Metamath Proof Explorer


Theorem fedgmullem1

Description: Lemma for fedgmul . (Contributed by Thierry Arnoux, 20-Jul-2023)

Ref Expression
Hypotheses fedgmul.a A = subringAlg E V
fedgmul.b B = subringAlg E U
fedgmul.c C = subringAlg F V
fedgmul.f F = E 𝑠 U
fedgmul.k K = E 𝑠 V
fedgmul.1 φ E DivRing
fedgmul.2 φ F DivRing
fedgmul.3 φ K DivRing
fedgmul.4 φ U SubRing E
fedgmul.5 φ V SubRing F
fedgmullem.d D = j Y , i X i E j
fedgmullem.h H = j Y , i X G j i
fedgmullem.x φ X LBasis C
fedgmullem.y φ Y LBasis B
fedgmullem1.a φ Z Base A
fedgmullem1.l φ L : Y Base Scalar B
fedgmullem1.1 φ finSupp 0 Scalar B L
fedgmullem1.z φ Z = B j Y L j B j
fedgmullem1.g φ G : Y Base Scalar C X
fedgmullem1.2 φ j Y finSupp 0 Scalar C G j
fedgmullem1.3 φ j Y L j = C i X G j i C i
Assertion fedgmullem1 φ finSupp 0 Scalar A H Z = A H A f D

Proof

Step Hyp Ref Expression
1 fedgmul.a A = subringAlg E V
2 fedgmul.b B = subringAlg E U
3 fedgmul.c C = subringAlg F V
4 fedgmul.f F = E 𝑠 U
5 fedgmul.k K = E 𝑠 V
6 fedgmul.1 φ E DivRing
7 fedgmul.2 φ F DivRing
8 fedgmul.3 φ K DivRing
9 fedgmul.4 φ U SubRing E
10 fedgmul.5 φ V SubRing F
11 fedgmullem.d D = j Y , i X i E j
12 fedgmullem.h H = j Y , i X G j i
13 fedgmullem.x φ X LBasis C
14 fedgmullem.y φ Y LBasis B
15 fedgmullem1.a φ Z Base A
16 fedgmullem1.l φ L : Y Base Scalar B
17 fedgmullem1.1 φ finSupp 0 Scalar B L
18 fedgmullem1.z φ Z = B j Y L j B j
19 fedgmullem1.g φ G : Y Base Scalar C X
20 fedgmullem1.2 φ j Y finSupp 0 Scalar C G j
21 fedgmullem1.3 φ j Y L j = C i X G j i C i
22 simpllr φ G : Y Base Scalar C X j Y i X G : Y Base Scalar C X
23 simplr φ G : Y Base Scalar C X j Y i X j Y
24 22 23 ffvelrnd φ G : Y Base Scalar C X j Y i X G j Base Scalar C X
25 elmapi G j Base Scalar C X G j : X Base Scalar C
26 24 25 syl φ G : Y Base Scalar C X j Y i X G j : X Base Scalar C
27 26 anasss φ G : Y Base Scalar C X j Y i X G j : X Base Scalar C
28 simprr φ G : Y Base Scalar C X j Y i X i X
29 27 28 ffvelrnd φ G : Y Base Scalar C X j Y i X G j i Base Scalar C
30 1 a1i φ A = subringAlg E V
31 4 subsubrg U SubRing E V SubRing F V SubRing E V U
32 31 biimpa U SubRing E V SubRing F V SubRing E V U
33 9 10 32 syl2anc φ V SubRing E V U
34 33 simpld φ V SubRing E
35 eqid Base E = Base E
36 35 subrgss V SubRing E V Base E
37 34 36 syl φ V Base E
38 30 37 srasca φ E 𝑠 V = Scalar A
39 5 38 syl5eq φ K = Scalar A
40 33 simprd φ V U
41 ressabs U SubRing E V U E 𝑠 U 𝑠 V = E 𝑠 V
42 9 40 41 syl2anc φ E 𝑠 U 𝑠 V = E 𝑠 V
43 4 oveq1i F 𝑠 V = E 𝑠 U 𝑠 V
44 42 43 5 3eqtr4g φ F 𝑠 V = K
45 3 a1i φ C = subringAlg F V
46 eqid Base F = Base F
47 46 subrgss V SubRing F V Base F
48 10 47 syl φ V Base F
49 45 48 srasca φ F 𝑠 V = Scalar C
50 44 49 eqtr3d φ K = Scalar C
51 39 50 eqtr3d φ Scalar A = Scalar C
