Metamath Proof Explorer


Theorem pntlemf

Description: Lemma for pnt . Add up the pieces in pntlemi to get an estimate slightly better than the naive lower bound 0 . (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
Assertion pntlemf φUELE232BlogZ2n=1ZYUnRZnZlogn

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
21 20 simp3d φE011<KUE+
22 21 simp3d φUE+
23 1 2 3 4 5 6 pntlemd φL+D+F+
24 23 simp1d φL+
25 20 simp1d φE+
26 2z 2
27 rpexpcl E+2E2+
28 25 26 27 sylancl φE2+
29 24 28 rpmulcld φLE2+
30 3nn0 30
31 2nn 2
32 30 31 decnncl 32
33 nnrp 3232+
34 32 33 ax-mp 32+
35 rpmulcl 32+B+32B+
36 34 3 35 sylancr φ32B+
37 29 36 rpdivcld φLE232B+
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
39 38 simp1d φZ+
40 39 rpred φZ
41 38 simp2d φ1<ZeZZZY
42 41 simp1d φ1<Z
43 40 42 rplogcld φlogZ+
44 rpexpcl logZ+2logZ2+
45 43 26 44 sylancl φlogZ2+
46 37 45 rpmulcld φLE232BlogZ2+
47 22 46 rpmulcld φUELE232BlogZ2+
48 47 rpred φUELE232BlogZ2
49 24 25 rpmulcld φLE+
50 8re 8
51 8pos 0<8
52 50 51 elrpii 8+
53 rpdivcl LE+8+LE8+
54 49 52 53 sylancl φLE8+
55 54 43 rpmulcld φLE8logZ+
56 22 55 rpmulcld φUELE8logZ+
57 56 rpred φUELE8logZ
58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φMNMlogZlogK4NM
59 58 simp1d φM
60 58 simp2d φNM
61 eluznn MNMN
62 59 60 61 syl2anc φN
63 62 nnred φN
64 59 nnred φM
65 63 64 resubcld φNM
66 57 65 remulcld φUELE8logZNM
67 fzfid φ1ZYFin
68 7 rpred φU
69 elfznn n1ZYn
70 nndivre UnUn
71 68 69 70 syl2an φn1ZYUn
72 39 adantr φn1ZYZ+
73 69 adantl φn1ZYn
74 73 nnrpd φn1ZYn+
75 72 74 rpdivcld φn1ZYZn+
76 1 pntrf R:+
77 76 ffvelcdmi Zn+RZn
78 75 77 syl φn1ZYRZn
79 78 72 rerpdivcld φn1ZYRZnZ
80 79 recnd φn1ZYRZnZ
81 80 abscld φn1ZYRZnZ
82 71 81 resubcld φn1ZYUnRZnZ
83 74 relogcld φn1ZYlogn
84 82 83 remulcld φn1ZYUnRZnZlogn
85 67 84 fsumrecl φn=1ZYUnRZnZlogn
86 49 rpcnd φLE
87 20 simp2d φK+
88 87 rpred φK
89 21 simp2d φ1<K
90 88 89 rplogcld φlogK+
91 43 90 rpdivcld φlogZlogK+
92 91 rpcnd φlogZlogK
93 rpcnne0 8+880
94 52 93 mp1i φ880
95 4re 4
96 4pos 0<4
97 95 96 elrpii 4+
98 rpcnne0 4+440
99 97 98 mp1i φ440
100 divmuldiv LElogZlogK880440LE8logZlogK4=LElogZlogK84
