Metamath Proof Explorer


Theorem mbfi1fseqlem4

Description: Lemma for mbfi1fseq . This lemma is not as interesting as it is long - it is simply checking that G is in fact a sequence of simple functions, by verifying that its range is in ( 0 ... n 2 ^ n ) / ( 2 ^ n ) (which is to say, the numbers from 0 to n in increments of 1 / ( 2 ^ n ) ), and also that the preimage of each point k is measurable, because it is equal to ( -u n , n ) i^i (`' F " ( k [,) k + 1 / ( 2 ^ n ) ) ) for k < n and ( -u n , n ) i^i ( ``' F " ( k [,) +oo ) ) for k = n ` . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φFMblFn
mbfi1fseq.2 φF:0+∞
mbfi1fseq.3 J=m,yFy2m2m
mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
Assertion mbfi1fseqlem4 φG:dom1

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φFMblFn
2 mbfi1fseq.2 φF:0+∞
3 mbfi1fseq.3 J=m,yFy2m2m
4 mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
5 reex V
6 5 mptex xifxmmifmJxmmJxm0V
7 6 4 fnmpti GFn
8 7 a1i φGFn
9 1 2 3 4 mbfi1fseqlem3 φnGn:ranm0n2nm2n
10 elfznn0 m0n2nm0
11 10 nn0red m0n2nm
12 2nn 2
13 nnnn0 nn0
14 nnexpcl 2n02n
15 12 13 14 sylancr n2n
16 15 adantl φn2n
17 nndivre m2nm2n
18 11 16 17 syl2anr φnm0n2nm2n
19 18 fmpttd φnm0n2nm2n:0n2n
20 19 frnd φnranm0n2nm2n
21 9 20 fssd φnGn:
22 fzfid φn0n2nFin
23 19 ffnd φnm0n2nm2nFn0n2n
24 dffn4 m0n2nm2nFn0n2nm0n2nm2n:0n2nontoranm0n2nm2n
25 23 24 sylib φnm0n2nm2n:0n2nontoranm0n2nm2n
26 fofi 0n2nFinm0n2nm2n:0n2nontoranm0n2nm2nranm0n2nm2nFin
27 22 25 26 syl2anc φnranm0n2nm2nFin
28 9 frnd φnranGnranm0n2nm2n
29 27 28 ssfid φnranGnFin
30 1 2 3 4 mbfi1fseqlem2 nGn=xifxnnifnJxnnJxn0
31 30 fveq1d nGnx=xifxnnifnJxnnJxn0x
32 31 ad2antlr φnxGnx=xifxnnifnJxnnJxn0x
33 simpr φnxx
34 ovex nJxV
35 vex nV
36 34 35 ifex ifnJxnnJxnV
37 c0ex 0V
38 36 37 ifex ifxnnifnJxnnJxn0V
39 eqid xifxnnifnJxnnJxn0=xifxnnifnJxnnJxn0
40 39 fvmpt2 xifxnnifnJxnnJxn0VxifxnnifnJxnnJxn0x=ifxnnifnJxnnJxn0
41 33 38 40 sylancl φnxxifxnnifnJxnnJxn0x=ifxnnifnJxnnJxn0
42 32 41 eqtrd φnxGnx=ifxnnifnJxnnJxn0
43 42 adantlr φnkranGn0xGnx=ifxnnifnJxnnJxn0
44 43 eqeq1d φnkranGn0xGnx=kifxnnifnJxnnJxn0=k
