Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
mulog2sumlem2
Next ⟩
mulog2sumlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulog2sumlem2
Description:
Lemma for
mulog2sum
.
(Contributed by
Mario Carneiro
, 19-May-2016)
Ref
Expression
Hypotheses
logdivsum.1
⊢
F
=
y
∈
ℝ
+
⟼
∑
i
=
1
y
log
i
i
−
log
y
2
2
mulog2sumlem.1
⊢
φ
→
F
⇝
ℝ
L
mulog2sumlem2.t
⊢
T
=
log
x
n
2
2
+
γ
log
x
n
-
L
mulog2sumlem2.r
⊢
R
=
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
Assertion
mulog2sumlem2
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
T
−
log
x
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
logdivsum.1
⊢
F
=
y
∈
ℝ
+
⟼
∑
i
=
1
y
log
i
i
−
log
y
2
2
2
mulog2sumlem.1
⊢
φ
→
F
⇝
ℝ
L
3
mulog2sumlem2.t
⊢
T
=
log
x
n
2
2
+
γ
log
x
n
-
L
4
mulog2sumlem2.r
⊢
R
=
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
5
1red
⊢
φ
→
1
∈
ℝ
6
2re
⊢
2
∈
ℝ
7
fzfid
⊢
φ
∧
x
∈
ℝ
+
→
1
…
x
∈
Fin
8
simpr
⊢
φ
∧
x
∈
ℝ
+
→
x
∈
ℝ
+
9
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
10
9
nnrpd
⊢
n
∈
1
…
x
→
n
∈
ℝ
+
11
rpdivcl
⊢
x
∈
ℝ
+
∧
n
∈
ℝ
+
→
x
n
∈
ℝ
+
12
8
10
11
syl2an
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
13
12
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℝ
14
simplr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℝ
+
15
13
14
rerpdivcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
x
∈
ℝ
16
7
15
fsumrecl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
x
∈
ℝ
17
remulcl
⊢
2
∈
ℝ
∧
∑
n
=
1
x
log
x
n
x
∈
ℝ
→
2
∑
n
=
1
x
log
x
n
x
∈
ℝ
18
6
16
17
sylancr
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
∈
ℝ
19
halfre
⊢
1
2
∈
ℝ
20
emre
⊢
γ
∈
ℝ
21
rlimcl
⊢
F
⇝
ℝ
L
→
L
∈
ℂ
22
2
21
syl
⊢
φ
→
L
∈
ℂ
23
22
abscld
⊢
φ
→
L
∈
ℝ
24
readdcl
⊢
γ
∈
ℝ
∧
L
∈
ℝ
→
γ
+
L
∈
ℝ
25
20
23
24
sylancr
⊢
φ
→
γ
+
L
∈
ℝ
26
readdcl
⊢
1
2
∈
ℝ
∧
γ
+
L
∈
ℝ
→
1
2
+
γ
+
L
∈
ℝ
27
19
25
26
sylancr
⊢
φ
→
1
2
+
γ
+
L
∈
ℝ
28
fzfid
⊢
φ
→
1
…
2
∈
Fin
29
epr
⊢
e
∈
ℝ
+
30
elfznn
⊢
m
∈
1
…
2
→
m
∈
ℕ
31
30
adantl
⊢
φ
∧
m
∈
1
…
2
→
m
∈
ℕ
32
31
nnrpd
⊢
φ
∧
m
∈
1
…
2
→
m
∈
ℝ
+
33
rpdivcl
⊢
e
∈
ℝ
+
∧
m
∈
ℝ
+
→
e
m
∈
ℝ
+
34
29
32
33
sylancr
⊢
φ
∧
m
∈
1
…
2
→
e
m
∈
ℝ
+
35
34
relogcld
⊢
φ
∧
m
∈
1
…
2
→
log
e
m
∈
ℝ
36
35
31
nndivred
⊢
φ
∧
m
∈
1
…
2
→
log
e
m
m
∈
ℝ
37
28
36
fsumrecl
⊢
φ
→
∑
m
=
1
2
log
e
m
m
∈
ℝ
38
27
37
readdcld
⊢
φ
→
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
∈
ℝ
39
4
38
eqeltrid
⊢
φ
→
R
∈
ℝ
40
remulcl
⊢
R
∈
ℝ
∧
2
∈
ℝ
→
R
⋅
2
∈
ℝ
41
39
6
40
sylancl
⊢
φ
→
R
⋅
2
∈
ℝ
42
41
adantr
⊢
φ
∧
x
∈
ℝ
+
→
R
⋅
2
∈
ℝ
43
6
a1i
⊢
φ
∧
x
∈
ℝ
+
→
2
∈
ℝ
44
rpssre
⊢
ℝ
+
⊆
ℝ
45
2cnd
⊢
φ
→
2
∈
ℂ
46
o1const
⊢
ℝ
+
⊆
ℝ
∧
2
∈
ℂ
→
x
∈
ℝ
+
⟼
2
∈
𝑂
1
47
44
45
46
sylancr
⊢
φ
→
x
∈
ℝ
+
⟼
2
∈
𝑂
1
48
logfacrlim2
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
x
⇝
ℝ
1
49
rlimo1
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
x
⇝
ℝ
1
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
x
∈
𝑂
1
50
48
49
mp1i
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
x
∈
𝑂
1
51
43
16
47
50
o1mul2
⊢
φ
→
x
∈
ℝ
+
⟼
2
∑
n
=
1
x
log
x
n
x
∈
𝑂
1
52
41
recnd
⊢
φ
→
R
⋅
2
∈
ℂ
53
o1const
⊢
ℝ
+
⊆
ℝ
∧
R
⋅
2
∈
ℂ
→
x
∈
ℝ
+
⟼
R
⋅
2
∈
𝑂
1
54
44
52
53
sylancr
⊢
φ
→
x
∈
ℝ
+
⟼
R
⋅
2
∈
𝑂
1
55
18
42
51
54
o1add2
⊢
φ
→
x
∈
ℝ
+
⟼
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
𝑂
1
56
18
42
readdcld
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
ℝ
57
9
adantl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℕ
58
mucl
⊢
n
∈
ℕ
→
μ
n
∈
ℤ
59
57
58
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℤ
60
59
zred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
61
60
57
nndivred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℝ
62
61
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℂ
63
13
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℂ
64
63
sqcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
∈
ℂ
65
64
halfcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
∈
ℂ
66
remulcl
⊢
γ
∈
ℝ
∧
log
x
n
∈
ℝ
→
γ
log
x
n
∈
ℝ
67
20
13
66
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
∈
ℝ
68
67
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
∈
ℂ
69
22
ad2antrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
L
∈
ℂ
70
68
69
subcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
−
L
∈
ℂ
71
65
70
addcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
+
γ
log
x
n
-
L
∈
ℂ
72
3
71
eqeltrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
∈
ℂ
73
62
72
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
T
∈
ℂ
74
7
73
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
