Metamath Proof Explorer


Theorem itgsubstlem

Description: Lemma for itgsubst . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses itgsubst.x φX
itgsubst.y φY
itgsubst.le φXY
itgsubst.z φZ*
itgsubst.w φW*
itgsubst.a φxXYA:XYcnZW
itgsubst.b φxXYBXYcn𝐿1
itgsubst.c φuZWC:ZWcn
itgsubst.da φdxXYAdx=xXYB
itgsubst.e u=AC=E
itgsubst.k x=XA=K
itgsubst.l x=YA=L
itgsubst.m φMZW
itgsubst.n φNZW
itgsubst.cl2 φxXYAMN
Assertion itgsubstlem φKLCdu=XYEBdx

Proof

Step Hyp Ref Expression
1 itgsubst.x φX
2 itgsubst.y φY
3 itgsubst.le φXY
4 itgsubst.z φZ*
5 itgsubst.w φW*
6 itgsubst.a φxXYA:XYcnZW
7 itgsubst.b φxXYBXYcn𝐿1
8 itgsubst.c φuZWC:ZWcn
9 itgsubst.da φdxXYAdx=xXYB
10 itgsubst.e u=AC=E
11 itgsubst.k x=XA=K
12 itgsubst.l x=YA=L
13 itgsubst.m φMZW
14 itgsubst.n φNZW
15 itgsubst.cl2 φxXYAMN
16 3 ditgpos φXYEBdx=XYEBdx
17 ax-resscn
18 17 a1i φ
19 iccssre XYXY
20 1 2 19 syl2anc φXY
21 eqidd φxXYA=xXYA
22 eqidd φvMNMvCdu=vMNMvCdu
23 oveq2 v=AMv=MA
24 itgeq1 Mv=MAMvCdu=MACdu
25 23 24 syl v=AMvCdu=MACdu
26 15 21 22 25 fmptco φvMNMvCduxXYA=xXYMACdu
27 15 fmpttd φxXYA:XYMN
28 ioossicc MNMN
29 eliooord MZWZ<MM<W
30 13 29 syl φZ<MM<W
31 30 simpld φZ<M
32 eliooord NZWZ<NN<W
33 14 32 syl φZ<NN<W
34 33 simprd φN<W
35 iccssioo Z*W*Z<MN<WMNZW
36 4 5 31 34 35 syl22anc φMNZW
37 28 36 sstrid φMNZW
38 ioossre ZW
39 38 a1i φZW
40 39 17 sstrdi φZW
41 37 40 sstrd φMN
42 cncfcdm MNxXYA:XYcnZWxXYA:XYcnMNxXYA:XYMN
43 41 6 42 syl2anc φxXYA:XYcnMNxXYA:XYMN
44 27 43 mpbird φxXYA:XYcnMN
45 28 sseli vMNvMN
46 38 14 sselid φN
47 46 rexrd φN*
48 47 adantr φvMNN*
49 38 13 sselid φM
50 elicc2 MNvMNvMvvN
51 49 46 50 syl2anc φvMNvMvvN
52 51 biimpa φvMNvMvvN
53 52 simp3d φvMNvN
54 iooss2 N*vNMvMN
55 48 53 54 syl2anc φvMNMvMN
56 55 sselda φvMNuMvuMN
57 37 sselda φuMNuZW
58 cncff uZWC:ZWcnuZWC:ZW
59 8 58 syl φuZWC:ZW
60 59 fvmptelcdm φuZWC
61 57 60 syldan φuMNC
62 61 adantlr φvMNuMNC
63 56 62 syldan φvMNuMvC
64 ioombl Mvdomvol
65 64 a1i φvMNMvdomvol
66 28 a1i φMNMN
67 ioombl MNdomvol
68 67 a1i φMNdomvol
69 36 sselda φuMNuZW
70 69 60 syldan φuMNC
71 36 resmptd φuZWCMN=uMNC
72 rescncf MNZWuZWC:ZWcnuZWCMN:MNcn
73 36 8 72 sylc φuZWCMN:MNcn
74 71 73 eqeltrrd φuMNC:MNcn
