Metamath Proof Explorer


Theorem mulog2sumlem2

Description: Lemma for mulog2sum . (Contributed by Mario Carneiro, 19-May-2016)

Ref Expression
Hypotheses logdivsum.1 F=y+i=1ylogiilogy22
mulog2sumlem.1 φFL
mulog2sumlem2.t T=logxn22+γlogxn-L
mulog2sumlem2.r R=12+γ+L+m=12logemm
Assertion mulog2sumlem2 φx+n=1xμnnTlogx𝑂1

Proof

Step Hyp Ref Expression
1 logdivsum.1 F=y+i=1ylogiilogy22
2 mulog2sumlem.1 φFL
3 mulog2sumlem2.t T=logxn22+γlogxn-L
4 mulog2sumlem2.r R=12+γ+L+m=12logemm
5 1red φ1
6 2re 2
7 fzfid φx+1xFin
8 simpr φx+x+
9 elfznn n1xn
10 9 nnrpd n1xn+
11 rpdivcl x+n+xn+
12 8 10 11 syl2an φx+n1xxn+
13 12 relogcld φx+n1xlogxn
14 simplr φx+n1xx+
15 13 14 rerpdivcld φx+n1xlogxnx
16 7 15 fsumrecl φx+n=1xlogxnx
17 remulcl 2n=1xlogxnx2n=1xlogxnx
18 6 16 17 sylancr φx+2n=1xlogxnx
19 halfre 12
20 emre γ
21 rlimcl FLL
22 2 21 syl φL
23 22 abscld φL
24 readdcl γLγ+L
25 20 23 24 sylancr φγ+L
26 readdcl 12γ+L12+γ+L
27 19 25 26 sylancr φ12+γ+L
28 fzfid φ12Fin
29 epr e+
30 elfznn m12m
31 30 adantl φm12m
32 31 nnrpd φm12m+
33 rpdivcl e+m+em+
34 29 32 33 sylancr φm12em+
35 34 relogcld φm12logem
36 35 31 nndivred φm12logemm
37 28 36 fsumrecl φm=12logemm
38 27 37 readdcld φ12+γ+L+m=12logemm
39 4 38 eqeltrid φR
40 remulcl R2R2
41 39 6 40 sylancl φR2
42 41 adantr φx+R2
43 6 a1i φx+2
44 rpssre +
45 2cnd φ2
46 o1const +2x+2𝑂1
47 44 45 46 sylancr φx+2𝑂1
48 logfacrlim2 x+n=1xlogxnx1
49 rlimo1 x+n=1xlogxnx1x+n=1xlogxnx𝑂1
50 48 49 mp1i φx+n=1xlogxnx𝑂1
51 43 16 47 50 o1mul2 φx+2n=1xlogxnx𝑂1
52 41 recnd φR2
53 o1const +R2x+R2𝑂1
54 44 52 53 sylancr φx+R2𝑂1
55 18 42 51 54 o1add2 φx+2n=1xlogxnx+R2𝑂1
56 18 42 readdcld φx+2n=1xlogxnx+R2
57 9 adantl φx+n1xn
58 mucl nμn
59 57 58 syl φx+n1xμn
60 59 zred φx+n1xμn
61 60 57 nndivred φx+n1xμnn
62 61 recnd φx+n1xμnn
63 13 recnd φx+n1xlogxn
64 63 sqcld φx+n1xlogxn2
65 64 halfcld φx+n1xlogxn22
66 remulcl γlogxnγlogxn
67 20 13 66 sylancr φx+n1xγlogxn
68 67 recnd φx+n1xγlogxn
69 22 ad2antrr φx+n1xL
70 68 69 subcld φx+n1xγlogxnL
71 65 70 addcld φx+n1xlogxn22+γlogxn-L
72 3 71 eqeltrid φx+n1xT
73 62 72 mulcld φx+n1xμnnT
74 7 73 fsumcl φx+n=1xμnnT
75 relogcl x+logx
76 75 adantl φx+logx
77 76 recnd φx+logx
78 74 77 subcld φx+n=1xμnnTlogx
79 78 abscld φx+n=1xμnnTlogx
80 79 adantrr φx+1xn=1xμnnTlogx
81 56 adantrr φx+1x2n=1xlogxnx+R2