T
∈
ℂ
75
relogcl
⊢
x
∈
ℝ
+
→
log
x
∈
ℝ
76
75
adantl
⊢
φ
∧
x
∈
ℝ
+
→
log
x
∈
ℝ
77
76
recnd
⊢
φ
∧
x
∈
ℝ
+
→
log
x
∈
ℂ
78
74
77
subcld
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
T
−
log
x
∈
ℂ
79
78
abscld
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
T
−
log
x
∈
ℝ
80
79
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
T
−
log
x
∈
ℝ
81
56
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
ℝ
82
56
recnd
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
ℂ
83
82
abscld
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
ℝ
84
83
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
∈
ℝ
85
59
zcnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℂ
86
fzfid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
…
x
n
∈
Fin
87
elfznn
⊢
m
∈
1
…
x
n
→
m
∈
ℕ
88
nnrp
⊢
m
∈
ℕ
→
m
∈
ℝ
+
89
rpdivcl
⊢
x
n
∈
ℝ
+
∧
m
∈
ℝ
+
→
x
n
m
∈
ℝ
+
90
12
88
89
syl2an
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
x
n
m
∈
ℝ
+
91
90
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
∈
ℝ
92
simpr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
∈
ℕ
93
91
92
nndivred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
m
∈
ℝ
94
93
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
m
∈
ℂ
95
87
94
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
x
n
m
m
∈
ℂ
96
86
95
fsumcl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
97
72
96
subcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
98
57
nncnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
99
57
nnne0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
≠
0
100
85
97
98
99
div23d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
μ
n
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
101
62
72
96
subdid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
μ
n
n
T
−
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
102
100
101
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
μ
n
n
T
−
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
103
102
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
∑
n
=
1
x
μ
n
n
T
−
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
104
62
96
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
105
7
73
104
fsumsub
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
T
−
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
n
=
1
x
μ
n
n
T
−
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
106
103
105
eqtrd
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
∑
n
=
1
x
μ
n
n
T
−
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
107
106
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
∑
n
=
1
x
μ
n
n
T
−
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
108
86
62
95
fsummulc2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
μ
n
n
log
x
n
m
m
109
85
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
μ
n
∈
ℂ
110
98
99
jca
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
∧
n
≠
0
111
110
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
n
∈
ℂ
∧
n
≠
0
112
div23
⊢
μ
n
∈
ℂ
∧
log
x
n
m
m
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
μ
n
log
x
n
m
m
n
=
μ
n
n
log
x
n
m
m
113
divass
⊢
μ
n
∈
ℂ
∧
log
x
n
m
m
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
μ
n
log
x
n
m
m
n
=
μ
n
log
x
n
m
m
n
114
112
113
eqtr3d
⊢
μ
n
∈
ℂ
∧
log
x
n
m
m
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
μ
n
n
log
x
n
m
m
=
μ
n
log
x
n
m
m
n
115
109
94
111
114
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
μ
n
n
log
x
n
m
m
=
μ
n
log
x
n
m
m
n
116
91
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
∈
ℂ
117
92
nnrpd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
∈
ℝ
+
118
rpcnne0
⊢
m
∈
ℝ
+
→
m
∈
ℂ
∧
m
≠
0
119
117
118
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
∈
ℂ
∧
m
≠
0
120
divdiv1
⊢
log
x
n
m
∈
ℂ
∧
m
∈
ℂ
∧
m
≠
0
∧
n
∈
ℂ
∧
n
≠
0
→
log
x
n
m
m
n
=
log
x
n
m
m
n
121
116
119
111
120
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
m
n
=
log
x
n
m
m
n
122
rpre
⊢
x
∈
ℝ
+
→
x
∈
ℝ
123
122
adantl
⊢
φ
∧
x
∈
ℝ
+
→
x
∈
ℝ
124
123
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℝ
125
124
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℂ
126
125
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
x
∈
ℂ
127
divdiv1
⊢
x
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
∧
m
∈
ℂ
∧
m
≠
0
→
x
n
m
=
x
n
m
128
126
111
119
127
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
x
n
m
=
x
n
m
129
128
fveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
=
log
x
n
m
130
92
nncnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
∈
ℂ
131
98
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
n
∈
ℂ
132
130
131
mulcomd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
n
=
n
m
133
129
132
oveq12d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
m
n
=
log
x
n
m
n
m
134
121
133
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
log
x
n
m
m
n
=
log
x
n
m
n
m
135
134
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
μ
n
log
x
n
m
m
n
=
μ
n
log
x
n
m
n
m
136
115
135
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
μ
n
n
log
x
n
m
m
=
μ
n
log
x
n
m
n
m
137
87
136
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
μ
n
n
log
x
n
m
m
=
μ
n
log
x
n
m
n
m
138
137
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
μ
n
n
log
x
n
m
m
=
∑
m
=
1
x
n
μ
n
log
x
n
m
n
m
139
108
138
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
μ
n
log
x
n
m
n
m
140
139
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
x
n
m
n
m
141
oveq2
⊢
k
=
n
m
→
x
k
=
x
n
m
142
141
fveq2d
⊢
k
=
n
m
→
log
x
k
=
log
x
n
m
143
id
⊢
k
=
n
m
→
k
=
n
m
144
142
143
oveq12d
⊢
k
=
n
m
→
log
x
k
k
=
log
x
n
m
n
m
145
144
oveq2d
⊢
k
=
n
m
→
μ
n
log
x
k
k
=
μ
n
log
x
n
m
n
m
146
8
rpred
⊢
φ
∧
x
∈
ℝ
+
→
x
∈
ℝ
147
ssrab2
⊢
y
∈
ℕ
|
y
∥
k
⊆
ℕ
148
simprr
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
n
∈
y
∈
ℕ
|
y
∥
k
149
147
148
sselid
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
n
∈
ℕ
150
149
58
syl
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
μ
n
∈
ℤ
151
150
zred
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
μ
n
∈
ℝ
152
elfznn
⊢
k
∈
1
…
x
→
k
∈
ℕ
153
152
adantr
⊢
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
k
∈
ℕ
154
153
nnrpd
⊢
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
k
∈
ℝ
+
155
rpdivcl
⊢
x
∈
ℝ
+
∧
k
∈
ℝ
+
→
x
k
∈
ℝ
+
156
8
154
155
syl2an
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
x
k
∈
ℝ
+
157
156
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
log
x
k
∈
ℝ
158
152
ad2antrl
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
k
∈
ℕ
159
157
158
nndivred
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
log
x
k
k
∈
ℝ
160
151
159
remulcld
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
μ
n
log
x
k
k
∈
ℝ
161
160
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
∧
n
∈
y
∈
ℕ
|
y
∥
k
→
μ
n
log
x
k
k
∈
ℂ
162
145
146
161
dvdsflsumcom
⊢
φ
∧
x
∈
ℝ
+
→
∑
k
=
1
x
∑
n
∈
y
∈
ℕ
|
y
∥
k
μ
n
log
x
k
k
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
x
n
m
n
m
163
140
162
eqtr4d
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
k
=
1
x
∑
n
∈
y
∈
ℕ
|
y
∥
k
μ
n
log
x
k
k
164
163
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
k
=
1
x
∑
n
∈
y
∈
ℕ
|
y
∥
k
μ
n
log
x
k
k
165
oveq2
⊢
k
=
1
→
x
k
=
x
1
166
165
fveq2d
⊢
k
=
1
→
log
x
k
=
log
x
1
167
id
⊢
k
=
1
→
k
=
1
168
166
167
oveq12d
⊢
k
=
1
→
log
x
k
k
=
log
x
1
1
169
fzfid
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
1
…
x
∈
Fin
170
fz1ssnn
⊢
1
…
x
⊆
ℕ
171
170
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
1
…
x
⊆
ℕ
172
123
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
x
∈
ℝ
173
simprr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
1
≤
x
174
flge1nn
⊢
x
∈
ℝ
∧
1
≤
x
→
x
∈
ℕ
175
172
173
174
syl2anc
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
x
∈
ℕ
176
nnuz
⊢
ℕ
=
ℤ
≥
1
177
175
176
eleqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
x
∈
ℤ
≥
1
178
eluzfz1
⊢
x
∈
ℤ
≥
1
→
1
∈
1
…
x
179
177
178
syl
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
1
∈
1
…
x
180
152
nnrpd
⊢
k
∈
1
…
x
→
k
∈
ℝ
+
181
8
180
155
syl2an
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
→
x
k
∈
ℝ
+
182
181
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
→
log
x
k
∈
ℝ
183
170
a1i
⊢
φ
∧
x
∈
ℝ
+
→
1
…
x
⊆
ℕ
184
183
sselda
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
→
k
∈
ℕ
185
182
184
nndivred
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
→
log
x
k
k
∈
ℝ
186
185
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
k
∈
1
…
x
→
log
x
k
k
∈
ℂ
187
186
adantlrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
∧
k
∈
1
…
x
→
log
x
k
k
∈
ℂ
188
168
169
171
179
187
musumsum
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
k
=
1
x
∑
n
∈
y
∈
ℕ
|
y
∥
k
μ
n
log
x
k
k
=
log
x
1
1
189
8
rpcnd
⊢
φ
∧
x
∈
ℝ
+
→
x
∈
ℂ
190
189
div1d
⊢
φ
∧
x
∈
ℝ
+
→
x
1
=
x
191
190
fveq2d
⊢
φ
∧
x
∈
ℝ
+
→
log
x
1
=
log
x
192
191
oveq1d
⊢
φ
∧
x
∈
ℝ
+
→
log
x
1
1
=
log
x
1
193
77
div1d
⊢
φ
∧
x
∈
ℝ
+
→
log
x
1
=
log
x
194
192