75 cniccibl MNuMNC:MNcnuMNC𝐿1
76 49 46 74 75 syl3anc φuMNC𝐿1
77 66 68 70 76 iblss φuMNC𝐿1
78 77 adantr φvMNuMNC𝐿1
79 55 65 62 78 iblss φvMNuMvC𝐿1
80 63 79 itgcl φvMNMvCdu
81 45 80 sylan2 φvMNMvCdu
82 81 fmpttd φvMNMvCdu:MN
83 37 38 sstrdi φMN
84 fveq2 t=uuMNCt=uMNCu
85 nffvmpt1 _uuMNCt
86 nfcv _tuMNCu
87 84 85 86 cbvitg MvuMNCtdt=MvuMNCudu
88 eqid uMNC=uMNC
89 88 fvmpt2 uMNCuMNCu=C
90 56 63 89 syl2anc φvMNuMvuMNCu=C
91 90 itgeq2dv φvMNMvuMNCudu=MvCdu
92 87 91 eqtrid φvMNMvuMNCtdt=MvCdu
93 92 mpteq2dva φvMNMvuMNCtdt=vMNMvCdu
94 93 oveq2d φdvMNMvuMNCtdtdv=dvMNMvCdudv
95 eqid vMNMvuMNCtdt=vMNMvuMNCtdt
96 1 rexrd φX*
97 2 rexrd φY*
98 lbicc2 X*Y*XYXXY
99 96 97 3 98 syl3anc φXXY
100 n0i XXY¬XY=
101 99 100 syl φ¬XY=
102 feq3 MN=xXYA:XYMNxXYA:XY
103 27 102 syl5ibcom φMN=xXYA:XY
104 f00 xXYA:XYxXYA=XY=
105 104 simprbi xXYA:XYXY=
106 103 105 syl6 φMN=XY=
107 101 106 mtod φ¬MN=
108 49 rexrd φM*
109 ioo0 M*N*MN=NM
110 108 47 109 syl2anc φMN=NM
111 107 110 mtbid φ¬NM
112 46 49 letrid φNMMN
113 112 ord φ¬NMMN
114 111 113 mpd φMN
115 resmpt MNMNuMNCMN=uMNC
116 28 115 ax-mp uMNCMN=uMNC
117 rescncf MNMNuMNC:MNcnuMNCMN:MNcn
118 28 74 117 mpsyl φuMNCMN:MNcn
119 116 118 eqeltrrid φuMNC:MNcn
120 95 49 46 114 119 77 ftc1cn φdvMNMvuMNCtdtdv=uMNC
121 36 38 sstrdi φMN
122 eqid TopOpenfld=TopOpenfld
123 122 tgioo2 topGenran.=TopOpenfld𝑡
124 iccntr MNinttopGenran.MN=MN
125 49 46 124 syl2anc φinttopGenran.MN=MN
126 18 121 80 123 122 125 dvmptntr φdvMNMvCdudv=dvMNMvCdudv
127 94 120 126 3eqtr3rd φdvMNMvCdudv=uMNC
128 127 dmeqd φdomdvMNMvCdudv=domuMNC
129 88 61 dmmptd φdomuMNC=MN
130 128 129 eqtrd φdomdvMNMvCdudv=MN
131 dvcn vMNMvCdu:MNMNdomdvMNMvCdudv=MNvMNMvCdu:MNcn
132 18 82 83 130 131 syl31anc φvMNMvCdu:MNcn
133 44 132 cncfco φvMNMvCduxXYA:XYcn
134 26 133 eqeltrrd φxXYMACdu:XYcn
135 cncff xXYMACdu:XYcnxXYMACdu:XY
136 134 135 syl φxXYMACdu:XY
137 136 fvmptelcdm φxXYMACdu
138 iccntr XYinttopGenran.XY=XY
139 1 2 138 syl2anc φinttopGenran.XY=XY
140 18 20 137 123 122 139 dvmptntr φdxXYMACdudx=dxXYMACdudx
141 reelprrecn
142 141 a1i φ
143 ioossicc XYXY
144 143 sseli xXYxXY
145 144 15 sylan2 φxXYAMN
146 elin xXYBXYcn𝐿1xXYB:XYcnxXYB𝐿1
147 7 146 sylib φxXYB:XYcnxXYB𝐿1