82 56 recnd φx+2n=1xlogxnx+R2
83 82 abscld φx+2n=1xlogxnx+R2
84 83 adantrr φx+1x2n=1xlogxnx+R2
85 59 zcnd φx+n1xμn
86 fzfid φx+n1x1xnFin
87 elfznn m1xnm
88 nnrp mm+
89 rpdivcl xn+m+xnm+
90 12 88 89 syl2an φx+n1xmxnm+
91 90 relogcld φx+n1xmlogxnm
92 simpr φx+n1xmm
93 91 92 nndivred φx+n1xmlogxnmm
94 93 recnd φx+n1xmlogxnmm
95 87 94 sylan2 φx+n1xm1xnlogxnmm
96 86 95 fsumcl φx+n1xm=1xnlogxnmm
97 72 96 subcld φx+n1xTm=1xnlogxnmm
98 57 nncnd φx+n1xn
99 57 nnne0d φx+n1xn0
100 85 97 98 99 div23d φx+n1xμnTm=1xnlogxnmmn=μnnTm=1xnlogxnmm
101 62 72 96 subdid φx+n1xμnnTm=1xnlogxnmm=μnnTμnnm=1xnlogxnmm
102 100 101 eqtrd φx+n1xμnTm=1xnlogxnmmn=μnnTμnnm=1xnlogxnmm
103 102 sumeq2dv φx+n=1xμnTm=1xnlogxnmmn=n=1xμnnTμnnm=1xnlogxnmm
104 62 96 mulcld φx+n1xμnnm=1xnlogxnmm
105 7 73 104 fsumsub φx+n=1xμnnTμnnm=1xnlogxnmm=n=1xμnnTn=1xμnnm=1xnlogxnmm
106 103 105 eqtrd φx+n=1xμnTm=1xnlogxnmmn=n=1xμnnTn=1xμnnm=1xnlogxnmm
107 106 adantrr φx+1xn=1xμnTm=1xnlogxnmmn=n=1xμnnTn=1xμnnm=1xnlogxnmm
108 86 62 95 fsummulc2 φx+n1xμnnm=1xnlogxnmm=m=1xnμnnlogxnmm
109 85 adantr φx+n1xmμn
110 98 99 jca φx+n1xnn0
111 110 adantr φx+n1xmnn0
112 div23 μnlogxnmmnn0μnlogxnmmn=μnnlogxnmm
113 divass μnlogxnmmnn0μnlogxnmmn=μnlogxnmmn
114 112 113 eqtr3d μnlogxnmmnn0μnnlogxnmm=μnlogxnmmn
115 109 94 111 114 syl3anc φx+n1xmμnnlogxnmm=μnlogxnmmn
116 91 recnd φx+n1xmlogxnm
117 92 nnrpd φx+n1xmm+
118 rpcnne0 m+mm0
119 117 118 syl φx+n1xmmm0
120 divdiv1 logxnmmm0nn0logxnmmn=logxnmmn
121 116 119 111 120 syl3anc φx+n1xmlogxnmmn=logxnmmn
122 rpre x+x
123 122 adantl φx+x
124 123 adantr φx+n1xx
125 124 recnd φx+n1xx
126 125 adantr φx+n1xmx
127 divdiv1 xnn0mm0xnm=xnm
128 126 111 119 127 syl3anc φx+n1xmxnm=xnm
129 128 fveq2d φx+n1xmlogxnm=logxnm
130 92 nncnd φx+n1xmm
131 98 adantr φx+n1xmn
132 130 131 mulcomd φx+n1xmmn=nm
133 129 132 oveq12d φx+n1xmlogxnmmn=logxnmnm
134 121 133 eqtrd φx+n1xmlogxnmmn=logxnmnm
135 134 oveq2d φx+n1xmμnlogxnmmn=μnlogxnmnm
136 115 135 eqtrd φx+n1xmμnnlogxnmm=μnlogxnmnm
137 87 136 sylan2 φx+n1xm1xnμnnlogxnmm=μnlogxnmnm
138 137 sumeq2dv φx+n1xm=1xnμnnlogxnmm=m=1xnμnlogxnmnm
139 108 138 eqtrd φx+n1xμnnm=1xnlogxnmm=m=1xnμnlogxnmnm
140 139 sumeq2dv φx+n=1xμnnm=1xnlogxnmm=n=1xm=1xnμnlogxnmnm
141 oveq2 k=nmxk=xnm
142 141 fveq2d k=nmlogxk=logxnm
143 id k=nmk=nm