193
eqtrd
⊢
φ
∧
x
∈
ℝ
+
→
log
x
1
1
=
log
x
195
194
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
log
x
1
1
=
log
x
196
164
188
195
3eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
log
x
197
196
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
T
−
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
log
x
n
m
m
=
∑
n
=
1
x
μ
n
n
T
−
log
x
198
107
197
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
∑
n
=
1
x
μ
n
n
T
−
log
x
199
198
fveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
=
∑
n
=
1
x
μ
n
n
T
−
log
x
200
ere
⊢
e
∈
ℝ
201
200
a1i
⊢
φ
∧
x
∈
ℝ
+
→
e
∈
ℝ
202
1re
⊢
1
∈
ℝ
203
1lt2
⊢
1
<
2
204
egt2lt3
⊢
2
<
e
∧
e
<
3
205
204
simpli
⊢
2
<
e
206
202
6
200
lttri
⊢
1
<
2
∧
2
<
e
→
1
<
e
207
203
205
206
mp2an
⊢
1
<
e
208
202
200
207
ltleii
⊢
1
≤
e
209
201
208
jctir
⊢
φ
∧
x
∈
ℝ
+
→
e
∈
ℝ
∧
1
≤
e
210
39
adantr
⊢
φ
∧
x
∈
ℝ
+
→
R
∈
ℝ
211
19
a1i
⊢
φ
→
1
2
∈
ℝ
212
1rp
⊢
1
∈
ℝ
+
213
rphalfcl
⊢
1
∈
ℝ
+
→
1
2
∈
ℝ
+
214
212
213
ax-mp
⊢
1
2
∈
ℝ
+
215
rpge0
⊢
1
2
∈
ℝ
+
→
0
≤
1
2
216
214
215
mp1i
⊢
φ
→
0
≤
1
2
217
20
a1i
⊢
φ
→
γ
∈
ℝ
218
0re
⊢
0
∈
ℝ
219
emgt0
⊢
0
<
γ
220
218
20
219
ltleii
⊢
0
≤
γ
221
220
a1i
⊢
φ
→
0
≤
γ
222
22
absge0d
⊢
φ
→
0
≤
L
223
217
23
221
222
addge0d
⊢
φ
→
0
≤
γ
+
L
224
211
25
216
223
addge0d
⊢
φ
→
0
≤
1
2
+
γ
+
L
225
log1
⊢
log
1
=
0
226
31
nncnd
⊢
φ
∧
m
∈
1
…
2
→
m
∈
ℂ
227
226
mullidd
⊢
φ
∧
m
∈
1
…
2
→
1
m
=
m
228
32
rpred
⊢
φ
∧
m
∈
1
…
2
→
m
∈
ℝ
229
6
a1i
⊢
φ
∧
m
∈
1
…
2
→
2
∈
ℝ
230
200
a1i
⊢
φ
∧
m
∈
1
…
2
→
e
∈
ℝ
231
elfzle2
⊢
m
∈
1
…
2
→
m
≤
2
232
231
adantl
⊢
φ
∧
m
∈
1
…
2
→
m
≤
2
233
6
200
205
ltleii
⊢
2
≤
e
234
233
a1i
⊢
φ
∧
m
∈
1
…
2
→
2
≤
e
235
228
229
230
232
234
letrd
⊢
φ
∧
m
∈
1
…
2
→
m
≤
e
236
227
235
eqbrtrd
⊢
φ
∧
m
∈
1
…
2
→
1
m
≤
e
237
1red
⊢
φ
∧
m
∈
1
…
2
→
1
∈
ℝ
238
237
230
32
lemuldivd
⊢
φ
∧
m
∈
1
…
2
→
1
m
≤
e
↔
1
≤
e
m
239
236
238
mpbid
⊢
φ
∧
m
∈
1
…
2
→
1
≤
e
m
240
logleb
⊢
1
∈
ℝ
+
∧
e
m
∈
ℝ
+
→
1
≤
e
m
↔
log
1
≤
log
e
m
241
212
34
240
sylancr
⊢
φ
∧
m
∈
1
…
2
→
1
≤
e
m
↔
log
1
≤
log
e
m
242
239
241
mpbid
⊢
φ
∧
m
∈
1
…
2
→
log
1
≤
log
e
m
243
225
242
eqbrtrrid
⊢
φ
∧
m
∈
1
…
2
→
0
≤
log
e
m
244
35
32
243
divge0d
⊢
φ
∧
m
∈
1
…
2
→
0
≤
log
e
m
m
245
28
36
244
fsumge0
⊢
φ
→
0
≤
∑
m
=
1
2
log
e
m
m
246
27
37
224
245
addge0d
⊢
φ
→
0
≤
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
247
246
4
breqtrrdi
⊢
φ
→
0
≤
R
248
247
adantr
⊢
φ
∧
x
∈
ℝ
+
→
0
≤
R
249
210
248
jca
⊢
φ
∧
x
∈
ℝ
+
→
R
∈
ℝ
∧
0
≤
R
250
85
97
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
251
remulcl
⊢
2
∈
ℝ
∧
log
x
n
x
∈
ℝ
→
2
log
x
n
x
∈
ℝ
252
6
15
251
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
x
∈
ℝ
253
6
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
∈
ℝ
254
0le2
⊢
0
≤
2
255
254
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
2
256
98
mullidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
=
n
257
fznnfl
⊢
x
∈
ℝ
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
258
123
257
syl
⊢
φ
∧
x
∈
ℝ
+
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
259
258
simplbda
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
≤
x
260
256
259
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
≤
x
261
1red
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
∈
ℝ
262
57
nnrpd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℝ
+
263
261
124
262
lemuldivd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
≤
x
↔
1
≤
x
n
264
260
263
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
≤
x
n
265
logleb
⊢
1
∈
ℝ
+
∧
x
n
∈
ℝ
+
→
1
≤
x
n
↔
log
1
≤
log
x
n
266
212
12
265
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
≤
x
n
↔
log
1
≤
log
x
n
267
264
266
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
1
≤
log
x
n
268
225
267
eqbrtrrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
log
x
n
269
rpregt0
⊢
x
∈
ℝ
+
→
x
∈
ℝ
∧
0
<
x
270
269
ad2antlr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℝ
∧
0
<
x
271
divge0
⊢
log
x
n
∈
ℝ
∧
0
≤
log
x
n
∧
x
∈
ℝ
∧
0
<
x
→
0
≤
log
x
n
x
272
13
268
270
271
syl21anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
log
x
n
x
273
253
15
255
272
mulge0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
2
log
x
n
x
274
250
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
275
274
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
276
97
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
277
276
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
278
262
rpred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℝ
279
252
278
remulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