45 eldifsni kranGn0k0
46 45 ad2antlr φnkranGn0xk0
47 neeq1 ifxnnifnJxnnJxn0=kifxnnifnJxnnJxn00k0
48 46 47 syl5ibrcom φnkranGn0xifxnnifnJxnnJxn0=kifxnnifnJxnnJxn00
49 iffalse ¬xnnifxnnifnJxnnJxn0=0
50 49 necon1ai ifxnnifnJxnnJxn00xnn
51 48 50 syl6 φnkranGn0xifxnnifnJxnnJxn0=kxnn
52 51 pm4.71rd φnkranGn0xifxnnifnJxnnJxn0=kxnnifxnnifnJxnnJxn0=k
53 iftrue xnnifxnnifnJxnnJxn0=ifnJxnnJxn
54 53 eqeq1d xnnifxnnifnJxnnJxn0=kifnJxnnJxn=k
55 simpllr φnkranGn0xn
56 55 nnred φnkranGn0xn
57 56 adantr φnkranGn0xk=nn
58 rge0ssre 0+∞
59 simpr myy
60 ffvelcdm F:0+∞yFy0+∞
61 2 59 60 syl2an φmyFy0+∞
62 58 61 sselid φmyFy
63 nnnn0 mm0
64 nnexpcl 2m02m
65 12 63 64 sylancr m2m
66 65 ad2antrl φmy2m
67 66 nnred φmy2m
68 62 67 remulcld φmyFy2m
69 reflcl Fy2mFy2m
70 68 69 syl φmyFy2m
71 70 66 nndivred φmyFy2m2m
72 71 ralrimivva φmyFy2m2m
73 3 fmpo myFy2m2mJ:×
74 72 73 sylib φJ:×
75 fovcdm J:×nxnJx
76 74 75 syl3an1 φnxnJx
77 76 3expa φnxnJx
78 77 adantlr φnkranGn0xnJx
79 78 adantr φnkranGn0xk=nnJx
80 lemin nnJxnnifnJxnnJxnnnJxnn
81 57 79 57 80 syl3anc φnkranGn0xk=nnifnJxnnJxnnnJxnn
82 79 57 ifcld φnkranGn0xk=nifnJxnnJxn
83 82 57 letri3d φnkranGn0xk=nifnJxnnJxn=nifnJxnnJxnnnifnJxnnJxn
84 simpr φnkranGn0xk=nk=n
85 84 eqeq2d φnkranGn0xk=nifnJxnnJxn=kifnJxnnJxn=n
86 min2 nJxnifnJxnnJxnn
87 79 57 86 syl2anc φnkranGn0xk=nifnJxnnJxnn
88 87 biantrurd φnkranGn0xk=nnifnJxnnJxnifnJxnnJxnnnifnJxnnJxn
89 83 85 88 3bitr4d φnkranGn0xk=nifnJxnnJxn=knifnJxnnJxn
90 57 leidd φnkranGn0xk=nnn
91 90 biantrud φnkranGn0xk=nnnJxnnJxnn
92 81 89 91 3bitr4d φnkranGn0xk=nifnJxnnJxn=knnJx
93 breq1 k=nkFxnFx
94 2 adantr φnF:0+∞
95 94 ffvelcdmda φnxFx0+∞
96 elrege0 Fx0+∞Fx0Fx
97 95 96 sylib φnxFx0Fx
98 97 simpld φnxFx
99 98 adantlr φnkranGn0xFx
100 55 15 syl φnkranGn0x2n
101 100 nnred φnkranGn0x2n
102 99 101 remulcld φnkranGn0xFx2n
103 reflcl Fx2nFx2n
104 102 103 syl φnkranGn0xFx2n
105 100 nngt0d φnkranGn0x0<2n
106 lemuldiv nFx2n2n0<2nn2nFx2nnFx2n2n
107 56 104 101 105 106 syl112anc φnkranGn0xn2nFx2nnFx2n2n
108 lemul1 nFx2n0<2nnFxn2nFx2n
109 56 99 101 105 108 syl112anc φnkranGn0xnFxn2nFx2n
110 nnmulcl n2nn2n