144 142 143 oveq12d k=nmlogxkk=logxnmnm
145 144 oveq2d k=nmμnlogxkk=μnlogxnmnm
146 8 rpred φx+x
147 ssrab2 y|yk
148 simprr φx+k1xny|ykny|yk
149 147 148 sselid φx+k1xny|ykn
150 149 58 syl φx+k1xny|ykμn
151 150 zred φx+k1xny|ykμn
152 elfznn k1xk
153 152 adantr k1xny|ykk
154 153 nnrpd k1xny|ykk+
155 rpdivcl x+k+xk+
156 8 154 155 syl2an φx+k1xny|ykxk+
157 156 relogcld φx+k1xny|yklogxk
158 152 ad2antrl φx+k1xny|ykk
159 157 158 nndivred φx+k1xny|yklogxkk
160 151 159 remulcld φx+k1xny|ykμnlogxkk
161 160 recnd φx+k1xny|ykμnlogxkk
162 145 146 161 dvdsflsumcom φx+k=1xny|ykμnlogxkk=n=1xm=1xnμnlogxnmnm
163 140 162 eqtr4d φx+n=1xμnnm=1xnlogxnmm=k=1xny|ykμnlogxkk
164 163 adantrr φx+1xn=1xμnnm=1xnlogxnmm=k=1xny|ykμnlogxkk
165 oveq2 k=1xk=x1
166 165 fveq2d k=1logxk=logx1
167 id k=1k=1
168 166 167 oveq12d k=1logxkk=logx11
169 fzfid φx+1x1xFin
170 fz1ssnn 1x
171 170 a1i φx+1x1x
172 123 adantrr φx+1xx
173 simprr φx+1x1x
174 flge1nn x1xx
175 172 173 174 syl2anc φx+1xx
176 nnuz =1
177 175 176 eleqtrdi φx+1xx1
178 eluzfz1 x111x
179 177 178 syl φx+1x11x
180 152 nnrpd k1xk+
181 8 180 155 syl2an φx+k1xxk+
182 181 relogcld φx+k1xlogxk
183 170 a1i φx+1x
184 183 sselda φx+k1xk
185 182 184 nndivred φx+k1xlogxkk
186 185 recnd φx+k1xlogxkk
187 186 adantlrr φx+1xk1xlogxkk
188 168 169 171 179 187 musumsum φx+1xk=1xny|ykμnlogxkk=logx11
189 8 rpcnd φx+x
190 189 div1d φx+x1=x
191 190 fveq2d φx+logx1=logx
192 191 oveq1d φx+logx11=logx1
193 77 div1d φx+logx1=logx
194 192 193 eqtrd φx+logx11=logx
195 194 adantrr φx+1xlogx11=logx
196 164 188 195 3eqtrd φx+1xn=1xμnnm=1xnlogxnmm=logx
197 196 oveq2d φx+1xn=1xμnnTn=1xμnnm=1xnlogxnmm=n=1xμnnTlogx
198 107 197 eqtrd φx+1xn=1xμnTm=1xnlogxnmmn=n=1xμnnTlogx
199 198 fveq2d φx+1xn=1xμnTm=1xnlogxnmmn=n=1xμnnTlogx
200 ere e
201 200 a1i φx+e
202 1re 1
203 1lt2 1<2
204 egt2lt3 2<ee<3
205 204 simpli 2<e
206 202 6 200 lttri 1<22<e1<e
207 203 205 206 mp2an 1<e
208 202 200 207 ltleii 1e
209 201 208 jctir φx+e1e
210 39 adantr φx+R
211 19 a1i φ12
212 1rp 1+
213 rphalfcl 1+12+
214 212 213 ax-mp 12+
215 rpge0 12+012
216 214 215 mp1i φ012
217 20 a1i φγ
218 0re 0
219 emgt0 0<γ
220 218 20 219 ltleii 0γ
221 220 a1i φ0γ
222 22 absge0d φ0L
223 217 23 221 222 addge0d φ0γ+L
224 211 25 216 223 addge0d φ012+γ+L
225 log1 log1=0
226 31 nncnd φm12m
227 226 mullidd φm121m=m