101 86 92 94 99 100 syl22anc φLE8logZlogK4=LElogZlogK84
102 10 fveq2i logK=logeBE
103 3 25 rpdivcld φBE+
104 103 rpred φBE
105 104 relogefd φlogeBE=BE
106 102 105 eqtrid φlogK=BE
107 106 oveq2d φlogZlogK=logZBE
108 43 rpcnd φlogZ
109 3 rpcnne0d φBB0
110 25 rpcnne0d φEE0
111 divdiv2 logZBB0EE0logZBE=logZEB
112 108 109 110 111 syl3anc φlogZBE=logZEB
113 107 112 eqtrd φlogZlogK=logZEB
114 113 oveq2d φLElogZlogK=LElogZEB
115 25 rpcnd φE
116 108 115 mulcld φlogZE
117 divass LElogZEBB0LElogZEB=LElogZEB
118 86 116 109 117 syl3anc φLElogZEB=LElogZEB
119 24 rpcnd φL
120 119 115 108 115 mul4d φLElogZE=LlogZEE
121 115 sqvald φE2=EE
122 121 oveq2d φLlogZE2=LlogZEE
123 115 sqcld φE2
124 119 108 123 mul32d φLlogZE2=LE2logZ
125 120 122 124 3eqtr2d φLElogZE=LE2logZ
126 125 oveq1d φLElogZEB=LE2logZB
127 114 118 126 3eqtr2d φLElogZlogK=LE2logZB
128 8t4e32 84=32
129 128 a1i φ84=32
130 127 129 oveq12d φLElogZlogK84=LE2logZB32
131 29 rpcnd φLE2
132 131 108 mulcld φLE2logZ
133 rpcnne0 32+32320
134 34 133 mp1i φ32320
135 divdiv1 LE2logZBB032320LE2logZB32=LE2logZB32
136 132 109 134 135 syl3anc φLE2logZB32=LE2logZB32
137 32 nncni 32
138 3 rpcnd φB
139 mulcom 32B32B=B32
140 137 138 139 sylancr φ32B=B32
141 140 oveq2d φLE2logZ32B=LE2logZB32
142 36 rpcnne0d φ32B32B0
143 div23 LE2logZ32B32B0LE2logZ32B=LE232BlogZ
144 131 108 142 143 syl3anc φLE2logZ32B=LE232BlogZ
145 136 141 144 3eqtr2d φLE2logZB32=LE232BlogZ
146 101 130 145 3eqtrd φLE8logZlogK4=LE232BlogZ
147 146 oveq1d φLE8logZlogK4logZ=LE232BlogZlogZ
148 54 rpcnd φLE8
149 91 rpred φlogZlogK
150 4nn 4
151 nndivre logZlogK4logZlogK4
152 149 150 151 sylancl φlogZlogK4
153 152 recnd φlogZlogK4
154 148 108 153 mul32d φLE8logZlogZlogK4=LE8logZlogK4logZ
155 108 sqvald φlogZ2=logZlogZ
156 155 oveq2d φLE232BlogZ2=LE232BlogZlogZ
157 37 rpcnd φLE232B
158 157 108 108 mulassd φLE232BlogZlogZ=LE232BlogZlogZ
159 156 158 eqtr4d φLE232BlogZ2=LE232BlogZlogZ
160 147 154 159 3eqtr4d φLE8logZlogZlogK4=LE232BlogZ2
161 58 simp3d φlogZlogK4NM
162 152 65 55 lemul2d φlogZlogK4NMLE8logZlogZlogK4LE8logZNM
163 161 162 mpbid φLE8logZlogZlogK4LE8logZNM
164 160 163 eqbrtrrd φLE232BlogZ2LE8logZNM
165 46 rpred φLE232BlogZ2