52 51 fveq2d φ Base Scalar A = Base Scalar C
53 52 ad2antrr φ G : Y Base Scalar C X j Y i X Base Scalar A = Base Scalar C
54 29 53 eleqtrrd φ G : Y Base Scalar C X j Y i X G j i Base Scalar A
55 54 ralrimivva φ G : Y Base Scalar C X j Y i X G j i Base Scalar A
56 12 fmpo j Y i X G j i Base Scalar A H : Y × X Base Scalar A
57 55 56 sylib φ G : Y Base Scalar C X H : Y × X Base Scalar A
58 fvexd φ G : Y Base Scalar C X Base Scalar A V
59 14 13 xpexd φ Y × X V
60 59 adantr φ G : Y Base Scalar C X Y × X V
61 58 60 elmapd φ G : Y Base Scalar C X H Base Scalar A Y × X H : Y × X Base Scalar A
62 57 61 mpbird φ G : Y Base Scalar C X H Base Scalar A Y × X
63 19 62 mpdan φ H Base Scalar A Y × X
64 simpl φ j Y φ
65 64 adantr φ j Y i X φ
66 19 ffvelrnda φ j Y G j Base Scalar C X
67 66 25 syl φ j Y G j : X Base Scalar C
68 67 adantr φ j Y i X G j : X Base Scalar C
69 52 feq3d φ G j : X Base Scalar A G j : X Base Scalar C
70 69 biimpar φ G j : X Base Scalar C G j : X Base Scalar A
71 65 68 70 syl2anc φ j Y i X G j : X Base Scalar A
72 simpr φ j Y i X i X
73 71 72 ffvelrnd φ j Y i X G j i Base Scalar A
74 73 ralrimiva φ j Y i X G j i Base Scalar A
75 74 ralrimiva φ j Y i X G j i Base Scalar A
76 75 56 sylib φ H : Y × X Base Scalar A
77 76 ffund φ Fun H
78 drngring E DivRing E Ring
79 6 78 syl φ E Ring
80 ringgrp E Ring E Grp
81 eqid 0 E = 0 E
82 35 81 grpidcl E Grp 0 E Base E
83 79 80 82 3syl φ 0 E Base E
84 17 fsuppimpd φ L supp 0 Scalar B Fin
85 simpl φ j Y supp 0 Scalar B L φ
86 simpr φ j Y supp 0 Scalar B L j Y supp 0 Scalar B L
87 86 eldifad φ j Y supp 0 Scalar B L j Y
88 ssidd φ L supp 0 Scalar B L supp 0 Scalar B
89 fvexd φ 0 Scalar B V
90 16 88 14 89 suppssr φ j Y supp 0 Scalar B L L j = 0 Scalar B
91 87 21 syldan φ j Y supp 0 Scalar B L L j = C i X G j i C i
92 2 a1i φ B = subringAlg E U
93 35 subrgss U SubRing E U Base E
94 9 93 syl φ U Base E
95 92 94 srasca φ E 𝑠 U = Scalar B
96 4 95 syl5eq φ F = Scalar B
97 96 fveq2d φ 0 F = 0 Scalar B
98 3 7 10 drgext0g φ 0 F = 0 C
99 97 98 eqtr3d φ 0 Scalar B = 0 C
100 99 adantr φ j Y supp 0 Scalar B L 0 Scalar B = 0 C
101 90 91 100 3eqtr3d φ j Y supp 0 Scalar B L C i X G j i C i = 0 C
102 breq1 g = G j finSupp 0 Scalar C g finSupp 0 Scalar C G j
103 fveq1 g = G j g i = G j i
104 103 oveq1d g = G j g i C i = G j i C i
105 104 mpteq2dv g = G j i X g i C i = i X G j i C i
106 105 oveq2d g = G j C i X g i C i = C i X G j i C i
107 106 eqeq1d g = G j C i X g i C i = 0 C C i X G j i C i = 0 C
108 102 107 anbi12d g = G j finSupp 0 Scalar C g C i X g i C i = 0 C finSupp 0 Scalar C G j C i X G j i C i = 0 C
109 eqeq1 g = G j g = X × 0 Scalar C G j = X × 0 Scalar C