x
n
∈
ℝ
280
279
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
2
log
x
n
x
n
∈
ℝ
281
85
97
absmuld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
282
85
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
283
97
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
284
97
absge0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
T
−
∑
m
=
1
x
n
log
x
n
m
m
285
mule1
⊢
n
∈
ℕ
→
μ
n
≤
1
286
57
285
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
≤
1
287
282
261
283
284
286
lemul1ad
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
1
T
−
∑
m
=
1
x
n
log
x
n
m
m
288
283
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
289
288
mullidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
T
−
∑
m
=
1
x
n
log
x
n
m
m
290
287
289
breqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
T
−
∑
m
=
1
x
n
log
x
n
m
m
291
281
290
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
T
−
∑
m
=
1
x
n
log
x
n
m
m
292
291
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
T
−
∑
m
=
1
x
n
log
x
n
m
m
293
2
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
F
⇝
ℝ
L
294
12
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
x
n
∈
ℝ
+
295
simpr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
e
≤
x
n
296
1
293
294
295
mulog2sumlem1
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
∑
m
=
1
x
n
log
x
n
m
m
−
log
x
n
2
2
+
γ
log
x
n
-
L
≤
2
log
x
n
x
n
297
72
96
abssubd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
log
x
n
m
m
−
T
298
297
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
log
x
n
m
m
−
T
299
3
oveq2i
⊢
∑
m
=
1
x
n
log
x
n
m
m
−
T
=
∑
m
=
1
x
n
log
x
n
m
m
−
log
x
n
2
2
+
γ
log
x
n
-
L
300
299
fveq2i
⊢
∑
m
=
1
x
n
log
x
n
m
m
−
T
=
∑
m
=
1
x
n
log
x
n
m
m
−
log
x
n
2
2
+
γ
log
x
n
-
L
301
298
300
eqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
log
x
n
m
m
−
log
x
n
2
2
+
γ
log
x
n
-
L
302
2cnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
∈
ℂ
303
15
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
x
∈
ℂ
304
302
303
98
mulassd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
x
n
=
2
log
x
n
x
n
305
rpcnne0
⊢
x
∈
ℝ
+
→
x
∈
ℂ
∧
x
≠
0
306
305
ad2antlr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℂ
∧
x
≠
0
307
divdiv2
⊢
log
x
n
∈
ℂ
∧
x
∈
ℂ
∧
x
≠
0
∧
n
∈
ℂ
∧
n
≠
0
→
log
x
n
x
n
=
log
x
n
n
x
308
63
306
110
307
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
x
n
=
log
x
n
n
x
309
div23
⊢
log
x
n
∈
ℂ
∧
n
∈
ℂ
∧
x
∈
ℂ
∧
x
≠
0
→
log
x
n
n
x
=
log
x
n
x
n
310
63
98
306
309
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
n
x
=
log
x
n
x
n
311
308
310
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
x
n
=
log
x
n
x
n
312
311
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
x
n
=
2
log
x
n
x
n
313
304
312
eqtr4d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
x
n
=
2
log
x
n
x
n
314
313
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
2
log
x
n
x
n
=
2
log
x
n
x
n
315
296
301
314
3brtr4d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
2
log
x
n
x
n
316
275
277
280
292
315
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
e
≤
x
n
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
2
log
x
n
x
n
317
274
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
318
283
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
319
39
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
R
∈
ℝ
320
291
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
T
−
∑
m
=
1
x
n
log
x
n
m
m
321
72
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
∈
ℂ
322
321
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
∈
ℝ
323
96
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
∈
ℂ
324
323
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
325
322
324
readdcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
+
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
326
321
323
abs2dif2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
T
+
∑
m
=
1
x
n
log
x
n
m
m
327
27
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
2
+
γ
+
L
∈
ℝ
328
37
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
2
log
e
m
m
∈
ℝ
329
3
fveq2i
⊢
T
=
log
x
n
2
2
+
γ
log
x
n
-
L
330
329
322
eqeltrrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
+
γ
log
x
n
-
L
∈
ℝ
331
65
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
∈
ℂ
332
331
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
∈
ℝ
333
70
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
−
L
∈
ℂ
334
