S=T+∞
2 gg-dvfsum.z Z=M
3 gg-dvfsum.m φM
4 gg-dvfsum.d φD
5 gg-dvfsum.md φMD+1
6 gg-dvfsum.t φT
7 gg-dvfsum.a φxSA
8 gg-dvfsum.b1 φxSBV
9 gg-dvfsum.b2 φxZB
10 gg-dvfsum.b3 φdxSAdx=xSB
11 gg-dvfsum.c x=kB=C
12 gg-dvfsum.u φU*
13 gg-dvfsum.l φxSkSDxxkkUCB
14 gg-dvfsum.h H=xSxxB+k=MxC-A
15 gg-dvfsumlem1.1 φXS
16 gg-dvfsumlem1.2 φYS
17 gg-dvfsumlem1.3 φDX
18 gg-dvfsumlem1.4 φXY
19 gg-dvfsumlem1.5 φYU
20 gg-dvfsumlem1.6 φYX+1
21 ioossre T+∞
22 1 21 eqsstri S
23 22 16 sselid φY
24 15 1 eleqtrdi φXT+∞
25 6 rexrd φT*
26 elioopnf T*XT+∞XT<X
27 25 26 syl φXT+∞XT<X
28 24 27 mpbid φXT<X
29 28 simpld φX
30 reflcl XX
31 29 30 syl φX
32 23 31 resubcld φYX
33 csbeq1 y=Yy/xB=Y/xB
34 33 eleq1d y=Yy/xBY/xB
35 22 a1i φS
36 35 7 8 10 dvmptrecl φxSB
37 36 fmpttd φxSB:S
38 nfcv _yB
39 nfcsb1v _xy/xB
40 csbeq1a x=yB=y/xB
41 38 39 40 cbvmpt xSB=ySy/xB
42 41 fmpt ySy/xBxSB:S
43 37 42 sylibr φySy/xB
44 34 43 16 rspcdva φY/xB
45 32 44 remulcld φYXY/xB
46 csbeq1 y=Yy/xA=Y/xA
47 46 eleq1d y=Yy/xAY/xA
48 7 fmpttd φxSA:S
49 nfcv _yA
50 nfcsb1v _xy/xA
51 csbeq1a x=yA=y/xA
52 49 50 51 cbvmpt xSA=ySy/xA
53 52 fmpt ySy/xAxSA:S
54 48 53 sylibr φySy/xA
55 47 54 16 rspcdva φY/xA
56 45 55 resubcld φYXY/xBY/xA
57 29 31 resubcld φXX
58 csbeq1 y=Xy/xB=X/xB
59 58 eleq1d y=Xy/xBX/xB
60 59 43 15 rspcdva φX/xB
61 57 60 remulcld φXXX/xB
62 csbeq1 y=Xy/xA=X/xA
63 62 eleq1d y=Xy/xAX/xA
64 63 54 15 rspcdva φX/xA
65 61 64 resubcld φXXX/xBX/xA
66 fzfid φMXFin
67 9 ralrimiva φxZB
68 elfzuz kMXkM
69 68 2 eleqtrrdi kMXkZ
70 11 eleq1d x=kBC
71 70 rspccva xZBkZC
72 67 69 71 syl2an φkMXC
73 66 72 fsumrecl φk=MXC
74 57 44 remulcld φXXY/xB
75 74 64 resubcld φXXY/xBX/xA
76 23 29 resubcld φYX
77 44 76 remulcld φY/xBYX
78 44 recnd φY/xB
79 23 recnd φY
80 29 recnd φX
81 78 79 80 subdid φY/xBYX=Y/xBYY/xBX
82 eqid TopOpenfld=TopOpenfld
83 82 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
84 csbeq1 z=Yz/xB=Y/xB
85 84 eleq1d z=Yz/xBY/xB
86 nfcv _zB
87 nfcsb1v _xz/xB
88 csbeq1a x=zB=z/xB
89 86 87 88 cbvmpt xSB=zSz/xB
90 89 fmpt zSz/xBxSB:S
91 37 90 sylibr φzSz/xB
92 85 91 16 rspcdva φY/xB
93 pnfxr +∞*
94 93 a1i φ+∞*
95 28 simprd φT<X
96 23 ltpnfd φY<+∞
97 iccssioo T*+∞*T<XY<+∞XYT+∞
98 25 94 95 96 97 syl22anc φXYT+∞
99 98 21 sstrdi φXY