110 108 109 imbi12d g = G j finSupp 0 Scalar C g C i X g i C i = 0 C g = X × 0 Scalar C finSupp 0 Scalar C G j C i X G j i C i = 0 C G j = X × 0 Scalar C
111 44 8 eqeltrd φ F 𝑠 V DivRing
112 eqid F 𝑠 V = F 𝑠 V
113 3 112 sralvec F DivRing F 𝑠 V DivRing V SubRing F C LVec
114 7 111 10 113 syl3anc φ C LVec
115 lveclmod C LVec C LMod
116 114 115 syl φ C LMod
117 116 adantr φ j Y C LMod
118 eqid Base C = Base C
119 eqid LBasis C = LBasis C
120 118 119 lbsss X LBasis C X Base C
121 13 120 syl φ X Base C
122 121 adantr φ j Y X Base C
123 eqid LSpan C = LSpan C
124 118 119 123 islbs4 X LBasis C X LIndS C LSpan C X = Base C
125 13 124 sylib φ X LIndS C LSpan C X = Base C
126 125 simpld φ X LIndS C
127 126 adantr φ j Y X LIndS C
128 eqid Base Scalar C = Base Scalar C
129 eqid Scalar C = Scalar C
130 eqid C = C
131 eqid 0 C = 0 C
132 eqid 0 Scalar C = 0 Scalar C
133 118 128 129 130 131 132 islinds5 C LMod X Base C X LIndS C g Base Scalar C X finSupp 0 Scalar C g C i X g i C i = 0 C g = X × 0 Scalar C
134 133 biimpa C LMod X Base C X LIndS C g Base Scalar C X finSupp 0 Scalar C g C i X g i C i = 0 C g = X × 0 Scalar C
135 117 122 127 134 syl21anc φ j Y g Base Scalar C X finSupp 0 Scalar C g C i X g i C i = 0 C g = X × 0 Scalar C
136 110 135 66 rspcdva φ j Y finSupp 0 Scalar C G j C i X G j i C i = 0 C G j = X × 0 Scalar C
137 20 136 mpand φ j Y C i X G j i C i = 0 C G j = X × 0 Scalar C
138 137 imp φ j Y C i X G j i C i = 0 C G j = X × 0 Scalar C
139 85 87 101 138 syl21anc φ j Y supp 0 Scalar B L G j = X × 0 Scalar C
140 19 139 suppss φ G supp X × 0 Scalar C L supp 0 Scalar B
141 84 140 ssfid φ G supp X × 0 Scalar C Fin
142 suppssdm G supp X × 0 Scalar C dom G
143 142 19 fssdm φ G supp X × 0 Scalar C Y
144 143 sselda φ w supp X × 0 Scalar C G w Y
145 eleq1w j = w j Y w Y
146 145 anbi2d j = w φ j Y φ w Y
147 fveq2 j = w G j = G w
148 147 breq1d j = w finSupp 0 Scalar C G j finSupp 0 Scalar C G w
149 146 148 imbi12d j = w φ j Y finSupp 0 Scalar C G j φ w Y finSupp 0 Scalar C G w
150 149 20 chvarvv φ w Y finSupp 0 Scalar C G w
151 150 fsuppimpd φ w Y G w supp 0 Scalar C Fin
152 144 151 syldan φ w supp X × 0 Scalar C G G w supp 0 Scalar C Fin
153 152 ralrimiva φ w supp X × 0 Scalar C G G w supp 0 Scalar C Fin
154 iunfi G supp X × 0 Scalar C Fin w supp X × 0 Scalar C G G w supp 0 Scalar C Fin w G supp X × 0 Scalar C supp 0 Scalar C G w Fin
155 141 153 154 syl2anc φ w G supp X × 0 Scalar C supp 0 Scalar C G w Fin
156 xpfi G supp X × 0 Scalar C Fin w G supp X × 0 Scalar C supp 0 Scalar C G w Fin supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w Fin
157 141 155 156 syl2anc φ supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w Fin
158 fveq2 v = j G v = G j
159 158 fveq1d v = j G v u = G j u
160 159 mpteq2dv v = j u X G v u = u X G j u
