Metamath Proof Explorer


Theorem itg1climres

Description: Restricting the simple function F to the increasing sequence A ( n ) of measurable sets whose union is RR yields a sequence of simple functions whose integrals approach the integral of F . (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses itg1climres.1 φA:domvol
itg1climres.2 φnAnAn+1
itg1climres.3 φranA=
itg1climres.4 φFdom1
itg1climres.5 G=xifxAnFx0
Assertion itg1climres φn1G1F

Proof

Step Hyp Ref Expression
1 itg1climres.1 φA:domvol
2 itg1climres.2 φnAnAn+1
3 itg1climres.3 φranA=
4 itg1climres.4 φFdom1
5 itg1climres.5 G=xifxAnFx0
6 nnuz =1
7 1zzd φ1
8 i1frn Fdom1ranFFin
9 4 8 syl φranFFin
10 difss ranF0ranF
11 ssfi ranFFinranF0ranFranF0Fin
12 9 10 11 sylancl φranF0Fin
13 1zzd φkranF01
14 i1fima Fdom1F-1kdomvol
15 4 14 syl φF-1kdomvol
16 15 ad2antrr φkranF0nF-1kdomvol
17 1 ffvelcdmda φnAndomvol
18 17 adantlr φkranF0nAndomvol
19 inmbl F-1kdomvolAndomvolF-1kAndomvol
20 16 18 19 syl2anc φkranF0nF-1kAndomvol
21 mblvol F-1kAndomvolvolF-1kAn=vol*F-1kAn
22 20 21 syl φkranF0nvolF-1kAn=vol*F-1kAn
23 inss1 F-1kAnF-1k
24 23 a1i φkranF0nF-1kAnF-1k
25 mblss F-1kdomvolF-1k
26 16 25 syl φkranF0nF-1k
27 mblvol F-1kdomvolvolF-1k=vol*F-1k
28 16 27 syl φkranF0nvolF-1k=vol*F-1k
29 i1fima2sn Fdom1kranF0volF-1k
30 4 29 sylan φkranF0volF-1k
31 30 adantr φkranF0nvolF-1k
32 28 31 eqeltrrd φkranF0nvol*F-1k
33 ovolsscl F-1kAnF-1kF-1kvol*F-1kvol*F-1kAn
34 24 26 32 33 syl3anc φkranF0nvol*F-1kAn
35 22 34 eqeltrd φkranF0nvolF-1kAn
36 35 fmpttd φkranF0nvolF-1kAn:
37 2 adantlr φkranF0nAnAn+1
38 sslin AnAn+1F-1kAnF-1kAn+1
39 37 38 syl φkranF0nF-1kAnF-1kAn+1
40 1 adantr φkranF0A:domvol
41 peano2nn nn+1
42 ffvelcdm A:domvoln+1An+1domvol
43 40 41 42 syl2an φkranF0nAn+1domvol
44 inmbl F-1kdomvolAn+1domvolF-1kAn+1domvol
45 16 43 44 syl2anc φkranF0nF-1kAn+1domvol
46 mblss F-1kAn+1domvolF-1kAn+1
47 45 46 syl φkranF0nF-1kAn+1
48 ovolss F-1kAnF-1kAn+1F-1kAn+1vol*F-1kAnvol*F-1kAn+1
49 39 47 48 syl2anc φkranF0nvol*F-1kAnvol*F-1kAn+1
50 mblvol F-1kAn+1domvolvolF-1kAn+1=vol*F-1kAn+1
51 45 50 syl φkranF0nvolF-1kAn+1=vol*F-1kAn+1
52 49 22 51 3brtr4d φkranF0nvolF-1kAnvolF-1kAn+1
53 52 ralrimiva φkranF0nvolF-1kAnvolF-1kAn+1
54 fveq2 n=jAn=Aj
55 54 ineq2d n=jF-1kAn=F-1kAj
56 55 fveq2d n=jvolF-1kAn=volF-1kAj
57 eqid nvolF-1kAn=nvolF-1kAn
58 fvex volF-1kAjV
59 56 57 58 fvmpt jnvolF-1kAnj=volF-1kAj
60 peano2nn jj+1
61 fveq2 n=j+1An=Aj+1
62 61 ineq2d n=j+1F-1kAn=F-1kAj+1
63 62 fveq2d n=j+1volF-1kAn=volF-1kAj+1
64 fvex volF-1kAj+1V