333
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
−
L
∈
ℝ
335
332
334
readdcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
+
γ
log
x
n
−
L
∈
ℝ
336
331
333
abstrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
+
γ
log
x
n
-
L
≤
log
x
n
2
2
+
γ
log
x
n
−
L
337
19
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
2
∈
ℝ
338
25
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
+
L
∈
ℝ
339
13
resqcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
∈
ℝ
340
339
rehalfcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
∈
ℝ
341
13
sqge0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
log
x
n
2
342
2pos
⊢
0
<
2
343
6
342
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
344
343
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
∈
ℝ
∧
0
<
2
345
divge0
⊢
log
x
n
2
∈
ℝ
∧
0
≤
log
x
n
2
∧
2
∈
ℝ
∧
0
<
2
→
0
≤
log
x
n
2
2
346
339
341
344
345
syl21anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
log
x
n
2
2
347
340
346
absidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
=
log
x
n
2
2
348
347
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
=
log
x
n
2
2
349
12
rpred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℝ
350
ltle
⊢
x
n
∈
ℝ
∧
e
∈
ℝ
→
x
n
<
e
→
x
n
≤
e
351
349
200
350
sylancl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
<
e
→
x
n
≤
e
352
351
imp
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
≤
e
353
12
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
∈
ℝ
+
354
logleb
⊢
x
n
∈
ℝ
+
∧
e
∈
ℝ
+
→
x
n
≤
e
↔
log
x
n
≤
log
e
355
353
29
354
sylancl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
≤
e
↔
log
x
n
≤
log
e
356
352
355
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
≤
log
e
357
loge
⊢
log
e
=
1
358
356
357
breqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
≤
1
359
0le1
⊢
0
≤
1
360
359
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
1
361
13
261
268
360
le2sqd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
≤
1
↔
log
x
n
2
≤
1
2
362
361
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
≤
1
↔
log
x
n
2
≤
1
2
363
358
362
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
≤
1
2
364
sq1
⊢
1
2
=
1
365
363
364
breqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
≤
1
366
339
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
∈
ℝ
367
1red
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
∈
ℝ
368
343
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
2
∈
ℝ
∧
0
<
2
369
lediv1
⊢
log
x
n
2
∈
ℝ
∧
1
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
log
x
n
2
≤
1
↔
log
x
n
2
2
≤
1
2
370
366
367
368
369
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
≤
1
↔
log
x
n
2
2
≤
1
2
371
365
370
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
≤
1
2
372
348
371
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
≤
1
2
373
69
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
L
∈
ℝ
374
67
373
readdcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
+
L
∈
ℝ
375
374
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
+
L
∈
ℝ
376
68
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
∈
ℂ
377
22
ad3antrrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
L
∈
ℂ
378
376
377
abs2dif2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
−
L
≤
γ
log
x
n
+
L
379
20
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
∈
ℝ
380
220
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
γ
381
379
13
380
268
mulge0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
γ
log
x
n
382
67
381
absidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
=
γ
log
x
n
383
382
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
=
γ
log
x
n
384
383
oveq1d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
+
L
=
γ
log
x
n
+
L
385
378
384
breqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
−
L
≤
γ
log
x
n
+
L
386
67
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
∈
ℝ
387
20
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
∈
ℝ
388
377
abscld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
L
∈
ℝ
389
13
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
∈
ℝ
390
387
219
jctir
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
∈
ℝ
∧
0
<
γ
391
lemul2
⊢
log
x
n
∈
ℝ
∧
1
∈
ℝ
∧
γ
∈
ℝ
∧
0
<
γ
→
log
x
n
≤
1
↔
γ
log
x
n
≤
γ
⋅
1
392
389
367
390
391
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
≤
1
↔
γ
log
x
n
≤
γ
⋅
1
393
358
392
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
≤
γ
⋅
1
394
20
recni
⊢
γ
∈
ℂ
395
394
mulridi
⊢
γ
⋅
1
=