111 55 15 110 syl2anc2 φnkranGn0xn2n
112 111 nnzd φnkranGn0xn2n
113 flge Fx2nn2nn2nFx2nn2nFx2n
114 102 112 113 syl2anc φnkranGn0xn2nFx2nn2nFx2n
115 109 114 bitrd φnkranGn0xnFxn2nFx2n
116 simpr φnkranGn0xx
117 simpr m=ny=xy=x
118 117 fveq2d m=ny=xFy=Fx
119 simpl m=ny=xm=n
120 119 oveq2d m=ny=x2m=2n
121 118 120 oveq12d m=ny=xFy2m=Fx2n
122 121 fveq2d m=ny=xFy2m=Fx2n
123 122 120 oveq12d m=ny=xFy2m2m=Fx2n2n
124 ovex Fx2n2nV
125 123 3 124 ovmpoa nxnJx=Fx2n2n
126 55 116 125 syl2anc φnkranGn0xnJx=Fx2n2n
127 126 breq2d φnkranGn0xnnJxnFx2n2n
128 107 115 127 3bitr4d φnkranGn0xnFxnnJx
129 93 128 sylan9bbr φnkranGn0xk=nkFxnnJx
130 116 adantr φnkranGn0xk=nx
131 iftrue k=nifk=nF-1−∞k+12n=
132 131 adantl φnkranGn0xk=nifk=nF-1−∞k+12n=
133 130 132 eleqtrrd φnkranGn0xk=nxifk=nF-1−∞k+12n
134 133 biantrurd φnkranGn0xk=nkFxxifk=nF-1−∞k+12nkFx
135 92 129 134 3bitr2d φnkranGn0xk=nifnJxnnJxn=kxifk=nF-1−∞k+12nkFx
136 28 ssdifssd φnranGn0ranm0n2nm2n
137 136 sselda φnkranGn0kranm0n2nm2n
138 eqid m0n2nm2n=m0n2nm2n
139 138 rnmpt ranm0n2nm2n=k|m0n2nk=m2n
140 139 eqabri kranm0n2nm2nm0n2nk=m2n
141 elfzelz m0n2nm
142 141 adantl φnm0n2nm
143 142 zcnd φnm0n2nm
144 15 ad2antlr φnm0n2n2n
145 144 nncnd φnm0n2n2n
146 144 nnne0d φnm0n2n2n0
147 143 145 146 divcan1d φnm0n2nm2n2n=m
148 147 142 eqeltrd φnm0n2nm2n2n
149 oveq1 k=m2nk2n=m2n2n
150 149 eleq1d k=m2nk2nm2n2n
151 148 150 syl5ibrcom φnm0n2nk=m2nk2n
152 151 rexlimdva φnm0n2nk=m2nk2n
153 140 152 biimtrid φnkranm0n2nm2nk2n
154 153 imp φnkranm0n2nm2nk2n
155 137 154 syldan φnkranGn0k2n
156 155 adantr φnkranGn0xk2n
157 flbi Fx2nk2nFx2n=k2nk2nFx2nFx2n<k2n+1
158 102 156 157 syl2anc φnkranGn0xFx2n=k2nk2nFx2nFx2n<k2n+1
159 158 adantr φnkranGn0xknFx2n=k2nk2nFx2nFx2n<k2n+1
160 neeq1 ifnJxnnJxn=kifnJxnnJxnnkn
161 160 biimparc knifnJxnnJxn=kifnJxnnJxnn
162 iffalse ¬nJxnifnJxnnJxn=n
163 162 necon1ai ifnJxnnJxnnnJxn
164 161 163 syl knifnJxnnJxn=knJxn
165 164 iftrued knifnJxnnJxn=kifnJxnnJxn=nJx
166 simpr knifnJxnnJxn=kifnJxnnJxn=k
167 165 166 eqtr3d knifnJxnnJxn=knJx=k
168 167 164 eqbrtrrd knifnJxnnJxn=kkn
169 168 167 jca knifnJxnnJxn=kknnJx=k
