| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
|
pntlem1.y |
|
| 12 |
|
pntlem1.x |
|
| 13 |
|
pntlem1.c |
|
| 14 |
|
pntlem1.w |
|
| 15 |
|
pntlem1.z |
|
| 16 |
|
pntlem1.m |
|
| 17 |
|
pntlem1.n |
|
| 18 |
|
pntlem1.U |
|
| 19 |
|
pntlem1.K |
|
| 20 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
| 21 |
20
|
simp3d |
|
| 22 |
21
|
simp3d |
|
| 23 |
1 2 3 4 5 6
|
pntlemd |
|
| 24 |
23
|
simp1d |
|
| 25 |
20
|
simp1d |
|
| 26 |
|
2z |
|
| 27 |
|
rpexpcl |
|
| 28 |
25 26 27
|
sylancl |
|
| 29 |
24 28
|
rpmulcld |
|
| 30 |
|
3nn0 |
|
| 31 |
|
2nn |
|
| 32 |
30 31
|
decnncl |
|
| 33 |
|
nnrp |
|
| 34 |
32 33
|
ax-mp |
|
| 35 |
|
rpmulcl |
|
| 36 |
34 3 35
|
sylancr |
|
| 37 |
29 36
|
rpdivcld |
|
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
| 39 |
38
|
simp1d |
|
| 40 |
39
|
rpred |
|
| 41 |
38
|
simp2d |
|
| 42 |
41
|
simp1d |
|
| 43 |
40 42
|
rplogcld |
|
| 44 |
|
rpexpcl |
|
| 45 |
43 26 44
|
sylancl |
|
| 46 |
37 45
|
rpmulcld |
|
| 47 |
22 46
|
rpmulcld |
|
| 48 |
47
|
rpred |
|
| 49 |
24 25
|
rpmulcld |
|
| 50 |
|
8re |
|
| 51 |
|
8pos |
|
| 52 |
50 51
|
elrpii |
|
| 53 |
|
rpdivcl |
|
| 54 |
49 52 53
|
sylancl |
|
| 55 |
54 43
|
rpmulcld |
|
| 56 |
22 55
|
rpmulcld |
|
| 57 |
56
|
rpred |
|
| 58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|
| 59 |
58
|
simp1d |
|
| 60 |
58
|
simp2d |
|
| 61 |
|
eluznn |
|
| 62 |
59 60 61
|
syl2anc |
|
| 63 |
62
|
nnred |
|
| 64 |
59
|
nnred |
|
| 65 |
63 64
|
resubcld |
|
| 66 |
57 65
|
remulcld |
|
| 67 |
|
fzfid |
|
| 68 |
7
|
rpred |
|
| 69 |
|
elfznn |
|
| 70 |
|
nndivre |
|
| 71 |
68 69 70
|
syl2an |
|
| 72 |
39
|
adantr |
|
| 73 |
69
|
adantl |
|
| 74 |
73
|
nnrpd |
|
| 75 |
72 74
|
rpdivcld |
|
| 76 |
1
|
pntrf |
|
| 77 |
76
|
ffvelcdmi |
|
| 78 |
75 77
|
syl |
|
| 79 |
78 72
|
rerpdivcld |
|
| 80 |
79
|
recnd |
|
| 81 |
80
|
abscld |
|
| 82 |
71 81
|
resubcld |
|
| 83 |
74
|
relogcld |
|
| 84 |
82 83
|
remulcld |
|
| 85 |
67 84
|
fsumrecl |
|
| 86 |
49
|
rpcnd |
|
| 87 |
20
|
simp2d |
|
| 88 |
87
|
rpred |
|
| 89 |
21
|
simp2d |
|
| 90 |
88 89
|
rplogcld |
|
| 91 |
43 90
|
rpdivcld |
|
| 92 |
91
|
rpcnd |
|
| 93 |
|
rpcnne0 |
|
| 94 |
52 93
|
mp1i |
|
| 95 |
|
4re |
|
| 96 |
|
4pos |
|
| 97 |
95 96
|
elrpii |
|
| 98 |
|
rpcnne0 |
|
| 99 |
97 98
|
mp1i |
|
| 100 |
|
divmuldiv |
|
| 101 |
86 92 94 99 100
|
syl22anc |
|
| 102 |
10
|
fveq2i |
|
| 103 |
3 25
|
rpdivcld |
|
| 104 |
103
|
rpred |
|
| 105 |
104
|
relogefd |
|
| 106 |
102 105
|
eqtrid |
|
| 107 |
106
|
oveq2d |
|
| 108 |