γ
396
393
395
breqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
≤
γ
397
386
387
388
396
leadd1dd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
+
L
≤
γ
+
L
398
334
375
338
385
397
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
γ
log
x
n
−
L
≤
γ
+
L
399
332
334
337
338
372
398
le2addd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
+
γ
log
x
n
−
L
≤
1
2
+
γ
+
L
400
330
335
327
336
399
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
log
x
n
2
2
+
γ
log
x
n
-
L
≤
1
2
+
γ
+
L
401
329
400
eqbrtrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
≤
1
2
+
γ
+
L
402
87
93
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
x
n
m
m
∈
ℝ
403
86
402
fsumrecl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
404
403
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
∈
ℝ
405
87
91
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
x
n
m
∈
ℝ
406
87
130
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℂ
407
406
mullidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
m
=
m
408
fznnfl
⊢
x
n
∈
ℝ
→
m
∈
1
…
x
n
↔
m
∈
ℕ
∧
m
≤
x
n
409
349
408
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
m
∈
1
…
x
n
↔
m
∈
ℕ
∧
m
≤
x
n
410
409
simplbda
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
≤
x
n
411
407
410
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
m
≤
x
n
412
1red
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
∈
ℝ
413
349
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
x
n
∈
ℝ
414
117
rpregt0d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
ℕ
→
m
∈
ℝ
∧
0
<
m
415
87
414
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℝ
∧
0
<
m
416
lemuldiv
⊢
1
∈
ℝ
∧
x
n
∈
ℝ
∧
m
∈
ℝ
∧
0
<
m
→
1
m
≤
x
n
↔
1
≤
x
n
m
417
412
413
415
416
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
m
≤
x
n
↔
1
≤
x
n
m
418
411
417
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
≤
x
n
m
419
87
90
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
x
n
m
∈
ℝ
+
420
logleb
⊢
1
∈
ℝ
+
∧
x
n
m
∈
ℝ
+
→
1
≤
x
n
m
↔
log
1
≤
log
x
n
m
421
212
419
420
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
≤
x
n
m
↔
log
1
≤
log
x
n
m
422
418
421
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
1
≤
log
x
n
m
423
225
422
eqbrtrrid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
0
≤
log
x
n
m
424
divge0
⊢
log
x
n
m
∈
ℝ
∧
0
≤
log
x
n
m
∧
m
∈
ℝ
∧
0
<
m
→
0
≤
log
x
n
m
m
425
405
423
415
424
syl21anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
0
≤
log
x
n
m
m
426
86
402
425
fsumge0
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
∑
m
=
1
x
n
log
x
n
m
m
427
426
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
0
≤
∑
m
=
1
x
n
log
x
n
m
m
428
404
427
absidd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
=
∑
m
=
1
x
n
log
x
n
m
m
429
fzfid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
…
x
n
∈
Fin
430
349
flcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℤ
431
430
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
∈
ℤ
432
2z
⊢
2
∈
ℤ
433
432
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
2
∈
ℤ
434
349
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
∈
ℝ
435
200
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
e
∈
ℝ
436
3re
⊢
3
∈
ℝ
437
436
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
3
∈
ℝ
438
simpr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
<
e
439
204
simpri
⊢
e
<
3
440
439
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
e
<
3
441
434
435
437
438
440
lttrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
<
3
442
3z
⊢
3
∈
ℤ
443
fllt
⊢
x
n
∈
ℝ
∧
3
∈
ℤ
→
x
n
<
3
↔
x
n
<
3
444
434
442
443
sylancl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
<
3
↔
x
n
<
3
445
441
444
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
<
3
446
df-3
⊢
3
=
2
+
1
447
445
446
breqtrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
<
2
+
1
448
zleltp1
⊢
x
n
∈
ℤ
∧
2
∈
ℤ
→
x
n
≤
2
↔
x
n
<
2
+
1
449
431
432
448
sylancl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
≤
2
↔
x
n
<
2
+
1
450
447
449
mpbird
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
x
n
≤
2
451
eluz2
⊢
2
∈
ℤ
≥
x
n
↔
x
n
∈
ℤ
∧
2
∈
ℤ
∧
x
n
≤
2
452
431
433
450
451
syl3anbrc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
2
∈
ℤ
≥
x
n
453
fzss2
⊢
2
∈
ℤ
≥
x
n
→
1
…
x
n
⊆
1
…
2
454
452
453
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
…
x
n
⊆
1
…
2
455
454
sselda
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
x
n
→
m
∈
1
…
2
456
36
ad5ant15
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