65 63 57 64 fvmpt j+1nvolF-1kAnj+1=volF-1kAj+1
66 60 65 syl jnvolF-1kAnj+1=volF-1kAj+1
67 59 66 breq12d jnvolF-1kAnjnvolF-1kAnj+1volF-1kAjvolF-1kAj+1
68 67 ralbiia jnvolF-1kAnjnvolF-1kAnj+1jvolF-1kAjvolF-1kAj+1
69 fvoveq1 n=jAn+1=Aj+1
70 69 ineq2d n=jF-1kAn+1=F-1kAj+1
71 70 fveq2d n=jvolF-1kAn+1=volF-1kAj+1
72 56 71 breq12d n=jvolF-1kAnvolF-1kAn+1volF-1kAjvolF-1kAj+1
73 72 cbvralvw nvolF-1kAnvolF-1kAn+1jvolF-1kAjvolF-1kAj+1
74 68 73 bitr4i jnvolF-1kAnjnvolF-1kAnj+1nvolF-1kAnvolF-1kAn+1
75 53 74 sylibr φkranF0jnvolF-1kAnjnvolF-1kAnj+1
76 75 r19.21bi φkranF0jnvolF-1kAnjnvolF-1kAnj+1
77 ovolss F-1kAnF-1kF-1kvol*F-1kAnvol*F-1k
78 23 26 77 sylancr φkranF0nvol*F-1kAnvol*F-1k
79 78 22 28 3brtr4d φkranF0nvolF-1kAnvolF-1k
80 79 ralrimiva φkranF0nvolF-1kAnvolF-1k
81 59 breq1d jnvolF-1kAnjvolF-1kvolF-1kAjvolF-1k
82 81 ralbiia jnvolF-1kAnjvolF-1kjvolF-1kAjvolF-1k
83 56 breq1d n=jvolF-1kAnvolF-1kvolF-1kAjvolF-1k
84 83 cbvralvw nvolF-1kAnvolF-1kjvolF-1kAjvolF-1k
85 82 84 bitr4i jnvolF-1kAnjvolF-1knvolF-1kAnvolF-1k
86 80 85 sylibr φkranF0jnvolF-1kAnjvolF-1k
87 brralrspcev volF-1kjnvolF-1kAnjvolF-1kxjnvolF-1kAnjx
88 30 86 87 syl2anc φkranF0xjnvolF-1kAnjx
89 6 13 36 76 88 climsup φkranF0nvolF-1kAnsuprannvolF-1kAn<
90 20 fmpttd φkranF0nF-1kAn:domvol
91 39 ralrimiva φkranF0nF-1kAnF-1kAn+1
92 eqid nF-1kAn=nF-1kAn
93 fvex AjV
94 93 inex2 F-1kAjV
95 55 92 94 fvmpt jnF-1kAnj=F-1kAj
96 fvex Aj+1V
97 96 inex2 F-1kAj+1V
98 62 92 97 fvmpt j+1nF-1kAnj+1=F-1kAj+1
99 60 98 syl jnF-1kAnj+1=F-1kAj+1
100 95 99 sseq12d jnF-1kAnjnF-1kAnj+1F-1kAjF-1kAj+1
101 100 ralbiia jnF-1kAnjnF-1kAnj+1jF-1kAjF-1kAj+1
102 55 70 sseq12d n=jF-1kAnF-1kAn+1F-1kAjF-1kAj+1
103 102 cbvralvw nF-1kAnF-1kAn+1jF-1kAjF-1kAj+1
104 101 103 bitr4i jnF-1kAnjnF-1kAnj+1nF-1kAnF-1kAn+1
105 91 104 sylibr φkranF0jnF-1kAnjnF-1kAnj+1
106 volsup nF-1kAn:domvoljnF-1kAnjnF-1kAnj+1volrannF-1kAn=supvolrannF-1kAn*<
107 90 105 106 syl2anc φkranF0volrannF-1kAn=supvolrannF-1kAn*<
108 95 iuneq2i jnF-1kAnj=jF-1kAj
109 55 cbviunv nF-1kAn=jF-1kAj
110 iunin2 nF-1kAn=F-1knAn
111 108 109 110 3eqtr2i jnF-1kAnj=F-1knAn
112 ffn A:domvolAFn
113 fniunfv AFnnAn=ranA
114 1 112 113 3syl φnAn=ranA
115 114 3 eqtrd φnAn=
116 115 adantr φkranF0nAn=
117 116 ineq2d φkranF0F-1knAn=F-1k
118 15 adantr φkranF0F-1kdomvol
119 118 25 syl φkranF0F-1k
120 df-ss F-1kF-1k=F-1k
121 119 120 sylib φkranF0F-1k=F-1k
122 117 121 eqtrd φkranF0F-1knAn=F-1k
123 111 122 eqtrid φkranF0jnF-1kAnj=F-1k
124 ffn nF-1kAn:domvolnF-1kAnFn
125 fniunfv nF-1kAnFnjnF-1kAnj=rannF-1kAn