43
|
rpcnd |
|
| 109 |
3
|
rpcnne0d |
|
| 110 |
25
|
rpcnne0d |
|
| 111 |
|
divdiv2 |
|
| 112 |
108 109 110 111
|
syl3anc |
|
| 113 |
107 112
|
eqtrd |
|
| 114 |
113
|
oveq2d |
|
| 115 |
25
|
rpcnd |
|
| 116 |
108 115
|
mulcld |
|
| 117 |
|
divass |
|
| 118 |
86 116 109 117
|
syl3anc |
|
| 119 |
24
|
rpcnd |
|
| 120 |
119 115 108 115
|
mul4d |
|
| 121 |
115
|
sqvald |
|
| 122 |
121
|
oveq2d |
|
| 123 |
115
|
sqcld |
|
| 124 |
119 108 123
|
mul32d |
|
| 125 |
120 122 124
|
3eqtr2d |
|
| 126 |
125
|
oveq1d |
|
| 127 |
114 118 126
|
3eqtr2d |
|
| 128 |
|
8t4e32 |
|
| 129 |
128
|
a1i |
|
| 130 |
127 129
|
oveq12d |
|
| 131 |
29
|
rpcnd |
|
| 132 |
131 108
|
mulcld |
|
| 133 |
|
rpcnne0 |
|
| 134 |
34 133
|
mp1i |
|
| 135 |
|
divdiv1 |
|
| 136 |
132 109 134 135
|
syl3anc |
|
| 137 |
32
|
nncni |
|
| 138 |
3
|
rpcnd |
|
| 139 |
|
mulcom |
|
| 140 |
137 138 139
|
sylancr |
|
| 141 |
140
|
oveq2d |
|
| 142 |
36
|
rpcnne0d |
|
| 143 |
|
div23 |
|
| 144 |
131 108 142 143
|
syl3anc |
|
| 145 |
136 141 144
|
3eqtr2d |
|
| 146 |
101 130 145
|
3eqtrd |
|
| 147 |
146
|
oveq1d |
|
| 148 |
54
|
rpcnd |
|
| 149 |
91
|
rpred |
|
| 150 |
|
4nn |
|
| 151 |
|
nndivre |
|
| 152 |
149 150 151
|
sylancl |
|
| 153 |
152
|
recnd |
|
| 154 |
148 108 153
|
mul32d |
|
| 155 |
108
|
sqvald |
|
| 156 |
155
|
oveq2d |
|
| 157 |
37
|
rpcnd |
|
| 158 |
157 108 108
|
mulassd |
|
| 159 |
156 158
|
eqtr4d |
|
| 160 |
147 154 159
|
3eqtr4d |
|
| 161 |
58
|
simp3d |
|
| 162 |
152 65 55
|
lemul2d |
|
| 163 |
161 162
|
mpbid |
|
| 164 |
160 163
|
eqbrtrrd |
|
| 165 |
46
|
rpred |
|
| 166 |
55
|
rpred |
|
| 167 |
166 65
|
remulcld |
|
| 168 |
165 167 22
|
lemul2d |
|
| 169 |
164 168
|
mpbid |
|
| 170 |
22
|
rpcnd |
|
| 171 |
55
|
rpcnd |
|
| 172 |
65
|
recnd |
|
| 173 |
170 171 172
|
mulassd |
|
| 174 |
169 173
|
breqtrrd |
|
| 175 |
|
fzfid |
|
| 176 |
62
|
nnzd |
|
| 177 |
87 176
|
rpexpcld |
|
| 178 |
39 177
|
rpdivcld |
|
| 179 |
178
|
rprege0d |
|
| 180 |
|
flge0nn0 |
|
| 181 |
|
nn0p1nn |
|
| 182 |
179 180 181
|
3syl |
|
| 183 |
|
nnuz |
|
| 184 |
182 183
|
eleqtrdi |
|
| 185 |
|
fzss1 |
|
| 186 |
184 185
|
syl |
|
| 187 |
186
|
sselda |
|
| 188 |
187 84
|
syldan |
|
| 189 |
175 188
|
fsumrecl |
|
| 190 |
|
eluzfz2 |
|
| 191 |
60 190
|
syl |
|
| 192 |
|
oveq1 |
|
| 193 |
192
|
oveq2d |
|
| 194 |
|
oveq2 |
|
| 195 |
194
|
oveq2d |
|
| 196 |
195
|
fveq2d |
|
| 197 |
196
|
oveq1d |
|
| 198 |
197
|
oveq1d |
|
| 199 |
198
|
sumeq1d |
|
| 200 |
193 199
|
breq12d |
|
| 201 |
200
|
imbi2d |
|
| 202 |