228 32 rpred φm12m
229 6 a1i φm122
230 200 a1i φm12e
231 elfzle2 m12m2
232 231 adantl φm12m2
233 6 200 205 ltleii 2e
234 233 a1i φm122e
235 228 229 230 232 234 letrd φm12me
236 227 235 eqbrtrd φm121me
237 1red φm121
238 237 230 32 lemuldivd φm121me1em
239 236 238 mpbid φm121em
240 logleb 1+em+1emlog1logem
241 212 34 240 sylancr φm121emlog1logem
242 239 241 mpbid φm12log1logem
243 225 242 eqbrtrrid φm120logem
244 35 32 243 divge0d φm120logemm
245 28 36 244 fsumge0 φ0m=12logemm
246 27 37 224 245 addge0d φ012+γ+L+m=12logemm
247 246 4 breqtrrdi φ0R
248 247 adantr φx+0R
249 210 248 jca φx+R0R
250 85 97 mulcld φx+n1xμnTm=1xnlogxnmm
251 remulcl 2logxnx2logxnx
252 6 15 251 sylancr φx+n1x2logxnx
253 6 a1i φx+n1x2
254 0le2 02
255 254 a1i φx+n1x02
256 98 mullidd φx+n1x1n=n
257 fznnfl xn1xnnx
258 123 257 syl φx+n1xnnx
259 258 simplbda φx+n1xnx
260 256 259 eqbrtrd φx+n1x1nx
261 1red φx+n1x1
262 57 nnrpd φx+n1xn+
263 261 124 262 lemuldivd φx+n1x1nx1xn
264 260 263 mpbid φx+n1x1xn
265 logleb 1+xn+1xnlog1logxn
266 212 12 265 sylancr φx+n1x1xnlog1logxn
267 264 266 mpbid φx+n1xlog1logxn
268 225 267 eqbrtrrid φx+n1x0logxn
269 rpregt0 x+x0<x
270 269 ad2antlr φx+n1xx0<x
271 divge0 logxn0logxnx0<x0logxnx
272 13 268 270 271 syl21anc φx+n1x0logxnx
273 253 15 255 272 mulge0d φx+n1x02logxnx
274 250 abscld φx+n1xμnTm=1xnlogxnmm
275 274 adantr φx+n1xexnμnTm=1xnlogxnmm
276 97 adantr φx+n1xexnTm=1xnlogxnmm
277 276 abscld φx+n1xexnTm=1xnlogxnmm
278 262 rpred φx+n1xn
279 252 278 remulcld φx+n1x2logxnxn
280 279 adantr φx+n1xexn2logxnxn
281 85 97 absmuld φx+n1xμnTm=1xnlogxnmm=μnTm=1xnlogxnmm
282 85 abscld φx+n1xμn
283 97 abscld φx+n1xTm=1xnlogxnmm
284 97 absge0d φx+n1x0Tm=1xnlogxnmm
285 mule1 nμn1
286 57 285 syl φx+n1xμn1
287 282 261 283 284 286 lemul1ad φx+n1xμnTm=1xnlogxnmm1Tm=1xnlogxnmm
288 283 recnd φx+n1xTm=1xnlogxnmm
289 288 mullidd φx+n1x1Tm=1xnlogxnmm=Tm=1xnlogxnmm
290 287 289 breqtrd φx+n1xμnTm=1xnlogxnmmTm=1xnlogxnmm
291 281 290 eqbrtrd φx+n1xμnTm=1xnlogxnmmTm=1xnlogxnmm
292 291 adantr φx+n1xexnμnTm=1xnlogxnmmTm=1xnlogxnmm
293 2 ad3antrrr φx+n1xexnFL
294 12 adantr φx+n1xexnxn+
295 simpr φx+n1xexnexn
296 1 293 294 295 mulog2sumlem1 φx+n1xexnm=1xnlogxnmmlogxn22+γlogxn-L2logxnxn
297 72 96 abssubd φx+n1xTm=1xnlogxnmm=m=1xnlogxnmmT
298 297 adantr φx+n1xexnTm=1xnlogxnmm=m=1xnlogxnmmT