126 90 124 125 3syl φkranF0jnF-1kAnj=rannF-1kAn
127 123 126 eqtr3d φkranF0F-1k=rannF-1kAn
128 127 fveq2d φkranF0volF-1k=volrannF-1kAn
129 36 frnd φkranF0rannvolF-1kAn
130 36 fdmd φkranF0domnvolF-1kAn=
131 1nn 1
132 ne0i 1
133 131 132 mp1i φkranF0
134 130 133 eqnetrd φkranF0domnvolF-1kAn
135 dm0rn0 domnvolF-1kAn=rannvolF-1kAn=
136 135 necon3bii domnvolF-1kAnrannvolF-1kAn
137 134 136 sylib φkranF0rannvolF-1kAn
138 ffn nvolF-1kAn:nvolF-1kAnFn
139 breq1 z=nvolF-1kAnjzxnvolF-1kAnjx
140 139 ralrn nvolF-1kAnFnzrannvolF-1kAnzxjnvolF-1kAnjx
141 36 138 140 3syl φkranF0zrannvolF-1kAnzxjnvolF-1kAnjx
142 141 rexbidv φkranF0xzrannvolF-1kAnzxxjnvolF-1kAnjx
143 88 142 mpbird φkranF0xzrannvolF-1kAnzx
144 supxrre rannvolF-1kAnrannvolF-1kAnxzrannvolF-1kAnzxsuprannvolF-1kAn*<=suprannvolF-1kAn<
145 129 137 143 144 syl3anc φkranF0suprannvolF-1kAn*<=suprannvolF-1kAn<
146 volf vol:domvol0+∞
147 146 a1i φkranF0vol:domvol0+∞
148 147 20 cofmpt φkranF0volnF-1kAn=nvolF-1kAn
149 148 rneqd φkranF0ranvolnF-1kAn=rannvolF-1kAn
150 rnco2 ranvolnF-1kAn=volrannF-1kAn
151 149 150 eqtr3di φkranF0rannvolF-1kAn=volrannF-1kAn
152 151 supeq1d φkranF0suprannvolF-1kAn*<=supvolrannF-1kAn*<
153 145 152 eqtr3d φkranF0suprannvolF-1kAn<=supvolrannF-1kAn*<
154 107 128 153 3eqtr4d φkranF0volF-1k=suprannvolF-1kAn<
155 89 154 breqtrrd φkranF0nvolF-1kAnvolF-1k
156 i1ff Fdom1F:
157 frn F:ranF
158 4 156 157 3syl φranF
159 158 ssdifssd φranF0
160 159 sselda φkranF0k
161 160 recnd φkranF0k
162 nnex V
163 162 mptex nkvolF-1kAnV
164 163 a1i φkranF0nkvolF-1kAnV
165 36 ffvelcdmda φkranF0jnvolF-1kAnj
166 165 recnd φkranF0jnvolF-1kAnj
167 56 oveq2d n=jkvolF-1kAn=kvolF-1kAj
168 eqid nkvolF-1kAn=nkvolF-1kAn
169 ovex kvolF-1kAjV
170 167 168 169 fvmpt jnkvolF-1kAnj=kvolF-1kAj
171 59 oveq2d jknvolF-1kAnj=kvolF-1kAj
172 170 171 eqtr4d jnkvolF-1kAnj=knvolF-1kAnj
173 172 adantl φkranF0jnkvolF-1kAnj=knvolF-1kAnj
174 6 13 155 161 164 166 173 climmulc2 φkranF0nkvolF-1kAnkvolF-1k
175 162 mptex n1GV
176 175 a1i φn1GV
177 160 adantr φkranF0nk
178 177 35 remulcld φkranF0nkvolF-1kAn
179 178 fmpttd φkranF0nkvolF-1kAn:
180 179 ffvelcdmda φkranF0jnkvolF-1kAnj
181 180 recnd φkranF0jnkvolF-1kAnj
182 181 anasss φkranF0jnkvolF-1kAnj
183 4 adantr φnFdom1
184 5 i1fres Fdom1AndomvolGdom1
185 183 17 184 syl2anc φnGdom1
186 12 adantr φnranF0Fin
187 ffn F:FFn
188 4 156 187 3syl φFFn
189 188 adantr φnFFn
190 fnfvelrn FFnxFxranF
191 189 190 sylan φnxFxranF
192 i1f0rn Fdom10ranF
193 4 192 syl φ0ranF
194 193 ad2antrr φnx0ranF