170 169 ex knifnJxnnJxn=kknnJx=k
171 breq1 nJx=knJxnkn
172 171 biimparc knnJx=knJxn
173 172 iftrued knnJx=kifnJxnnJxn=nJx
174 simpr knnJx=knJx=k
175 173 174 eqtrd knnJx=kifnJxnnJxn=k
176 170 175 impbid1 knifnJxnnJxn=kknnJx=k
177 176 adantl φnkranGn0xknifnJxnnJxn=kknnJx=k
178 eldifi kranGn0kranGn
179 nnre nn
180 179 ad2antlr φnxn
181 77 180 86 syl2anc φnxifnJxnnJxnn
182 13 ad2antlr φnxn0
183 182 nn0ge0d φnx0n
184 breq1 ifnJxnnJxn=ifxnnifnJxnnJxn0ifnJxnnJxnnifxnnifnJxnnJxn0n
185 breq1 0=ifxnnifnJxnnJxn00nifxnnifnJxnnJxn0n
186 184 185 ifboth ifnJxnnJxnn0nifxnnifnJxnnJxn0n
187 181 183 186 syl2anc φnxifxnnifnJxnnJxn0n
188 42 187 eqbrtrd φnxGnxn
189 188 ralrimiva φnxGnxn
190 9 ffnd φnGnFn
191 breq1 k=GnxknGnxn
192 191 ralrn GnFnkranGnknxGnxn
193 190 192 syl φnkranGnknxGnxn
194 189 193 mpbird φnkranGnkn
195 194 r19.21bi φnkranGnkn
196 178 195 sylan2 φnkranGn0kn
197 196 ad2antrr φnkranGn0xknkn
198 197 biantrurd φnkranGn0xknnJx=kknnJx=k
199 126 eqeq1d φnkranGn0xnJx=kFx2n2n=k
200 104 recnd φnkranGn0xFx2n
201 28 20 sstrd φnranGn
202 201 ssdifssd φnranGn0
203 202 sselda φnkranGn0k
204 203 adantr φnkranGn0xk
205 204 recnd φnkranGn0xk
206 100 nncnd φnkranGn0x2n
207 100 nnne0d φnkranGn0x2n0
208 200 205 206 207 divmul3d φnkranGn0xFx2n2n=kFx2n=k2n
209 199 208 bitrd φnkranGn0xnJx=kFx2n=k2n
210 209 adantr φnkranGn0xknnJx=kFx2n=k2n
211 177 198 210 3bitr2d φnkranGn0xknifnJxnnJxn=kFx2n=k2n
212 ifnefalse knifk=nF-1−∞k+12n=F-1−∞k+12n
213 212 eleq2d knxifk=nF-1−∞k+12nxF-1−∞k+12n
214 100 nnrecred φnkranGn0x12n
215 204 214 readdcld φnkranGn0xk+12n
216 215 rexrd φnkranGn0xk+12n*
217 elioomnf k+12n*Fx−∞k+12nFxFx<k+12n
218 216 217 syl φnkranGn0xFx−∞k+12nFxFx<k+12n
219 94 ad2antrr φnkranGn0xF:0+∞
220 219 ffnd φnkranGn0xFFn
221 elpreima FFnxF-1−∞k+12nxFx−∞k+12n
222 220 221 syl φnkranGn0xxF-1−∞k+12nxFx−∞k+12n
223 116 222 mpbirand φnkranGn0xxF-1−∞k+12nFx−∞k+12n
224 99 biantrurd φnkranGn0xFx<k+12nFxFx<k+12n
225 218 223 224 3bitr4d φnkranGn0xxF-1−∞k+12nFx<k+12n
226 ltmul1 Fxk+12n2n0<2nFx<k+12nFx2n<k+12n2n
227 99 215 101 105 226 syl112anc φnkranGn0xFx<k+12nFx2n<k+12n2n