299 3 oveq2i m=1xnlogxnmmT=m=1xnlogxnmmlogxn22+γlogxn-L
300 299 fveq2i m=1xnlogxnmmT=m=1xnlogxnmmlogxn22+γlogxn-L
301 298 300 eqtrdi φx+n1xexnTm=1xnlogxnmm=m=1xnlogxnmmlogxn22+γlogxn-L
302 2cnd φx+n1x2
303 15 recnd φx+n1xlogxnx
304 302 303 98 mulassd φx+n1x2logxnxn=2logxnxn
305 rpcnne0 x+xx0
306 305 ad2antlr φx+n1xxx0
307 divdiv2 logxnxx0nn0logxnxn=logxnnx
308 63 306 110 307 syl3anc φx+n1xlogxnxn=logxnnx
309 div23 logxnnxx0logxnnx=logxnxn
310 63 98 306 309 syl3anc φx+n1xlogxnnx=logxnxn
311 308 310 eqtrd φx+n1xlogxnxn=logxnxn
312 311 oveq2d φx+n1x2logxnxn=2logxnxn
313 304 312 eqtr4d φx+n1x2logxnxn=2logxnxn
314 313 adantr φx+n1xexn2logxnxn=2logxnxn
315 296 301 314 3brtr4d φx+n1xexnTm=1xnlogxnmm2logxnxn
316 275 277 280 292 315 letrd φx+n1xexnμnTm=1xnlogxnmm2logxnxn
317 274 adantr φx+n1xxn<eμnTm=1xnlogxnmm
318 283 adantr φx+n1xxn<eTm=1xnlogxnmm
319 39 ad3antrrr φx+n1xxn<eR
320 291 adantr φx+n1xxn<eμnTm=1xnlogxnmmTm=1xnlogxnmm
321 72 adantr φx+n1xxn<eT
322 321 abscld φx+n1xxn<eT
323 96 adantr φx+n1xxn<em=1xnlogxnmm
324 323 abscld φx+n1xxn<em=1xnlogxnmm
325 322 324 readdcld φx+n1xxn<eT+m=1xnlogxnmm
326 321 323 abs2dif2d φx+n1xxn<eTm=1xnlogxnmmT+m=1xnlogxnmm
327 27 ad3antrrr φx+n1xxn<e12+γ+L
328 37 ad3antrrr φx+n1xxn<em=12logemm
329 3 fveq2i T=logxn22+γlogxn-L
330 329 322 eqeltrrid φx+n1xxn<elogxn22+γlogxn-L
331 65 adantr φx+n1xxn<elogxn22
332 331 abscld φx+n1xxn<elogxn22
333 70 adantr φx+n1xxn<eγlogxnL
334 333 abscld φx+n1xxn<eγlogxnL
335 332 334 readdcld φx+n1xxn<elogxn22+γlogxnL
336 331 333 abstrid φx+n1xxn<elogxn22+γlogxn-Llogxn22+γlogxnL
337 19 a1i φx+n1xxn<e12
338 25 ad3antrrr φx+n1xxn<eγ+L
339 13 resqcld φx+n1xlogxn2
340 339 rehalfcld φx+n1xlogxn22
341 13 sqge0d φx+n1x0logxn2
342 2pos 0<2
343 6 342 pm3.2i 20<2
344 343 a1i φx+n1x20<2
345 divge0 logxn20logxn220<20logxn22
346 339 341 344 345 syl21anc φx+n1x0logxn22
347 340 346 absidd φx+n1xlogxn22=logxn22
348 347 adantr φx+n1xxn<elogxn22=logxn22
349 12 rpred φx+n1xxn
350 ltle xnexn<exne
351 349 200 350 sylancl φx+n1xxn<exne
352 351 imp φx+n1xxn<exne
353 12 adantr φx+n1xxn<exn+
354 logleb xn+e+xnelogxnloge
355 353 29 354 sylancl φx+n1xxn<exnelogxnloge
356 352 355 mpbid φx+n1xxn<elogxnloge
357 loge loge=1
358 356 357 breqtrdi φx+n1xxn<elogxn1
359 0le1 01
360 359 a1i φx+n1x01