|
oveq1 |
|
| 203 |
202
|
oveq2d |
|
| 204 |
|
oveq2 |
|
| 205 |
204
|
oveq2d |
|
| 206 |
205
|
fveq2d |
|
| 207 |
206
|
oveq1d |
|
| 208 |
207
|
oveq1d |
|
| 209 |
208
|
sumeq1d |
|
| 210 |
203 209
|
breq12d |
|
| 211 |
210
|
imbi2d |
|
| 212 |
|
oveq1 |
|
| 213 |
212
|
oveq2d |
|
| 214 |
|
oveq2 |
|
| 215 |
214
|
oveq2d |
|
| 216 |
215
|
fveq2d |
|
| 217 |
216
|
oveq1d |
|
| 218 |
217
|
oveq1d |
|
| 219 |
218
|
sumeq1d |
|
| 220 |
213 219
|
breq12d |
|
| 221 |
220
|
imbi2d |
|
| 222 |
|
oveq1 |
|
| 223 |
222
|
oveq2d |
|
| 224 |
|
oveq2 |
|
| 225 |
224
|
oveq2d |
|
| 226 |
225
|
fveq2d |
|
| 227 |
226
|
oveq1d |
|
| 228 |
227
|
oveq1d |
|
| 229 |
228
|
sumeq1d |
|
| 230 |
223 229
|
breq12d |
|
| 231 |
230
|
imbi2d |
|
| 232 |
59
|
nncnd |
|
| 233 |
232
|
subidd |
|
| 234 |
233
|
oveq2d |
|
| 235 |
56
|
rpcnd |
|
| 236 |
235
|
mul01d |
|
| 237 |
234 236
|
eqtrd |
|
| 238 |
|
fzfid |
|
| 239 |
59
|
nnzd |
|
| 240 |
87 239
|
rpexpcld |
|
| 241 |
39 240
|
rpdivcld |
|
| 242 |
241
|
rprege0d |
|
| 243 |
|
flge0nn0 |
|
| 244 |
|
nn0p1nn |
|
| 245 |
242 243 244
|
3syl |
|
| 246 |
245 183
|
eleqtrdi |
|
| 247 |
|
fzss1 |
|
| 248 |
246 247
|
syl |
|
| 249 |
248
|
sselda |
|
| 250 |
249 84
|
syldan |
|
| 251 |
|
elfzle2 |
|
| 252 |
251
|
adantl |
|
| 253 |
11
|
simpld |
|
| 254 |
39 253
|
rpdivcld |
|
| 255 |
254
|
rpred |
|
| 256 |
|
elfzelz |
|
| 257 |
|
flge |
|
| 258 |
255 256 257
|
syl2an |
|
| 259 |
252 258
|
mpbird |
|
| 260 |
73 259
|
jca |
|
| 261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
pntlemn |
|
| 262 |
260 261
|
syldan |
|
| 263 |
249 262
|
syldan |
|
| 264 |
238 250 263
|
fsumge0 |
|
| 265 |
237 264
|
eqbrtrd |
|
| 266 |
265
|
a1i |
|
| 267 |
|
eqid |
|
| 268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 267
|
pntlemi |
|
| 269 |
56
|
adantr |
|
| 270 |
269
|
rpred |
|
| 271 |
|
elfzoelz |
|
| 272 |
271
|
adantl |
|
| 273 |
272
|
zred |
|
| 274 |
59
|
adantr |
|
| 275 |
274
|
nnred |
|
| 276 |
273 275
|
resubcld |
|
| 277 |
270 276
|
remulcld |
|
| 278 |
|
fzfid |
|
| 279 |
|
ssun1 |
|
| 280 |
40
|
adantr |
|
| 281 |
87
|
adantr |
|
| 282 |
272
|
peano2zd |
|
| 283 |
281 282
|
rpexpcld |
|
| 284 |
280 283
|
rerpdivcld |
|
| 285 |
281 272
|
rpexpcld |
|
| 286 |
280 285
|
rerpdivcld |
|
| 287 |
88
|
adantr |
|
| 288 |
|
1re |
|
| 289 |
|
ltle |
|
| 290 |
288 88 289
|
sylancr |
|
| 291 |
89 290
|
mpd |
|
| 292 |
291
|
adantr |
|
| 293 |
|
uzid |
|
| 294 |
|
peano2uz |
|
| 295 |
272 293 294
|
3syl |
|
| 296 |
287 292 295
|
leexp2ad |