166 55 rpred φLE8logZ
167 166 65 remulcld φLE8logZNM
168 165 167 22 lemul2d φLE232BlogZ2LE8logZNMUELE232BlogZ2UELE8logZNM
169 164 168 mpbid φUELE232BlogZ2UELE8logZNM
170 22 rpcnd φUE
171 55 rpcnd φLE8logZ
172 65 recnd φNM
173 170 171 172 mulassd φUELE8logZNM=UELE8logZNM
174 169 173 breqtrrd φUELE232BlogZ2UELE8logZNM
175 fzfid φZKN+1ZYFin
176 62 nnzd φN
177 87 176 rpexpcld φKN+
178 39 177 rpdivcld φZKN+
179 178 rprege0d φZKN0ZKN
180 flge0nn0 ZKN0ZKNZKN0
181 nn0p1nn ZKN0ZKN+1
182 179 180 181 3syl φZKN+1
183 nnuz =1
184 182 183 eleqtrdi φZKN+11
185 fzss1 ZKN+11ZKN+1ZY1ZY
186 184 185 syl φZKN+1ZY1ZY
187 186 sselda φnZKN+1ZYn1ZY
188 187 84 syldan φnZKN+1ZYUnRZnZlogn
189 175 188 fsumrecl φn=ZKN+1ZYUnRZnZlogn
190 eluzfz2 NMNMN
191 60 190 syl φNMN
192 oveq1 m=MmM=MM
193 192 oveq2d m=MUELE8logZmM=UELE8logZMM
194 oveq2 m=MKm=KM
195 194 oveq2d m=MZKm=ZKM
196 195 fveq2d m=MZKm=ZKM
197 196 oveq1d m=MZKm+1=ZKM+1
198 197 oveq1d m=MZKm+1ZY=ZKM+1ZY
199 198 sumeq1d m=Mn=ZKm+1ZYUnRZnZlogn=n=ZKM+1ZYUnRZnZlogn
200 193 199 breq12d m=MUELE8logZmMn=ZKm+1ZYUnRZnZlognUELE8logZMMn=ZKM+1ZYUnRZnZlogn
201 200 imbi2d m=MφUELE8logZmMn=ZKm+1ZYUnRZnZlognφUELE8logZMMn=ZKM+1ZYUnRZnZlogn
202 oveq1 m=jmM=jM
203 202 oveq2d m=jUELE8logZmM=UELE8logZjM
204 oveq2 m=jKm=Kj
205 204 oveq2d m=jZKm=ZKj
206 205 fveq2d m=jZKm=ZKj
207 206 oveq1d m=jZKm+1=ZKj+1
208 207 oveq1d m=jZKm+1ZY=ZKj+1ZY
209 208 sumeq1d m=jn=ZKm+1ZYUnRZnZlogn=n=ZKj+1ZYUnRZnZlogn
210 203 209 breq12d m=jUELE8logZmMn=ZKm+1ZYUnRZnZlognUELE8logZjMn=ZKj+1ZYUnRZnZlogn
211 210 imbi2d m=jφUELE8logZmMn=ZKm+1ZYUnRZnZlognφUELE8logZjMn=ZKj+1ZYUnRZnZlogn
212 oveq1 m=j+1mM=j+1-M
213 212 oveq2d m=j+1UELE8logZmM=UELE8logZj+1-M
214 oveq2 m=j+1Km=Kj+1
215 214 oveq2d m=j+1ZKm=ZKj+1
216 215 fveq2d m=j+1ZKm=ZKj+1
217 216 oveq1d m=j+1ZKm+1=ZKj+1+1
218 217 oveq1d m=j+1ZKm+1ZY=ZKj+1+1ZY
219 218 sumeq1d m=j+1n=ZKm+1ZYUnRZnZlogn=n=ZKj+1+1ZYUnRZnZlogn
220 213 219 breq12d m=j+1UELE8logZmMn=ZKm+1ZYUnRZnZlognUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlogn
221 220 imbi2d m=j+1φUELE8logZmMn=ZKm+1ZYUnRZnZlognφUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlogn
222 oveq1 m=NmM=NM