100 ax-resscn
101 99 100 sstrdi φXY
102 100 a1i φ
103 cncfmptc Y/xBXYyXYY/xB:XYcn
104 92 101 102 103 syl3anc φyXYY/xB:XYcn
105 cncfmptid XYyXYy:XYcn
106 99 100 105 sylancl φyXYy:XYcn
107 remulcl Y/xByY/xBy
108 simpl Y/xByY/xB
109 108 recnd Y/xByY/xB
110 simpr Y/xByy
111 110 recnd Y/xByy
112 109 111 jca Y/xByY/xBy
113 ovmul Y/xByY/xBu,vuvy=Y/xBy
114 113 eqcomd Y/xByY/xBy=Y/xBu,vuvy
115 112 114 syl Y/xByY/xBy=Y/xBu,vuvy
116 115 eleq1d Y/xByY/xByY/xBu,vuvy
117 116 biimpd Y/xByY/xByY/xBu,vuvy
118 107 117 mpd Y/xByY/xBu,vuvy
119 82 83 104 106 100 118 cncfmpt2ss φyXYY/xBu,vuvy:XYcn
120 df-mpt yXYY/xBu,vuvy=yw|yXYw=Y/xBu,vuvy
121 120 eleq1i yXYY/xBu,vuvy:XYcnyw|yXYw=Y/xBu,vuvy:XYcn
122 121 biimpi yXYY/xBu,vuvy:XYcnyw|yXYw=Y/xBu,vuvy:XYcn
123 119 122 syl φyw|yXYw=Y/xBu,vuvy:XYcn
124 idd φyXYyXY
125 124 a1dd φyXYw=Y/xBu,vuvyyXY
126 125 impd φyXYw=Y/xBu,vuvyyXY
127 csbeq1 m=Ym/xB=Y/xB
128 127 eleq1d m=Ym/xBY/xB
129 nfcv _mB
130 nfcsb1v _xm/xB
131 csbeq1a x=mB=m/xB
132 129 130 131 cbvmpt xSB=mSm/xB
133 132 fmpt mSm/xBxSB:S
134 37 133 sylibr φmSm/xB
135 128 134 16 rspcdva φY/xB
136 135 recnd φY/xB
137 136 adantr φyXYY/xB
138 elicc2 XYyXYyXyyY
139 29 23 138 syl2anc φyXYyXyyY
140 139 biimpa φyXYyXyyY
141 140 simp1d φyXYy
142 141 recnd φyXYy
143 137 142 jca φyXYY/xBy
144 143 113 syl φyXYY/xBu,vuvy=Y/xBy
145 144 eqeq2d φyXYw=Y/xBu,vuvyw=Y/xBy
146 145 biimpd φyXYw=Y/xBu,vuvyw=Y/xBy
147 146 ex φyXYw=Y/xBu,vuvyw=Y/xBy
148 147 impd φyXYw=Y/xBu,vuvyw=Y/xBy
149 126 148 jcad φyXYw=Y/xBu,vuvyyXYw=Y/xBy
150 124 a1dd φyXYw=Y/xByyXY
151 150 impd φyXYw=Y/xByyXY
152 csbeq1 k=Yk/xB=Y/xB
153 152 eleq1d k=Yk/xBY/xB
154 nfcv _kB
155 nfcsb1v _xk/xB
156 csbeq1a x=kB=k/xB
157 154 155 156 cbvmpt xSB=kSk/xB
158 157 fmpt kSk/xBxSB:S
159 37 158 sylibr φkSk/xB
160 153 159 16 rspcdva φY/xB
161 160 recnd φY/xB
162 161 adantr φyXYY/xB
163 162 142 jca φyXYY/xBy
164 163 114 syl φyXYY/xBy=Y/xBu,vuvy
165 164 eqeq2d φyXYw=Y/xByw=Y/xBu,vuvy
166 165 biimpd φyXYw=Y/xByw=Y/xBu,vuvy
167 166 ex φyXYw=Y/xByw=Y/xBu,vuvy
168 167 impd φyXYw=Y/xByw=Y/xBu,vuvy
169 151 168 jcad φyXYw=Y/xByyXYw=Y/xBu,vuvy
170 149 169 impbid φyXYw=Y/xBu,vuvyyXYw=Y/xBy
171 170 opabbidv φyw|yXYw=Y/xBu,vuvy=yw|yXYw=Y/xBy
172 df-mpt yXYY/xBy=yw|yXYw=Y/xBy