148 147 simpld φxXYB:XYcn
149 cncff xXYB:XYcnxXYB:XY
150 148 149 syl φxXYB:XY
151 150 fvmptelcdm φxXYB
152 61 fmpttd φuMNC:MN
153 nfcv _vC
154 nfcsb1v _uv/uC
155 csbeq1a u=vC=v/uC
156 153 154 155 cbvmpt uMNC=vMNv/uC
157 156 fmpt vMNv/uCuMNC:MN
158 152 157 sylibr φvMNv/uC
159 158 r19.21bi φvMNv/uC
160 38 17 sstri ZW
161 cncff xXYA:XYcnZWxXYA:XYZW
162 6 161 syl φxXYA:XYZW
163 162 fvmptelcdm φxXYAZW
164 160 163 sselid φxXYA
165 18 20 164 123 122 139 dvmptntr φdxXYAdx=dxXYAdx
166 165 9 eqtr3d φdxXYAdx=xXYB
167 127 156 eqtrdi φdvMNMvCdudv=vMNv/uC
168 csbeq1 v=Av/uC=A/uC
169 142 142 145 151 81 159 166 167 25 168 dvmptco φdxXYMACdudx=xXYA/uCB
170 nfcvd AMN_uE
171 170 10 csbiegf AMNA/uC=E
172 145 171 syl φxXYA/uC=E
173 172 oveq1d φxXYA/uCB=EB
174 173 mpteq2dva φxXYA/uCB=xXYEB
175 140 169 174 3eqtrd φdxXYMACdudx=xXYEB
176 resmpt XYXYxXYEXY=xXYE
177 143 176 ax-mp xXYEXY=xXYE
178 eqidd φuZWC=uZWC
179 163 21 178 10 fmptco φuZWCxXYA=xXYE
180 6 8 cncfco φuZWCxXYA:XYcn
181 179 180 eqeltrrd φxXYE:XYcn
182 rescncf XYXYxXYE:XYcnxXYEXY:XYcn
183 143 181 182 mpsyl φxXYEXY:XYcn
184 177 183 eqeltrrid φxXYE:XYcn
185 184 148 mulcncf φxXYEB:XYcn
186 175 185 eqeltrd φdxXYMACdudx:XYcn
187 ioombl XYdomvol
188 187 a1i φXYdomvol
189 fco uZWC:ZWxXYA:XYZWuZWCxXYA:XY
190 59 162 189 syl2anc φuZWCxXYA:XY
191 179 feq1d φuZWCxXYA:XYxXYE:XY
192 190 191 mpbid φxXYE:XY
193 192 fvmptelcdm φxXYE
194 144 193 sylan2 φxXYE
195 eqidd φxXYE=xXYE
196 eqidd φxXYB=xXYB
197 188 194 151 195 196 offval2 φxXYE×fxXYB=xXYEB
198 175 197 eqtr4d φdxXYMACdudx=xXYE×fxXYB
199 143 a1i φXYXY
200 cniccibl XYxXYE:XYcnxXYE𝐿1
201 1 2 181 200 syl3anc φxXYE𝐿1
202 199 188 193 201 iblss φxXYE𝐿1
203 iblmbf xXYE𝐿1xXYEMblFn
204 202 203 syl φxXYEMblFn
205 147 simprd φxXYB𝐿1
206 cniccbdd XYxXYE:XYcnyzXYxXYEzy
207 1 2 181 206 syl3anc φyzXYxXYEzy
208 ssralv XYXYzXYxXYEzyzXYxXYEzy
209 143 208 ax-mp zXYxXYEzyzXYxXYEzy
210 eqid xXYE=xXYE
211 210 194 dmmptd φdomxXYE=XY
212 211 raleqdv φzdomxXYExXYEzyzXYxXYEzy
213 177 fveq1i xXYEXYz=xXYEz
214 fvres zXYxXYEXYz=xXYEz
215 213 214 eqtr3id zXYxXYEz=xXYEz
216 215 fveq2d zXYxXYEz=xXYEz
217 216 breq1d zXYxXYEzyxXYEzy
218 217 ralbiia zXYxXYEzyzXYxXYEzy
219 212 218 bitr2di φzXYxXYEzyzdomxXYExXYEzy