161 fveq2 u = i G j u = G j i
162 161 cbvmptv u X G j u = i X G j i
163 160 162 eqtrdi v = j u X G v u = i X G j i
164 163 cbvmptv v Y u X G v u = j Y i X G j i
165 fvexd φ 0 Scalar C V
166 fvexd φ j Y i X G j i V
167 12 164 14 13 165 166 suppovss φ H supp 0 Scalar C supp X × 0 Scalar C v Y u X G v u × w v Y u X G v u supp X × 0 Scalar C supp 0 Scalar C v Y u X G v u w
168 5 81 subrg0 V SubRing E 0 E = 0 K
169 34 168 syl φ 0 E = 0 K
170 50 fveq2d φ 0 K = 0 Scalar C
171 169 170 eqtr2d φ 0 Scalar C = 0 E
172 171 oveq2d φ H supp 0 Scalar C = H supp 0 E
173 19 feqmptd φ G = v Y G v
174 eleq1w j = v j Y v Y
175 174 anbi2d j = v φ j Y φ v Y
176 fveq2 j = v G j = G v
177 176 feq1d j = v G j : X Base E G v : X Base E
178 175 177 imbi12d j = v φ j Y G j : X Base E φ v Y G v : X Base E
179 5 35 ressbas2 V Base E V = Base K
180 37 179 syl φ V = Base K
181 50 fveq2d φ Base K = Base Scalar C
182 180 181 eqtrd φ V = Base Scalar C
183 182 37 eqsstrrd φ Base Scalar C Base E
184 183 adantr φ j Y Base Scalar C Base E
185 67 184 fssd φ j Y G j : X Base E
186 178 185 chvarvv φ v Y G v : X Base E
187 186 feqmptd φ v Y G v = u X G v u
188 187 mpteq2dva φ v Y G v = v Y u X G v u
189 173 188 eqtr2d φ v Y u X G v u = G
190 189 oveq1d φ v Y u X G v u supp X × 0 Scalar C = G supp X × 0 Scalar C
191 189 fveq1d φ v Y u X G v u w = G w
192 191 oveq1d φ v Y u X G v u w supp 0 Scalar C = G w supp 0 Scalar C
193 190 192 iuneq12d φ w v Y u X G v u supp X × 0 Scalar C supp 0 Scalar C v Y u X G v u w = w G supp X × 0 Scalar C supp 0 Scalar C G w
194 190 193 xpeq12d φ supp X × 0 Scalar C v Y u X G v u × w v Y u X G v u supp X × 0 Scalar C supp 0 Scalar C v Y u X G v u w = supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w
195 167 172 194 3sstr3d φ H supp 0 E supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w
196 suppssfifsupp H Base Scalar A Y × X Fun H 0 E Base E supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w Fin H supp 0 E supp X × 0 Scalar C G × w G supp X × 0 Scalar C supp 0 Scalar C G w finSupp 0 E H
197 63 77 83 157 195 196 syl32anc φ finSupp 0 E H
198 51 fveq2d φ 0 Scalar A = 0 Scalar C
199 198 171 eqtr2d φ 0 E = 0 Scalar A
200 197 199 breqtrd φ finSupp 0 Scalar A H
201 2 6 9 4 7 14 drgextgsum φ E j Y L j B j = B j Y L j B j
202 13 adantr φ j Y X LBasis C
203 9 adantr φ j Y U SubRing E
204 subrgsubg U SubRing E U SubGrp E
205 subgsubm U SubGrp E U SubMnd E
206 203 204 205 3syl φ j Y U SubMnd E
207 116 ad2antrr φ j Y i X C LMod
208 67 ffvelrnda φ j Y i X G j i Base Scalar C
209 121 ad2antrr φ j Y i X X Base C
210 209 72 sseldd φ j Y i X i Base C
211 118 129 130 128 lmodvscl C LMod G j i Base Scalar C i Base C G j i C i Base C
212 207 208 210 211 syl3anc φ j Y i X G j i C i Base C