173 172 eqcomi yw|yXYw=Y/xBy=yXYY/xBy
174 173 eqeq2i yw|yXYw=Y/xBu,vuvy=yw|yXYw=Y/xByyw|yXYw=Y/xBu,vuvy=yXYY/xBy
175 174 biimpi yw|yXYw=Y/xBu,vuvy=yw|yXYw=Y/xByyw|yXYw=Y/xBu,vuvy=yXYY/xBy
176 171 175 syl φyw|yXYw=Y/xBu,vuvy=yXYY/xBy
177 176 eleq1d φyw|yXYw=Y/xBu,vuvy:XYcnyXYY/xBy:XYcn
178 177 biimpd φyw|yXYw=Y/xBu,vuvy:XYcnyXYY/xBy:XYcn
179 123 178 mpd φyXYY/xBy:XYcn
180 reelprrecn
181 180 a1i φ
182 ioossicc XYXY
183 182 99 sstrid φXY
184 183 sselda φyXYy
185 184 recnd φyXYy
186 1cnd φyXY1
187 simpr φyy
188 187 recnd φyy
189 1cnd φy1
190 181 dvmptid φdyydy=y1
191 82 tgioo2 topGenran.=TopOpenfld𝑡
192 iooretop XYtopGenran.
193 192 a1i φXYtopGenran.
194 181 188 189 190 183 191 82 193 dvmptres φdyXYydy=yXY1
195 181 185 186 194 78 dvmptcmul φdyXYY/xBydy=yXYY/xB1
196 78 mulridd φY/xB1=Y/xB
197 196 mpteq2dv φyXYY/xB1=yXYY/xB
198 195 197 eqtrd φdyXYY/xBydy=yXYY/xB
199 98 1 sseqtrrdi φXYS
200 199 resmptd φySy/xAXY=yXYy/xA
201 7 recnd φxSA
202 201 fmpttd φxSA:S
203 10 dmeqd φdomdxSAdx=domxSB
204 8 ralrimiva φxSBV
205 dmmptg xSBVdomxSB=S
206 204 205 syl φdomxSB=S
207 203 206 eqtrd φdomdxSAdx=S
208 dvcn xSA:SSdomdxSAdx=SxSA:Scn
209 102 202 35 207 208 syl31anc φxSA:Scn
210 cncfcdm xSA:ScnxSA:ScnxSA:S
211 100 209 210 sylancr φxSA:ScnxSA:S
212 48 211 mpbird φxSA:Scn
213 52 212 eqeltrrid φySy/xA:Scn
214 rescncf XYSySy/xA:ScnySy/xAXY:XYcn
215 199 213 214 sylc φySy/xAXY:XYcn
216 200 215 eqeltrrd φyXYy/xA:XYcn
217 54 r19.21bi φySy/xA
218 217 recnd φySy/xA
219 43 r19.21bi φySy/xB
220 52 oveq2i dxSAdx=dySy/xAdy
221 10 220 41 3eqtr3g φdySy/xAdy=ySy/xB
222 182 199 sstrid φXYS
223 181 218 219 221 222 191 82 193 dvmptres φdyXYy/xAdy=yXYy/xB
224 182 sseli yXYyXY
225 simpl φyXYφ
226 199 sselda φyXYyS
227 16 adantr φyXYYS
228 4 adantr φyXYD
229 29 adantr φyXYX
230 17 adantr φyXYDX
231 140 simp2d φyXYXy
232 228 229 141 230 231 letrd φyXYDy
233 140 simp3d φyXYyY
234 19 adantr φyXYYU
235 simp2r φySYSDyyYYUYS
236 eleq1 k=YkSYS
237 236 anbi2d k=YySkSySYS
238 breq2 k=YykyY
239 breq1 k=YkUYU
240 238 239 3anbi23d k=YDyykkUDyyYYU
241 237 240 3anbi23d k=YφySkSDyykkUφySYSDyyYYU
242 vex kV
243 242 11 csbie k/xB=C
244 243 152 eqtr3id k=YC=Y/xB
245 244 breq1d k=YCy/xBY/xBy/xB