220 209 219 imbitrid φzXYxXYEzyzdomxXYExXYEzy
221 220 reximdv φyzXYxXYEzyyzdomxXYExXYEzy
222 207 221 mpd φyzdomxXYExXYEzy
223 bddmulibl xXYEMblFnxXYB𝐿1yzdomxXYExXYEzyxXYE×fxXYB𝐿1
224 204 205 222 223 syl3anc φxXYE×fxXYB𝐿1
225 198 224 eqeltrd φdxXYMACdudx𝐿1
226 1 2 3 186 225 134 ftc2 φXYdxXYMACdudxtdt=xXYMACduYxXYMACduX
227 fveq2 t=xdxXYMACdudxt=dxXYMACdudxx
228 nfcv _x
229 nfcv _xD
230 nfmpt1 _xxXYMACdu
231 228 229 230 nfov _xdxXYMACdudx
232 nfcv _xt
233 231 232 nffv _xdxXYMACdudxt
234 nfcv _tdxXYMACdudxx
235 227 233 234 cbvitg XYdxXYMACdudxtdt=XYdxXYMACdudxxdx
236 175 fveq1d φdxXYMACdudxx=xXYEBx
237 ovex EBV
238 eqid xXYEB=xXYEB
239 238 fvmpt2 xXYEBVxXYEBx=EB
240 237 239 mpan2 xXYxXYEBx=EB
241 236 240 sylan9eq φxXYdxXYMACdudxx=EB
242 241 itgeq2dv φXYdxXYMACdudxxdx=XYEBdx
243 235 242 eqtrid φXYdxXYMACdudxtdt=XYEBdx
244 28 15 sselid φxXYAMN
245 elicc2 MNAMNAMAAN
246 49 46 245 syl2anc φAMNAMAAN
247 246 adantr φxXYAMNAMAAN
248 244 247 mpbid φxXYAMAAN
249 248 simp2d φxXYMA
250 249 ditgpos φxXYMACdu=MACdu
251 250 mpteq2dva φxXYMACdu=xXYMACdu
252 251 fveq1d φxXYMACduY=xXYMACduY
253 ubicc2 X*Y*XYYXY
254 96 97 3 253 syl3anc φYXY
255 ditgeq2 A=LMACdu=MLCdu
256 12 255 syl x=YMACdu=MLCdu
257 eqid xXYMACdu=xXYMACdu
258 ditgex MLCduV
259 256 257 258 fvmpt YXYxXYMACduY=MLCdu
260 254 259 syl φxXYMACduY=MLCdu
261 252 260 eqtr3d φxXYMACduY=MLCdu
262 251 fveq1d φxXYMACduX=xXYMACduX
263 ditgeq2 A=KMACdu=MKCdu
264 11 263 syl x=XMACdu=MKCdu
265 ditgex MKCduV
266 264 257 265 fvmpt XXYxXYMACduX=MKCdu
267 99 266 syl φxXYMACduX=MKCdu
268 262 267 eqtr3d φxXYMACduX=MKCdu
269 261 268 oveq12d φxXYMACduYxXYMACduX=MLCduMKCdu
270 lbicc2 M*N*MNMMN
271 108 47 114 270 syl3anc φMMN
272 11 eleq1d x=XAMNKMN
273 244 ralrimiva φxXYAMN
274 272 273 99 rspcdva φKMN
275 12 eleq1d x=YAMNLMN
276 275 273 254 rspcdva φLMN
277 49 46 271 274 276 61 77 ditgsplit φMLCdu=MKCdu+KLCdu
278 277 oveq1d φMLCduMKCdu=MKCdu+KLCdu-MKCdu
279 49 46 271 274 61 77 ditgcl φMKCdu
280 49 46 274 276 61 77 ditgcl φKLCdu
281 279 280 pncan2d φMKCdu+KLCdu-MKCdu=KLCdu
282 269 278 281 3eqtrd φxXYMACduYxXYMACduX=KLCdu
283 226 243 282 3eqtr3d φXYEBdx=KLCdu
284 16 283 eqtr2d φKLCdu=XYEBdx