213 4 35 ressbas2 U Base E U = Base F
214 94 213 syl φ U = Base F
215 45 48 srabase φ Base F = Base C
216 214 215 eqtrd φ U = Base C
217 216 ad2antrr φ j Y i X U = Base C
218 212 217 eleqtrrd φ j Y i X G j i C i U
219 218 fmpttd φ j Y i X G j i C i : X U
220 202 206 219 4 gsumsubm φ j Y E i X G j i C i = F i X G j i C i
221 eqid E = E
222 4 221 ressmulr U SubRing E E = F
223 9 222 syl φ E = F
224 45 48 sravsca φ F = C
225 223 224 eqtr2d φ C = E
226 225 ad2antrr φ j Y i X C = E
227 226 oveqd φ j Y i X G j i C i = G j i E i
228 227 mpteq2dva φ j Y i X G j i C i = i X G j i E i
229 228 oveq2d φ j Y E i X G j i C i = E i X G j i E i
230 3 7 10 112 111 13 drgextgsum φ F i X G j i C i = C i X G j i C i
231 230 adantr φ j Y F i X G j i C i = C i X G j i C i
232 220 229 231 3eqtr3d φ j Y E i X G j i E i = C i X G j i C i
233 232 oveq1d φ j Y E i X G j i E i E j = C i X G j i C i E j
234 79 ad2antrr φ j Y i X E Ring
235 183 ad2antrr φ j Y i X Base Scalar C Base E
236 235 208 sseldd φ j Y i X G j i Base E
237 216 94 eqsstrrd φ Base C Base E
238 121 237 sstrd φ X Base E
239 238 ad2antrr φ j Y i X X Base E
240 239 72 sseldd φ j Y i X i Base E
241 eqid Base B = Base B
242 eqid LBasis B = LBasis B
243 241 242 lbsss Y LBasis B Y Base B
244 14 243 syl φ Y Base B
245 92 94 srabase φ Base E = Base B
246 244 245 sseqtrrd φ Y Base E
247 246 ad2antrr φ j Y i X Y Base E
248 simplr φ j Y i X j Y
249 247 248 sseldd φ j Y i X j Base E
250 35 221 ringass E Ring G j i Base E i Base E j Base E G j i E i E j = G j i E i E j
251 234 236 240 249 250 syl13anc φ j Y i X G j i E i E j = G j i E i E j
252 251 mpteq2dva φ j Y i X G j i E i E j = i X G j i E i E j
253 252 oveq2d φ j Y E i X G j i E i E j = E i X G j i E i E j
254 eqid + E = + E
255 79 adantr φ j Y E Ring
256 244 adantr φ j Y Y Base B
257 245 adantr φ j Y Base E = Base B
258 256 257 sseqtrrd φ j Y Y Base E
259 simpr φ j Y j Y
260 258 259 sseldd φ j Y j Base E
261 35 221 ringcl E Ring G j i Base E i Base E G j i E i Base E
262 234 236 240 261 syl3anc φ j Y i X G j i E i Base E
263 171 breq2d φ finSupp 0 Scalar C G j finSupp 0 E G j
264 263 adantr φ j Y finSupp 0 Scalar C G j finSupp 0 E G j
265 20 264 mpbid φ j Y finSupp 0 E G j
266 35 255 202 240 185 265 rmfsupp2 φ j Y finSupp 0 E i X G j i E i
267 35 81 254 221 255 202 260 262 266 gsummulc1 φ j Y E i X G j i E i E j = E i X G j i E i E j
268 253 267 eqtr3d φ j Y E i X G j i E i E j = E i X G j i E i E j
269 21 oveq1d φ j Y L j E j = C i X G j i C i E j
270 233 268 269 3eqtr4rd φ j Y L j E j = E i X G j i E i E j
271 92 94 sravsca φ E = B
272 271 adantr φ j Y E = B
273 272 oveqd φ j Y L j E j = L j B j
274 fvexd φ j Y i X G j i V
275 ovexd φ j Y i X i E j V
276 12 a1i φ H = j Y , i X G j i