223 222 oveq2d m=NUELE8logZmM=UELE8logZNM
224 oveq2 m=NKm=KN
225 224 oveq2d m=NZKm=ZKN
226 225 fveq2d m=NZKm=ZKN
227 226 oveq1d m=NZKm+1=ZKN+1
228 227 oveq1d m=NZKm+1ZY=ZKN+1ZY
229 228 sumeq1d m=Nn=ZKm+1ZYUnRZnZlogn=n=ZKN+1ZYUnRZnZlogn
230 223 229 breq12d m=NUELE8logZmMn=ZKm+1ZYUnRZnZlognUELE8logZNMn=ZKN+1ZYUnRZnZlogn
231 230 imbi2d m=NφUELE8logZmMn=ZKm+1ZYUnRZnZlognφUELE8logZNMn=ZKN+1ZYUnRZnZlogn
232 59 nncnd φM
233 232 subidd φMM=0
234 233 oveq2d φUELE8logZMM=UELE8logZ0
235 56 rpcnd φUELE8logZ
236 235 mul01d φUELE8logZ0=0
237 234 236 eqtrd φUELE8logZMM=0
238 fzfid φZKM+1ZYFin
239 59 nnzd φM
240 87 239 rpexpcld φKM+
241 39 240 rpdivcld φZKM+
242 241 rprege0d φZKM0ZKM
243 flge0nn0 ZKM0ZKMZKM0
244 nn0p1nn ZKM0ZKM+1
245 242 243 244 3syl φZKM+1
246 245 183 eleqtrdi φZKM+11
247 fzss1 ZKM+11ZKM+1ZY1ZY
248 246 247 syl φZKM+1ZY1ZY
249 248 sselda φnZKM+1ZYn1ZY
250 249 84 syldan φnZKM+1ZYUnRZnZlogn
251 elfzle2 n1ZYnZY
252 251 adantl φn1ZYnZY
253 11 simpld φY+
254 39 253 rpdivcld φZY+
255 254 rpred φZY
256 elfzelz n1ZYn
257 flge ZYnnZYnZY
258 255 256 257 syl2an φn1ZYnZYnZY
259 252 258 mpbird φn1ZYnZY
260 73 259 jca φn1ZYnnZY
261 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 pntlemn φnnZY0UnRZnZlogn
262 260 261 syldan φn1ZY0UnRZnZlogn
263 249 262 syldan φnZKM+1ZY0UnRZnZlogn
264 238 250 263 fsumge0 φ0n=ZKM+1ZYUnRZnZlogn
265 237 264 eqbrtrd φUELE8logZMMn=ZKM+1ZYUnRZnZlogn
266 265 a1i NMφUELE8logZMMn=ZKM+1ZYUnRZnZlogn
267 eqid ZKj+1+1ZKj=ZKj+1+1ZKj
268 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 267 pntlemi φjM..^NUELE8logZn=ZKj+1+1ZKjUnRZnZlogn
269 56 adantr φjM..^NUELE8logZ+
270 269 rpred φjM..^NUELE8logZ
271 elfzoelz jM..^Nj
272 271 adantl φjM..^Nj
273 272 zred φjM..^Nj
274 59 adantr φjM..^NM
275 274 nnred φjM..^NM
276 273 275 resubcld φjM..^NjM
277 270 276 remulcld φjM..^NUELE8logZjM
278 fzfid φjM..^NZKj+1+1ZKjFin
279 ssun1 ZKj+1+1ZKjZKj+1+1ZKjZKj+1ZY
280 40 adantr φjM..^NZ
281 87 adantr φjM..^NK+
282 272 peano2zd φjM..^Nj+1
283 281 282 rpexpcld φjM..^NKj+1+
284 280 283 rerpdivcld φjM..^NZKj+1
285 281 272 rpexpcld φjM..^NKj+
286 280 285 rerpdivcld φjM..^NZKj
287 88 adantr φjM..^NK
288 1re 1
289 ltle 1K1<K1K