e
m
m
∈
ℝ
457
455
456
syldan
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
x
n
→
log
e
m
m
∈
ℝ
458
429
457
fsumrecl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
e
m
m
∈
ℝ
459
93
adantlr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
ℕ
→
log
x
n
m
m
∈
ℝ
460
87
459
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
x
n
→
log
x
n
m
m
∈
ℝ
461
352
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
≤
e
462
434
adantr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
∈
ℝ
463
200
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
e
∈
ℝ
464
32
rpregt0d
⊢
φ
∧
m
∈
1
…
2
→
m
∈
ℝ
∧
0
<
m
465
464
ad5ant15
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
m
∈
ℝ
∧
0
<
m
466
lediv1
⊢
x
n
∈
ℝ
∧
e
∈
ℝ
∧
m
∈
ℝ
∧
0
<
m
→
x
n
≤
e
↔
x
n
m
≤
e
m
467
462
463
465
466
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
≤
e
↔
x
n
m
≤
e
m
468
461
467
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
m
≤
e
m
469
90
adantlr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
ℕ
→
x
n
m
∈
ℝ
+
470
30
469
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
m
∈
ℝ
+
471
34
ad5ant15
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
e
m
∈
ℝ
+
472
470
471
logled
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
x
n
m
≤
e
m
↔
log
x
n
m
≤
log
e
m
473
468
472
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
x
n
m
≤
log
e
m
474
91
adantlr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
ℕ
→
log
x
n
m
∈
ℝ
475
30
474
sylan2
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
x
n
m
∈
ℝ
476
35
ad5ant15
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
e
m
∈
ℝ
477
lediv1
⊢
log
x
n
m
∈
ℝ
∧
log
e
m
∈
ℝ
∧
m
∈
ℝ
∧
0
<
m
→
log
x
n
m
≤
log
e
m
↔
log
x
n
m
m
≤
log
e
m
m
478
475
476
465
477
syl3anc
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
x
n
m
≤
log
e
m
↔
log
x
n
m
m
≤
log
e
m
m
479
473
478
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
log
x
n
m
m
≤
log
e
m
m
480
455
479
syldan
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
x
n
→
log
x
n
m
m
≤
log
e
m
m
481
429
460
457
480
fsumle
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
≤
∑
m
=
1
x
n
log
e
m
m
482
fzfid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
1
…
2
∈
Fin
483
244
ad5ant15
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
∧
m
∈
1
…
2
→
0
≤
log
e
m
m
484
482
456
483
454
fsumless
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
e
m
m
≤
∑
m
=
1
2
log
e
m
m
485
404
458
328
481
484
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
≤
∑
m
=
1
2
log
e
m
m
486
428
485
eqbrtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
∑
m
=
1
x
n
log
x
n
m
m
≤
∑
m
=
1
2
log
e
m
m
487
322
324
327
328
401
486
le2addd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
+
∑
m
=
1
x
n
log
x
n
m
m
≤
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
488
487
4
breqtrrdi
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
+
∑
m
=
1
x
n
log
x
n
m
m
≤
R
489
318
325
319
326
488
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
R
490
317
318
319
320
489
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
x
n
<
e
→
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
≤
R
491
8
209
249
250
252
273
316
490
fsumharmonic
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
≤
∑
n
=
1
x
2
log
x
n
x
+
R
log
e
+
1
492
2cnd
⊢
φ
∧
x
∈
ℝ
+
→
2
∈
ℂ
493
7
492
303
fsummulc2
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
=
∑
n
=
1
x
2
log
x
n
x
494
df-2
⊢
2
=
1
+
1
495
357
oveq1i
⊢
log
e
+
1
=
1
+
1
496
494
495
eqtr4i
⊢
2
=
log
e
+
1
497
496
a1i
⊢
φ
∧
x
∈
ℝ
+
→
2
=
log
e
+
1
498
497
oveq2d
⊢
φ
∧
x
∈
ℝ
+
→
R
⋅
2
=
R
log
e
+
1
499
493
498
oveq12d
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
=
∑
n
=
1
x
2
log
x
n
x
+
R
log
e
+
1
500
491
499
breqtrrd
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
501
500
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
T
−
∑
m
=
1
x
n
log
x
n
m
m
n
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
502
199
501
eqbrtrrd
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
T
−
log
x
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
503
56
leabsd
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
504
503
adantrr
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
505
80
81
84
502
504
letrd
⊢
φ
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
T
−
log
x
≤
2
∑
n
=
1
x
log
x
n
x
+
R
⋅
2
506
5
55
56
78
505
o1le
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
T
−
log
x
∈
𝑂
1