228 214 recnd φnkranGn0x12n
229 206 207 recid2d φnkranGn0x12n2n=1
230 229 oveq2d φnkranGn0xk2n+12n2n=k2n+1
231 205 206 228 230 joinlmuladdmuld φnkranGn0xk+12n2n=k2n+1
232 231 breq2d φnkranGn0xFx2n<k+12n2nFx2n<k2n+1
233 225 227 232 3bitrd φnkranGn0xxF-1−∞k+12nFx2n<k2n+1
234 213 233 sylan9bbr φnkranGn0xknxifk=nF-1−∞k+12nFx2n<k2n+1
235 lemul1 kFx2n0<2nkFxk2nFx2n
236 204 99 101 105 235 syl112anc φnkranGn0xkFxk2nFx2n
237 236 adantr φnkranGn0xknkFxk2nFx2n
238 234 237 anbi12d φnkranGn0xknxifk=nF-1−∞k+12nkFxFx2n<k2n+1k2nFx2n
239 238 biancomd φnkranGn0xknxifk=nF-1−∞k+12nkFxk2nFx2nFx2n<k2n+1
240 159 211 239 3bitr4d φnkranGn0xknifnJxnnJxn=kxifk=nF-1−∞k+12nkFx
241 135 240 pm2.61dane φnkranGn0xifnJxnnJxn=kxifk=nF-1−∞k+12nkFx
242 eldif xifk=nF-1−∞k+12nF-1−∞kxifk=nF-1−∞k+12n¬xF-1−∞k
243 204 rexrd φnkranGn0xk*
244 elioomnf k*Fx−∞kFxFx<k
245 243 244 syl φnkranGn0xFx−∞kFxFx<k
246 elpreima FFnxF-1−∞kxFx−∞k
247 220 246 syl φnkranGn0xxF-1−∞kxFx−∞k
248 116 247 mpbirand φnkranGn0xxF-1−∞kFx−∞k
249 99 biantrurd φnkranGn0xFx<kFxFx<k
250 245 248 249 3bitr4d φnkranGn0xxF-1−∞kFx<k
251 250 notbid φnkranGn0x¬xF-1−∞k¬Fx<k
252 204 99 lenltd φnkranGn0xkFx¬Fx<k
253 251 252 bitr4d φnkranGn0x¬xF-1−∞kkFx
254 253 anbi2d φnkranGn0xxifk=nF-1−∞k+12n¬xF-1−∞kxifk=nF-1−∞k+12nkFx
255 242 254 bitrid φnkranGn0xxifk=nF-1−∞k+12nF-1−∞kxifk=nF-1−∞k+12nkFx
256 241 255 bitr4d φnkranGn0xifnJxnnJxn=kxifk=nF-1−∞k+12nF-1−∞k
257 54 256 sylan9bbr φnkranGn0xxnnifxnnifnJxnnJxn0=kxifk=nF-1−∞k+12nF-1−∞k
258 257 pm5.32da φnkranGn0xxnnifxnnifnJxnnJxn0=kxnnxifk=nF-1−∞k+12nF-1−∞k
259 44 52 258 3bitrd φnkranGn0xGnx=kxnnxifk=nF-1−∞k+12nF-1−∞k
260 259 pm5.32da φnkranGn0xGnx=kxxnnxifk=nF-1−∞k+12nF-1−∞k
261 21 adantr φnkranGn0Gn:
262 261 ffnd φnkranGn0GnFn
263 fniniseg GnFnxGn-1kxGnx=k
264 262 263 syl φnkranGn0xGn-1kxGnx=k
265 elin xnnifk=nF-1−∞k+12nF-1−∞kxnnxifk=nF-1−∞k+12nF-1−∞k
266 179 ad2antlr φnkranGn0n
267 266 renegcld φnkranGn0n
268 iccmbl nnnndomvol
269 267 266 268 syl2anc φnkranGn0nndomvol
270 mblss nndomvolnn
271 269 270 syl φnkranGn0nn
272 271 sseld φnkranGn0xnnx
273 272 adantrd φnkranGn0xnnxifk=nF-1−∞k+12nF-1−∞kx