290 288 88 289 sylancr φ1<K1K
291 89 290 mpd φ1K
292 291 adantr φjM..^N1K
293 uzid jjj
294 peano2uz jjj+1j
295 272 293 294 3syl φjM..^Nj+1j
296 287 292 295 leexp2ad φjM..^NKjKj+1
297 39 adantr φjM..^NZ+
298 285 283 297 lediv2d φjM..^NKjKj+1ZKj+1ZKj
299 296 298 mpbid φjM..^NZKj+1ZKj
300 flword2 ZKj+1ZKjZKj+1ZKjZKjZKj+1
301 284 286 299 300 syl3anc φjM..^NZKjZKj+1
302 eluzp1p1 ZKjZKj+1ZKj+1ZKj+1+1
303 301 302 syl φjM..^NZKj+1ZKj+1+1
304 286 flcld φjM..^NZKj
305 254 adantr φjM..^NZY+
306 305 rpred φjM..^NZY
307 306 flcld φjM..^NZY
308 253 adantr φjM..^NY+
309 308 rpred φjM..^NY
310 285 rpred φjM..^NKj
311 12 simpld φX+
312 311 rpred φX
313 312 adantr φjM..^NX
314 12 simprd φY<X
315 314 adantr φjM..^NY<X
316 elfzofz jM..^NjMN
317 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φjMNX<KjKjZ
318 316 317 sylan2 φjM..^NX<KjKjZ
319 318 simpld φjM..^NX<Kj
320 309 313 310 315 319 lttrd φjM..^NY<Kj
321 309 310 320 ltled φjM..^NYKj
322 308 285 297 lediv2d φjM..^NYKjZKjZY
323 321 322 mpbid φjM..^NZKjZY
324 flwordi ZKjZYZKjZYZKjZY
325 286 306 323 324 syl3anc φjM..^NZKjZY
326 eluz2 ZYZKjZKjZYZKjZY
327 304 307 325 326 syl3anbrc φjM..^NZYZKj
328 fzsplit2 ZKj+1ZKj+1+1ZYZKjZKj+1+1ZY=ZKj+1+1ZKjZKj+1ZY
329 303 327 328 syl2anc φjM..^NZKj+1+1ZY=ZKj+1+1ZKjZKj+1ZY
330 279 329 sseqtrrid φjM..^NZKj+1+1ZKjZKj+1+1ZY
331 297 283 rpdivcld φjM..^NZKj+1+
332 331 rprege0d φjM..^NZKj+10ZKj+1
333 flge0nn0 ZKj+10ZKj+1ZKj+10
334 nn0p1nn ZKj+10ZKj+1+1
335 332 333 334 3syl φjM..^NZKj+1+1
336 335 183 eleqtrdi φjM..^NZKj+1+11
337 fzss1 ZKj+1+11ZKj+1+1ZY1ZY
338 336 337 syl φjM..^NZKj+1+1ZY1ZY
339 330 338 sstrd φjM..^NZKj+1+1ZKj1ZY
340 339 sselda φjM..^NnZKj+1+1ZKjn1ZY
341 84 adantlr φjM..^Nn1ZYUnRZnZlogn
342 340 341 syldan φjM..^NnZKj+1+1ZKjUnRZnZlogn
343 278 342 fsumrecl φjM..^Nn=ZKj+1+1ZKjUnRZnZlogn
344 fzfid φjM..^NZKj+1ZYFin
345 ssun2 ZKj+1ZYZKj+1+1ZKjZKj+1ZY
346 345 329 sseqtrrid φjM..^NZKj+1ZYZKj+1+1ZY
347 346 338 sstrd φjM..^NZKj+1ZY1ZY
348 347 sselda φjM..^NnZKj+1ZYn1ZY
349 348 341 syldan φjM..^NnZKj+1ZYUnRZnZlogn
350 344 349 fsumrecl φjM..^Nn=ZKj+1ZYUnRZnZlogn