246 241 245 imbi12d k=YφySkSDyykkUCy/xBφySYSDyyYYUY/xBy/xB
247 nfv xφySkSDyykkU
248 nfcv _xC
249 nfcv _x
250 248 249 39 nfbr xCy/xB
251 247 250 nfim xφySkSDyykkUCy/xB
252 eleq1 x=yxSyS
253 252 anbi1d x=yxSkSySkS
254 breq2 x=yDxDy
255 breq1 x=yxkyk
256 254 255 3anbi12d x=yDxxkkUDyykkU
257 253 256 3anbi23d x=yφxSkSDxxkkUφySkSDyykkU
258 40 breq2d x=yCBCy/xB
259 257 258 imbi12d x=yφxSkSDxxkkUCBφySkSDyykkUCy/xB
260 251 259 13 chvarfv φySkSDyykkUCy/xB
261 246 260 vtoclg YSφySYSDyyYYUY/xBy/xB
262 235 261 mpcom φySYSDyyYYUY/xBy/xB
263 225 226 227 232 233 234 262 syl123anc φyXYY/xBy/xB
264 224 263 sylan2 φyXYY/xBy/xB
265 29 rexrd φX*
266 23 rexrd φY*
267 lbicc2 X*Y*XYXXY
268 265 266 18 267 syl3anc φXXY
269 ubicc2 X*Y*XYYXY
270 265 266 18 269 syl3anc φYXY
271 oveq2 y=XY/xBy=Y/xBX
272 oveq2 y=YY/xBy=Y/xBY
273 29 23 179 198 216 223 264 268 270 18 271 62 272 46 dvle φY/xBYY/xBXY/xAX/xA
274 81 273 eqbrtrd φY/xBYXY/xAX/xA
275 77 55 64 274 lesubd φX/xAY/xAY/xBYX
276 74 recnd φXXY/xB
277 45 recnd φYXY/xB
278 55 recnd φY/xA
279 276 277 278 subsubd φXXY/xBYXY/xBY/xA=XXY/xB-YXY/xB+Y/xA
280 277 276 negsubdi2d φYXY/xBXXY/xB=XXY/xBYXY/xB
281 31 recnd φX
282 79 80 281 nnncan2d φY-X-XX=YX
283 282 oveq1d φY-X-XXY/xB=YXY/xB
284 32 recnd φYX
285 57 recnd φXX
286 284 285 78 subdird φY-X-XXY/xB=YXY/xBXXY/xB
287 76 recnd φYX
288 287 78 mulcomd φYXY/xB=Y/xBYX
289 283 286 288 3eqtr3d φYXY/xBXXY/xB=Y/xBYX
290 289 negeqd φYXY/xBXXY/xB=Y/xBYX
291 280 290 eqtr3d φXXY/xBYXY/xB=Y/xBYX
292 291 oveq1d φXXY/xB-YXY/xB+Y/xA=-Y/xBYX+Y/xA
293 77 recnd φY/xBYX
294 293 278 negsubdid φY/xBYXY/xA=-Y/xBYX+Y/xA
295 292 294 eqtr4d φXXY/xB-YXY/xB+Y/xA=Y/xBYXY/xA
296 293 278 negsubdi2d φY/xBYXY/xA=Y/xAY/xBYX
297 279 295 296 3eqtrd φXXY/xBYXY/xBY/xA=Y/xAY/xBYX
298 275 297 breqtrrd φX/xAXXY/xBYXY/xBY/xA
299 64 74 56 298 lesubd φYXY/xBY/xAXXY/xBX/xA
300 flle XXX
301 29 300 syl φXX
302 29 31 subge0d φ0XXXX
303 301 302 mpbird φ0XX
304 58 breq2d y=XY/xBy/xBY/xBX/xB
305 263 ralrimiva φyXYY/xBy/xB
306 304 305 268 rspcdva φY/xBX/xB
307 44 60 57 303 306 lemul2ad φXXY/xBXXX/xB
308 74 61 64 307 lesub1dd φXXY/xBX/xAXXX/xBX/xA
309 56 75 65 299 308 letrd φYXY/xBY/xAXXX/xBX/xA
310 56 65 73 309 leadd1dd φYXY/xB-Y/xA+k=MXCXXX/xB-X/xA+k=MXC