361 13 261 268 360 le2sqd φx+n1xlogxn1logxn212
362 361 adantr φx+n1xxn<elogxn1logxn212
363 358 362 mpbid φx+n1xxn<elogxn212
364 sq1 12=1
365 363 364 breqtrdi φx+n1xxn<elogxn21
366 339 adantr φx+n1xxn<elogxn2
367 1red φx+n1xxn<e1
368 343 a1i φx+n1xxn<e20<2
369 lediv1 logxn2120<2logxn21logxn2212
370 366 367 368 369 syl3anc φx+n1xxn<elogxn21logxn2212
371 365 370 mpbid φx+n1xxn<elogxn2212
372 348 371 eqbrtrd φx+n1xxn<elogxn2212
373 69 abscld φx+n1xL
374 67 373 readdcld φx+n1xγlogxn+L
375 374 adantr φx+n1xxn<eγlogxn+L
376 68 adantr φx+n1xxn<eγlogxn
377 22 ad3antrrr φx+n1xxn<eL
378 376 377 abs2dif2d φx+n1xxn<eγlogxnLγlogxn+L
379 20 a1i φx+n1xγ
380 220 a1i φx+n1x0γ
381 379 13 380 268 mulge0d φx+n1x0γlogxn
382 67 381 absidd φx+n1xγlogxn=γlogxn
383 382 adantr φx+n1xxn<eγlogxn=γlogxn
384 383 oveq1d φx+n1xxn<eγlogxn+L=γlogxn+L
385 378 384 breqtrd φx+n1xxn<eγlogxnLγlogxn+L
386 67 adantr φx+n1xxn<eγlogxn
387 20 a1i φx+n1xxn<eγ
388 377 abscld φx+n1xxn<eL
389 13 adantr φx+n1xxn<elogxn
390 387 219 jctir φx+n1xxn<eγ0<γ
391 lemul2 logxn1γ0<γlogxn1γlogxnγ1
392 389 367 390 391 syl3anc φx+n1xxn<elogxn1γlogxnγ1
393 358 392 mpbid φx+n1xxn<eγlogxnγ1
394 20 recni γ
395 394 mulridi γ1=γ
396 393 395 breqtrdi φx+n1xxn<eγlogxnγ
397 386 387 388 396 leadd1dd φx+n1xxn<eγlogxn+Lγ+L
398 334 375 338 385 397 letrd φx+n1xxn<eγlogxnLγ+L
399 332 334 337 338 372 398 le2addd φx+n1xxn<elogxn22+γlogxnL12+γ+L
400 330 335 327 336 399 letrd φx+n1xxn<elogxn22+γlogxn-L12+γ+L
401 329 400 eqbrtrid φx+n1xxn<eT12+γ+L
402 87 93 sylan2 φx+n1xm1xnlogxnmm
403 86 402 fsumrecl φx+n1xm=1xnlogxnmm
404 403 adantr φx+n1xxn<em=1xnlogxnmm
405 87 91 sylan2 φx+n1xm1xnlogxnm
406 87 130 sylan2 φx+n1xm1xnm
407 406 mullidd φx+n1xm1xn1m=m
408 fznnfl xnm1xnmmxn
409 349 408 syl φx+n1xm1xnmmxn
410 409 simplbda φx+n1xm1xnmxn
411 407 410 eqbrtrd φx+n1xm1xn1mxn
412 1red φx+n1xm1xn1
413 349 adantr φx+n1xm1xnxn
414 117 rpregt0d φx+n1xmm0<m
415 87 414 sylan2 φx+n1xm1xnm0<m
416 lemuldiv 1xnm0<m1mxn1xnm
417 412 413 415 416 syl3anc φx+n1xm1xn1mxn1xnm
418 411 417 mpbid φx+n1xm1xn1xnm
419 87 90 sylan2 φx+n1xm1xnxnm+
420 logleb 1+xnm+1xnmlog1logxnm
421 212 419 420 sylancr φx+n1xm1xn1xnmlog1logxnm
422 418 421 mpbid φx+n1xm1xnlog1logxnm
423 225 422 eqbrtrrid φx+n1xm1xn0logxnm
424 divge0 logxnm0logxnmm0<m0logxnmm