|
| 297 |
39
|
adantr |
|
| 298 |
285 283 297
|
lediv2d |
|
| 299 |
296 298
|
mpbid |
|
| 300 |
|
flword2 |
|
| 301 |
284 286 299 300
|
syl3anc |
|
| 302 |
|
eluzp1p1 |
|
| 303 |
301 302
|
syl |
|
| 304 |
286
|
flcld |
|
| 305 |
254
|
adantr |
|
| 306 |
305
|
rpred |
|
| 307 |
306
|
flcld |
|
| 308 |
253
|
adantr |
|
| 309 |
308
|
rpred |
|
| 310 |
285
|
rpred |
|
| 311 |
12
|
simpld |
|
| 312 |
311
|
rpred |
|
| 313 |
312
|
adantr |
|
| 314 |
12
|
simprd |
|
| 315 |
314
|
adantr |
|
| 316 |
|
elfzofz |
|
| 317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
| 318 |
316 317
|
sylan2 |
|
| 319 |
318
|
simpld |
|
| 320 |
309 313 310 315 319
|
lttrd |
|
| 321 |
309 310 320
|
ltled |
|
| 322 |
308 285 297
|
lediv2d |
|
| 323 |
321 322
|
mpbid |
|
| 324 |
|
flwordi |
|
| 325 |
286 306 323 324
|
syl3anc |
|
| 326 |
|
eluz2 |
|
| 327 |
304 307 325 326
|
syl3anbrc |
|
| 328 |
|
fzsplit2 |
|
| 329 |
303 327 328
|
syl2anc |
|
| 330 |
279 329
|
sseqtrrid |
|
| 331 |
297 283
|
rpdivcld |
|
| 332 |
331
|
rprege0d |
|
| 333 |
|
flge0nn0 |
|
| 334 |
|
nn0p1nn |
|
| 335 |
332 333 334
|
3syl |
|
| 336 |
335 183
|
eleqtrdi |
|
| 337 |
|
fzss1 |
|
| 338 |
336 337
|
syl |
|
| 339 |
330 338
|
sstrd |
|
| 340 |
339
|
sselda |
|
| 341 |
84
|
adantlr |
|
| 342 |
340 341
|
syldan |
|
| 343 |
278 342
|
fsumrecl |
|
| 344 |
|
fzfid |
|
| 345 |
|
ssun2 |
|
| 346 |
345 329
|
sseqtrrid |
|
| 347 |
346 338
|
sstrd |
|
| 348 |
347
|
sselda |
|
| 349 |
348 341
|
syldan |
|
| 350 |
344 349
|
fsumrecl |
|
| 351 |
|
le2add |
|
| 352 |
270 277 343 350 351
|
syl22anc |
|
| 353 |
268 352
|
mpand |
|
| 354 |
235
|
adantr |
|
| 355 |
|
1cnd |
|
| 356 |
272
|
zcnd |
|
| 357 |
232
|
adantr |
|
| 358 |
356 357
|
subcld |
|
| 359 |
354 355 358
|
adddid |
|
| 360 |
355 358
|
addcomd |
|
| 361 |
356 355 357
|
addsubd |
|
| 362 |
360 361
|
eqtr4d |
|
| 363 |
362
|
oveq2d |
|
| 364 |
354
|
mulridd |
|
| 365 |
364
|
oveq1d |
|
| 366 |
359 363 365
|
3eqtr3d |
|
| 367 |
|
reflcl |
|
| 368 |
286 367
|
syl |
|
| 369 |
368
|
ltp1d |
|
| 370 |
|
fzdisj |
|
| 371 |
369 370
|
syl |
|
| 372 |
|
fzfid |
|
| 373 |
338
|
sselda |
|
| 374 |
373 341
|
syldan |
|
| 375 |
374
|
recnd |
|
| 376 |
371 329 372 375
|
fsumsplit |
|
| 377 |
366 376
|
breq12d |
|
| 378 |
353 377
|
sylibrd |
|
| 379 |
378
|
expcom |
|
| 380 |
379
|
a2d |
|
| 381 |
201 211 221 231 266 380
|
fzind2 |
|
| 382 |
191 381
|
mpcom |
|
| 383 |
67 84 262 186
|
fsumless |
|
| 384 |
66 189 85 382 383
|
letrd |
|
| 385 |
48 66 85 174 384
|
letrd |
|