311 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dvfsumlem1 φHY=YXY/xB-Y/xA+k=MXC
312 29 leidd φXX
313 265 266 12 18 19 xrletrd φXU
314 fllep1 XXX+1
315 29 314 syl φXX+1
316 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 312 313 315 dvfsumlem1 φHX=XXX/xB-X/xA+k=MXC
317 310 311 316 3brtr4d φHYHX
318 65 60 resubcld φXXX/xB-X/xA-X/xB
319 56 44 resubcld φYXY/xB-Y/xA-Y/xB
320 peano2rem XXX-X-1
321 57 320 syl φX-X-1
322 321 60 remulcld φX-X-1X/xB
323 322 64 resubcld φX-X-1X/xBX/xA
324 peano2rem YXY-X-1
325 32 324 syl φY-X-1
326 325 60 remulcld φY-X-1X/xB
327 326 55 resubcld φY-X-1X/xBY/xA
328 325 44 remulcld φY-X-1Y/xB
329 328 55 resubcld φY-X-1Y/xBY/xA
330 322 recnd φX-X-1X/xB
331 326 recnd φY-X-1X/xB
332 330 331 subcld φX-X-1X/xBY-X-1X/xB
333 332 278 addcomd φX-X-1X/xB-Y-X-1X/xB+Y/xA=Y/xA+X-X-1X/xB-Y-X-1X/xB
334 330 331 278 subsubd φX-X-1X/xBY-X-1X/xBY/xA=X-X-1X/xB-Y-X-1X/xB+Y/xA
335 278 331 330 subsub2d φY/xAY-X-1X/xBX-X-1X/xB=Y/xA+X-X-1X/xB-Y-X-1X/xB
336 333 334 335 3eqtr4d φX-X-1X/xBY-X-1X/xBY/xA=Y/xAY-X-1X/xBX-X-1X/xB
337 1cnd φ1
338 284 285 337 nnncan2d φYX-1-X-X-1=Y-X-XX
339 338 282 eqtrd φYX-1-X-X-1=YX
340 339 oveq1d φYX-1-X-X-1X/xB=YXX/xB
341 325 recnd φY-X-1
342 321 recnd φX-X-1
343 60 recnd φX/xB
344 341 342 343 subdird φYX-1-X-X-1X/xB=Y-X-1X/xBX-X-1X/xB
345 287 343 mulcomd φYXX/xB=X/xBYX
346 340 344 345 3eqtr3d φY-X-1X/xBX-X-1X/xB=X/xBYX
347 346 oveq2d φY/xAY-X-1X/xBX-X-1X/xB=Y/xAX/xBYX
348 336 347 eqtrd φX-X-1X/xBY-X-1X/xBY/xA=Y/xAX/xBYX
349 60 76 remulcld φX/xBYX
350 cncfmptc X/xBXYyXYX/xB:XYcn
351 60 101 102 350 syl3anc φyXYX/xB:XYcn
352 remulcl X/xByX/xBy
353 simpl X/xByX/xB
354 353 recnd X/xByX/xB
355 simpr X/xByy
356 355 recnd X/xByy
357 354 356 jca X/xByX/xBy
358 ovmul X/xByX/xBu,vuvy=X/xBy
359 358 eqcomd X/xByX/xBy=X/xBu,vuvy
360 357 359 syl X/xByX/xBy=X/xBu,vuvy
361 360 eleq1d X/xByX/xByX/xBu,vuvy
362 361 biimpd X/xByX/xByX/xBu,vuvy
363 352 362 mpd X/xByX/xBu,vuvy
364 82 83 351 106 100 363 cncfmpt2ss φyXYX/xBu,vuvy:XYcn
365 df-mpt yXYX/xBu,vuvy=yw|yXYw=X/xBu,vuvy
366 365 eleq1i yXYX/xBu,vuvy:XYcnyw|yXYw=X/xBu,vuvy:XYcn
367 366 biimpi yXYX/xBu,vuvy:XYcnyw|yXYw=X/xBu,vuvy:XYcn
368 364 367 syl φyw|yXYw=X/xBu,vuvy:XYcn
369 124 a1dd φyXYw=X/xBu,vuvyyXY