195 191 194 ifcld φnxifxAnFx0ranF
196 195 5 fmptd φnG:ranF
197 frn G:ranFranGranF
198 ssdif ranGranFranG0ranF0
199 196 197 198 3syl φnranG0ranF0
200 158 adantr φnranF
201 200 ssdifd φnranF00
202 itg1val2 Gdom1ranF0FinranG0ranF0ranF001G=kranF0kvolG-1k
203 185 186 199 201 202 syl13anc φn1G=kranF0kvolG-1k
204 fvex FxV
205 c0ex 0V
206 204 205 ifex ifxAnFx0V
207 5 fvmpt2 xifxAnFx0VGx=ifxAnFx0
208 206 207 mpan2 xGx=ifxAnFx0
209 208 adantl φnkranF0xGx=ifxAnFx0
210 209 eqeq1d φnkranF0xGx=kifxAnFx0=k
211 eldifsni kranF0k0
212 211 ad2antlr φnkranF0xk0
213 neeq1 ifxAnFx0=kifxAnFx00k0
214 212 213 syl5ibrcom φnkranF0xifxAnFx0=kifxAnFx00
215 iffalse ¬xAnifxAnFx0=0
216 215 necon1ai ifxAnFx00xAn
217 214 216 syl6 φnkranF0xifxAnFx0=kxAn
218 217 pm4.71rd φnkranF0xifxAnFx0=kxAnifxAnFx0=k
219 210 218 bitrd φnkranF0xGx=kxAnifxAnFx0=k
220 iftrue xAnifxAnFx0=Fx
221 220 eqeq1d xAnifxAnFx0=kFx=k
222 221 pm5.32i xAnifxAnFx0=kxAnFx=k
223 222 biancomi xAnifxAnFx0=kFx=kxAn
224 219 223 bitrdi φnkranF0xGx=kFx=kxAn
225 224 pm5.32da φnkranF0xGx=kxFx=kxAn
226 anass xFx=kxAnxFx=kxAn
227 225 226 bitr4di φnkranF0xGx=kxFx=kxAn
228 i1ff Gdom1G:
229 ffn G:GFn
230 185 228 229 3syl φnGFn
231 230 adantr φnkranF0GFn
232 fniniseg GFnxG-1kxGx=k
233 231 232 syl φnkranF0xG-1kxGx=k
234 elin xF-1kAnxF-1kxAn
235 189 adantr φnkranF0FFn
236 fniniseg FFnxF-1kxFx=k
237 235 236 syl φnkranF0xF-1kxFx=k
238 237 anbi1d φnkranF0xF-1kxAnxFx=kxAn
239 234 238 bitrid φnkranF0xF-1kAnxFx=kxAn
240 227 233 239 3bitr4d φnkranF0xG-1kxF-1kAn
241 240 alrimiv φnkranF0xxG-1kxF-1kAn
242 nfmpt1 _xxifxAnFx0
243 5 242 nfcxfr _xG
244 243 nfcnv _xG-1
245 nfcv _xk
246 244 245 nfima _xG-1k
247 nfcv _xF-1kAn
248 246 247 cleqf G-1k=F-1kAnxxG-1kxF-1kAn
249 241 248 sylibr φnkranF0G-1k=F-1kAn
250 249 fveq2d φnkranF0volG-1k=volF-1kAn
251 250 oveq2d φnkranF0kvolG-1k=kvolF-1kAn
252 251 sumeq2dv φnkranF0kvolG-1k=kranF0kvolF-1kAn
253 203 252 eqtrd φn1G=kranF0kvolF-1kAn
254 253 mpteq2dva φn1G=nkranF0kvolF-1kAn
255 254 fveq1d φn1Gj=nkranF0kvolF-1kAnj
256 167 sumeq2sdv n=jkranF0kvolF-1kAn=kranF0kvolF-1kAj
257 eqid nkranF0kvolF-1kAn=nkranF0kvolF-1kAn
258 sumex kranF0kvolF-1kAjV
259 256 257 258 fvmpt jnkranF0kvolF-1kAnj=kranF0kvolF-1kAj
260 170 sumeq2sdv jkranF0nkvolF-1kAnj=kranF0kvolF-1kAj
261 259 260 eqtr4d jnkranF0kvolF-1kAnj=kranF0nkvolF-1kAnj
262 255 261 sylan9eq φjn1Gj=kranF0nkvolF-1kAnj
263 6 7 12 174 176 182 262 climfsum φn1GkranF0kvolF-1k
264 itg1val Fdom11F=kranF0kvolF-1k
265 4 264 syl φ1F=kranF0kvolF-1k
266 263 265 breqtrrd φn1G1F