277 11 a1i φ D = j Y , i X i E j
278 14 13 274 275 276 277 offval22 φ H E f D = j Y , i X G j i E i E j
279 278 oveqd φ j H E f D i = j j Y , i X G j i E i E j i
280 279 ad2antrr φ j Y i X j H E f D i = j j Y , i X G j i E i E j i
281 ovexd φ j Y i X G j i E i E j V
282 eqid j Y , i X G j i E i E j = j Y , i X G j i E i E j
283 282 ovmpt4g j Y i X G j i E i E j V j j Y , i X G j i E i E j i = G j i E i E j
284 248 72 281 283 syl3anc φ j Y i X j j Y , i X G j i E i E j i = G j i E i E j
285 280 284 eqtr2d φ j Y i X G j i E i E j = j H E f D i
286 285 mpteq2dva φ j Y i X G j i E i E j = i X j H E f D i
287 286 oveq2d φ j Y E i X G j i E i E j = E i X j H E f D i
288 270 273 287 3eqtr3d φ j Y L j B j = E i X j H E f D i
289 288 mpteq2dva φ j Y L j B j = j Y E i X j H E f D i
290 289 oveq2d φ E j Y L j B j = E j Y E i X j H E f D i
291 ringcmn E Ring E CMnd
292 79 291 syl φ E CMnd
293 79 adantr φ l Base Scalar A k Base A E Ring
294 52 183 eqsstrd φ Base Scalar A Base E
295 294 adantr φ l Base Scalar A k Base A Base Scalar A Base E
296 simprl φ l Base Scalar A k Base A l Base Scalar A
297 295 296 sseldd φ l Base Scalar A k Base A l Base E
298 simprr φ l Base Scalar A k Base A k Base A
299 30 37 srabase φ Base E = Base A
300 299 adantr φ l Base Scalar A k Base A Base E = Base A
301 298 300 eleqtrrd φ l Base Scalar A k Base A k Base E
302 35 221 ringcl E Ring l Base E k Base E l E k Base E
303 293 297 301 302 syl3anc φ l Base Scalar A k Base A l E k Base E
304 35 221 ringcl E Ring i Base E j Base E i E j Base E
305 234 240 249 304 syl3anc φ j Y i X i E j Base E
306 299 ad2antrr φ j Y i X Base E = Base A
307 305 306 eleqtrd φ j Y i X i E j Base A
308 307 anasss φ j Y i X i E j Base A
309 308 ralrimivva φ j Y i X i E j Base A
310 11 fmpo j Y i X i E j Base A D : Y × X Base A
311 309 310 sylib φ D : Y × X Base A
312 inidm Y × X Y × X = Y × X
313 303 76 311 59 59 312 off φ H E f D : Y × X Base E
314 79 adantr φ u Base A E Ring
315 simpr φ u Base A u Base A
316 299 adantr φ u Base A Base E = Base A
317 315 316 eleqtrrd φ u Base A u Base E
318 35 221 81 ringlz E Ring u Base E 0 E E u = 0 E
319 314 317 318 syl2anc φ u Base A 0 E E u = 0 E
320 59 83 83 76 311 197 319 offinsupp1 φ finSupp 0 E H E f D
321 35 81 292 14 13 313 320 gsumxp φ E H E f D = E j Y E i X j H E f D i
322 30 37 sravsca φ E = A
323 ofeq E = A f E = f A
324 322 323 syl φ f E = f A
325 324 oveqd φ H E f D = H A f D
326 325 oveq2d φ E H E f D = E H A f D
327 290 321 326 3eqtr2rd φ E H A f D = E j Y L j B j
328 ovexd φ H A f D V
329 15 elfvexd φ A V
330 1 328 6 329 37 gsumsra φ E H A f D = A H A f D
331 327 330 eqtr3d φ E j Y L j B j = A H A f D
332 18 201 331 3eqtr2d φ Z = A H A f D
333 200 332 jca φ finSupp 0 Scalar A H Z = A H A f D