370 369 impd φyXYw=X/xBu,vuvyyXY
371 343 adantr φyXYX/xB
372 371 142 jca φyXYX/xBy
373 372 358 syl φyXYX/xBu,vuvy=X/xBy
374 373 eqeq2d φyXYw=X/xBu,vuvyw=X/xBy
375 374 biimpd φyXYw=X/xBu,vuvyw=X/xBy
376 375 ex φyXYw=X/xBu,vuvyw=X/xBy
377 376 impd φyXYw=X/xBu,vuvyw=X/xBy
378 370 377 jcad φyXYw=X/xBu,vuvyyXYw=X/xBy
379 124 a1dd φyXYw=X/xByyXY
380 379 impd φyXYw=X/xByyXY
381 372 359 syl φyXYX/xBy=X/xBu,vuvy
382 381 eqeq2d φyXYw=X/xByw=X/xBu,vuvy
383 382 biimpd φyXYw=X/xByw=X/xBu,vuvy
384 383 ex φyXYw=X/xByw=X/xBu,vuvy
385 384 impd φyXYw=X/xByw=X/xBu,vuvy
386 380 385 jcad φyXYw=X/xByyXYw=X/xBu,vuvy
387 378 386 impbid φyXYw=X/xBu,vuvyyXYw=X/xBy
388 387 opabbidv φyw|yXYw=X/xBu,vuvy=yw|yXYw=X/xBy
389 df-mpt yXYX/xBy=yw|yXYw=X/xBy
390 389 eqcomi yw|yXYw=X/xBy=yXYX/xBy
391 390 eqeq2i yw|yXYw=X/xBu,vuvy=yw|yXYw=X/xByyw|yXYw=X/xBu,vuvy=yXYX/xBy
392 391 biimpi yw|yXYw=X/xBu,vuvy=yw|yXYw=X/xByyw|yXYw=X/xBu,vuvy=yXYX/xBy
393 388 392 syl φyw|yXYw=X/xBu,vuvy=yXYX/xBy
394 393 eleq1d φyw|yXYw=X/xBu,vuvy:XYcnyXYX/xBy:XYcn
395 394 biimpd φyw|yXYw=X/xBu,vuvy:XYcnyXYX/xBy:XYcn
396 368 395 mpd φyXYX/xBy:XYcn
397 181 185 186 194 343 dvmptcmul φdyXYX/xBydy=yXYX/xB1
398 343 mulridd φX/xB1=X/xB
399 398 mpteq2dv φyXYX/xB1=yXYX/xB
400 397 399 eqtrd φdyXYX/xBydy=yXYX/xB
401 15 adantr φyXYXS
402 141 rexrd φyXYy*
403 266 adantr φyXYY*
404 12 adantr φyXYU*
405 402 403 404 233 234 xrletrd φyXYyU
406 vex yV
407 eleq1 k=ykSyS
408 407 anbi2d k=yXSkSXSyS
409 breq2 k=yXkXy
410 breq1 k=ykUyU
411 409 410 3anbi23d k=yDXXkkUDXXyyU
412 408 411 3anbi23d k=yφXSkSDXXkkUφXSySDXXyyU
413 csbeq1 k=yk/xB=y/xB
414 243 413 eqtr3id k=yC=y/xB
415 414 breq1d k=yCX/xBy/xBX/xB
416 412 415 imbi12d k=yφXSkSDXXkkUCX/xBφXSySDXXyyUy/xBX/xB
417 simp2l φXSkSDXXkkUXS
418 nfv xφXSkSDXXkkU
419 nfcsb1v _xX/xB
420 248 249 419 nfbr xCX/xB
421 418 420 nfim xφXSkSDXXkkUCX/xB
422 eleq1 x=XxSXS
423 422 anbi1d x=XxSkSXSkS
424 breq2 x=XDxDX
425 breq1 x=XxkXk
426 424 425 3anbi12d x=XDxxkkUDXXkkU
427 423 426 3anbi23d x=XφxSkSDxxkkUφXSkSDXXkkU
428 csbeq1a x=XB=X/xB
429 428 breq2d x=XCBCX/xB
430 427 429 imbi12d x=XφxSkSDxxkkUCBφXSkSDXXkkUCX/xB
431 421 430 13 vtoclg1f XSφXSkSDXXkkUCX/xB
432 417 431 mpcom φXSkSDXXkkUCX/xB
433 406 416 432 vtocl φXSySDXXyyUy/xBX/xB