351 le2add UELE8logZUELE8logZjMn=ZKj+1+1ZKjUnRZnZlognn=ZKj+1ZYUnRZnZlognUELE8logZn=ZKj+1+1ZKjUnRZnZlognUELE8logZjMn=ZKj+1ZYUnRZnZlognUELE8logZ+UELE8logZjMn=ZKj+1+1ZKjUnRZnZlogn+n=ZKj+1ZYUnRZnZlogn
352 270 277 343 350 351 syl22anc φjM..^NUELE8logZn=ZKj+1+1ZKjUnRZnZlognUELE8logZjMn=ZKj+1ZYUnRZnZlognUELE8logZ+UELE8logZjMn=ZKj+1+1ZKjUnRZnZlogn+n=ZKj+1ZYUnRZnZlogn
353 268 352 mpand φjM..^NUELE8logZjMn=ZKj+1ZYUnRZnZlognUELE8logZ+UELE8logZjMn=ZKj+1+1ZKjUnRZnZlogn+n=ZKj+1ZYUnRZnZlogn
354 235 adantr φjM..^NUELE8logZ
355 1cnd φjM..^N1
356 272 zcnd φjM..^Nj
357 232 adantr φjM..^NM
358 356 357 subcld φjM..^NjM
359 354 355 358 adddid φjM..^NUELE8logZ1+j-M=UELE8logZ1+UELE8logZjM
360 355 358 addcomd φjM..^N1+j-M=j-M+1
361 356 355 357 addsubd φjM..^Nj+1-M=j-M+1
362 360 361 eqtr4d φjM..^N1+j-M=j+1-M
363 362 oveq2d φjM..^NUELE8logZ1+j-M=UELE8logZj+1-M
364 354 mulridd φjM..^NUELE8logZ1=UELE8logZ
365 364 oveq1d φjM..^NUELE8logZ1+UELE8logZjM=UELE8logZ+UELE8logZjM
366 359 363 365 3eqtr3d φjM..^NUELE8logZj+1-M=UELE8logZ+UELE8logZjM
367 reflcl ZKjZKj
368 286 367 syl φjM..^NZKj
369 368 ltp1d φjM..^NZKj<ZKj+1
370 fzdisj ZKj<ZKj+1ZKj+1+1ZKjZKj+1ZY=
371 369 370 syl φjM..^NZKj+1+1ZKjZKj+1ZY=
372 fzfid φjM..^NZKj+1+1ZYFin
373 338 sselda φjM..^NnZKj+1+1ZYn1ZY
374 373 341 syldan φjM..^NnZKj+1+1ZYUnRZnZlogn
375 374 recnd φjM..^NnZKj+1+1ZYUnRZnZlogn
376 371 329 372 375 fsumsplit φjM..^Nn=ZKj+1+1ZYUnRZnZlogn=n=ZKj+1+1ZKjUnRZnZlogn+n=ZKj+1ZYUnRZnZlogn
377 366 376 breq12d φjM..^NUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlognUELE8logZ+UELE8logZjMn=ZKj+1+1ZKjUnRZnZlogn+n=ZKj+1ZYUnRZnZlogn
378 353 377 sylibrd φjM..^NUELE8logZjMn=ZKj+1ZYUnRZnZlognUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlogn
379 378 expcom jM..^NφUELE8logZjMn=ZKj+1ZYUnRZnZlognUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlogn
380 379 a2d jM..^NφUELE8logZjMn=ZKj+1ZYUnRZnZlognφUELE8logZj+1-Mn=ZKj+1+1ZYUnRZnZlogn
381 201 211 221 231 266 380 fzind2 NMNφUELE8logZNMn=ZKN+1ZYUnRZnZlogn
382 191 381 mpcom φUELE8logZNMn=ZKN+1ZYUnRZnZlogn
383 67 84 262 186 fsumless φn=ZKN+1ZYUnRZnZlognn=1ZYUnRZnZlogn
384 66 189 85 382 383 letrd φUELE8logZNMn=1ZYUnRZnZlogn
385 48 66 85 174 384 letrd φUELE232BlogZ2n=1ZYUnRZnZlogn