274 273 pm4.71rd φnkranGn0xnnxifk=nF-1−∞k+12nF-1−∞kxxnnxifk=nF-1−∞k+12nF-1−∞k
275 265 274 bitrid φnkranGn0xnnifk=nF-1−∞k+12nF-1−∞kxxnnxifk=nF-1−∞k+12nF-1−∞k
276 260 264 275 3bitr4d φnkranGn0xGn-1kxnnifk=nF-1−∞k+12nF-1−∞k
277 276 eqrdv φnkranGn0Gn-1k=nnifk=nF-1−∞k+12nF-1−∞k
278 rembl domvol
279 fss F:0+∞0+∞F:
280 2 58 279 sylancl φF:
281 mbfima FMblFnF:F-1−∞k+12ndomvol
282 1 280 281 syl2anc φF-1−∞k+12ndomvol
283 ifcl domvolF-1−∞k+12ndomvolifk=nF-1−∞k+12ndomvol
284 278 282 283 sylancr φifk=nF-1−∞k+12ndomvol
285 mbfima FMblFnF:F-1−∞kdomvol
286 1 280 285 syl2anc φF-1−∞kdomvol
287 difmbl ifk=nF-1−∞k+12ndomvolF-1−∞kdomvolifk=nF-1−∞k+12nF-1−∞kdomvol
288 284 286 287 syl2anc φifk=nF-1−∞k+12nF-1−∞kdomvol
289 288 ad2antrr φnkranGn0ifk=nF-1−∞k+12nF-1−∞kdomvol
290 inmbl nndomvolifk=nF-1−∞k+12nF-1−∞kdomvolnnifk=nF-1−∞k+12nF-1−∞kdomvol
291 269 289 290 syl2anc φnkranGn0nnifk=nF-1−∞k+12nF-1−∞kdomvol
292 277 291 eqeltrd φnkranGn0Gn-1kdomvol
293 mblvol Gn-1kdomvolvolGn-1k=vol*Gn-1k
294 292 293 syl φnkranGn0volGn-1k=vol*Gn-1k
295 190 adantr φnkranGn0GnFn
296 295 263 syl φnkranGn0xGn-1kxGnx=k
297 77 180 ifcld φnxifnJxnnJxn
298 0re 0
299 ifcl ifnJxnnJxn0ifxnnifnJxnnJxn0
300 297 298 299 sylancl φnxifxnnifnJxnnJxn0
301 39 fvmpt2 xifxnnifnJxnnJxn0xifxnnifnJxnnJxn0x=ifxnnifnJxnnJxn0
302 33 300 301 syl2anc φnxxifxnnifnJxnnJxn0x=ifxnnifnJxnnJxn0
303 32 302 eqtrd φnxGnx=ifxnnifnJxnnJxn0
304 303 adantlr φnkranGn0xGnx=ifxnnifnJxnnJxn0
305 304 eqeq1d φnkranGn0xGnx=kifxnnifnJxnnJxn0=k
306 305 51 sylbid φnkranGn0xGnx=kxnn
307 306 expimpd φnkranGn0xGnx=kxnn
308 296 307 sylbid φnkranGn0xGn-1kxnn
309 308 ssrdv φnkranGn0Gn-1knn
310 iccssre nnnn
311 267 266 310 syl2anc φnkranGn0nn
312 mblvol nndomvolvolnn=vol*nn
313 269 312 syl φnkranGn0volnn=vol*nn
314 iccvolcl nnvolnn
315 267 266 314 syl2anc φnkranGn0volnn
316 313 315 eqeltrrd φnkranGn0vol*nn
317 ovolsscl Gn-1knnnnvol*nnvol*Gn-1k
318 309 311 316 317 syl3anc φnkranGn0vol*Gn-1k
319 294 318 eqeltrd φnkranGn0volGn-1k
320 21 29 292 319 i1fd φnGndom1
321 320 ralrimiva φnGndom1
322 ffnfv G:dom1GFnnGndom1
323 8 321 322 sylanbrc φG:dom1