434 225 401 226 230 231 405 433 syl123anc φyXYy/xBX/xB
435 224 434 sylan2 φyXYy/xBX/xB
436 oveq2 y=XX/xBy=X/xBX
437 oveq2 y=YX/xBy=X/xBY
438 29 23 216 223 396 400 435 268 270 18 62 436 46 437 dvle φY/xAX/xAX/xBYX/xBX
439 343 79 80 subdid φX/xBYX=X/xBYX/xBX
440 438 439 breqtrrd φY/xAX/xAX/xBYX
441 55 64 349 440 subled φY/xAX/xBYXX/xA
442 348 441 eqbrtrd φX-X-1X/xBY-X-1X/xBY/xAX/xA
443 322 327 64 442 subled φX-X-1X/xBX/xAY-X-1X/xBY/xA
444 325 renegcld φY-X-1
445 1red φ1
446 23 31 445 lesubadd2d φYX1YX+1
447 20 446 mpbird φYX1
448 32 445 suble0d φY-X-10YX1
449 447 448 mpbird φY-X-10
450 325 le0neg1d φY-X-100Y-X-1
451 449 450 mpbid φ0Y-X-1
452 44 60 444 451 306 lemul2ad φY-X-1Y/xBY-X-1X/xB
453 341 78 mulneg1d φY-X-1Y/xB=Y-X-1Y/xB
454 341 343 mulneg1d φY-X-1X/xB=Y-X-1X/xB
455 452 453 454 3brtr3d φY-X-1Y/xBY-X-1X/xB
456 326 328 lenegd φY-X-1X/xBY-X-1Y/xBY-X-1Y/xBY-X-1X/xB
457 455 456 mpbird φY-X-1X/xBY-X-1Y/xB
458 326 328 55 457 lesub1dd φY-X-1X/xBY/xAY-X-1Y/xBY/xA
459 323 327 329 443 458 letrd φX-X-1X/xBX/xAY-X-1Y/xBY/xA
460 285 337 343 subdird φX-X-1X/xB=XXX/xB1X/xB
461 343 mullidd φ1X/xB=X/xB
462 461 oveq2d φXXX/xB1X/xB=XXX/xBX/xB
463 460 462 eqtrd φX-X-1X/xB=XXX/xBX/xB
464 463 oveq1d φX-X-1X/xBX/xA=XXX/xB-X/xB-X/xA
465 284 337 78 subdird φY-X-1Y/xB=YXY/xB1Y/xB
466 78 mullidd φ1Y/xB=Y/xB
467 466 oveq2d φYXY/xB1Y/xB=YXY/xBY/xB
468 465 467 eqtrd φY-X-1Y/xB=YXY/xBY/xB
469 468 oveq1d φY-X-1Y/xBY/xA=YXY/xB-Y/xB-Y/xA
470 459 464 469 3brtr3d φXXX/xB-X/xB-X/xAYXY/xB-Y/xB-Y/xA
471 61 recnd φXXX/xB
472 64 recnd φX/xA
473 471 472 343 sub32d φXXX/xB-X/xA-X/xB=XXX/xB-X/xB-X/xA
474 277 278 78 sub32d φYXY/xB-Y/xA-Y/xB=YXY/xB-Y/xB-Y/xA
475 470 473 474 3brtr4d φXXX/xB-X/xA-X/xBYXY/xB-Y/xA-Y/xB
476 318 319 73 475 leadd1dd φXXX/xBX/xA-X/xB+k=MXCYXY/xBY/xA-Y/xB+k=MXC
477 65 recnd φXXX/xBX/xA
478 73 recnd φk=MXC
479 477 478 343 addsubd φXXX/xBX/xA+k=MXC-X/xB=XXX/xBX/xA-X/xB+k=MXC
480 56 recnd φYXY/xBY/xA
481 480 478 78 addsubd φYXY/xBY/xA+k=MXC-Y/xB=YXY/xBY/xA-Y/xB+k=MXC
482 476 479 481 3brtr4d φXXX/xBX/xA+k=MXC-X/xBYXY/xBY/xA+k=MXC-Y/xB
483 316 oveq1d φHXX/xB=XXX/xBX/xA+k=MXC-X/xB
484 311 oveq1d φHYY/xB=YXY/xBY/xA+k=MXC-Y/xB
485 482 483 484 3brtr4d φHXX/xBHYY/xB
486 317 485 jca φHYHXHXX/xBHYY/xB