425 405 423 415 424 syl21anc φx+n1xm1xn0logxnmm
426 86 402 425 fsumge0 φx+n1x0m=1xnlogxnmm
427 426 adantr φx+n1xxn<e0m=1xnlogxnmm
428 404 427 absidd φx+n1xxn<em=1xnlogxnmm=m=1xnlogxnmm
429 fzfid φx+n1xxn<e1xnFin
430 349 flcld φx+n1xxn
431 430 adantr φx+n1xxn<exn
432 2z 2
433 432 a1i φx+n1xxn<e2
434 349 adantr φx+n1xxn<exn
435 200 a1i φx+n1xxn<ee
436 3re 3
437 436 a1i φx+n1xxn<e3
438 simpr φx+n1xxn<exn<e
439 204 simpri e<3
440 439 a1i φx+n1xxn<ee<3
441 434 435 437 438 440 lttrd φx+n1xxn<exn<3
442 3z 3
443 fllt xn3xn<3xn<3
444 434 442 443 sylancl φx+n1xxn<exn<3xn<3
445 441 444 mpbid φx+n1xxn<exn<3
446 df-3 3=2+1
447 445 446 breqtrdi φx+n1xxn<exn<2+1
448 zleltp1 xn2xn2xn<2+1
449 431 432 448 sylancl φx+n1xxn<exn2xn<2+1
450 447 449 mpbird φx+n1xxn<exn2
451 eluz2 2xnxn2xn2
452 431 433 450 451 syl3anbrc φx+n1xxn<e2xn
453 fzss2 2xn1xn12
454 452 453 syl φx+n1xxn<e1xn12
455 454 sselda φx+n1xxn<em1xnm12
456 36 ad5ant15 φx+n1xxn<em12logemm
457 455 456 syldan φx+n1xxn<em1xnlogemm
458 429 457 fsumrecl φx+n1xxn<em=1xnlogemm
459 93 adantlr φx+n1xxn<emlogxnmm
460 87 459 sylan2 φx+n1xxn<em1xnlogxnmm
461 352 adantr φx+n1xxn<em12xne
462 434 adantr φx+n1xxn<em12xn
463 200 a1i φx+n1xxn<em12e
464 32 rpregt0d φm12m0<m
465 464 ad5ant15 φx+n1xxn<em12m0<m
466 lediv1 xnem0<mxnexnmem
467 462 463 465 466 syl3anc φx+n1xxn<em12xnexnmem
468 461 467 mpbid φx+n1xxn<em12xnmem
469 90 adantlr φx+n1xxn<emxnm+
470 30 469 sylan2 φx+n1xxn<em12xnm+
471 34 ad5ant15 φx+n1xxn<em12em+
472 470 471 logled φx+n1xxn<em12xnmemlogxnmlogem
473 468 472 mpbid φx+n1xxn<em12logxnmlogem
474 91 adantlr φx+n1xxn<emlogxnm
475 30 474 sylan2 φx+n1xxn<em12logxnm
476 35 ad5ant15 φx+n1xxn<em12logem
477 lediv1 logxnmlogemm0<mlogxnmlogemlogxnmmlogemm
478 475 476 465 477 syl3anc φx+n1xxn<em12logxnmlogemlogxnmmlogemm
479 473 478 mpbid φx+n1xxn<em12logxnmmlogemm
480 455 479 syldan φx+n1xxn<em1xnlogxnmmlogemm
481 429 460 457 480 fsumle φx+n1xxn<em=1xnlogxnmmm=1xnlogemm
482 fzfid φx+n1xxn<e12Fin
483 244 ad5ant15 φx+n1xxn<em120logemm
484 482 456 483 454 fsumless φx+n1xxn<em=1xnlogemmm=12logemm
485 404 458 328 481 484 letrd φx+n1xxn<em=1xnlogxnmmm=12logemm
486 428 485 eqbrtrd φx+n1xxn<em=1xnlogxnmmm=12logemm
487 322 324 327 328 401 486 le2addd φx+n1xxn<eT+m=1xnlogxnmm12+γ+L+m=12logemm
488 487 4 breqtrrdi φx+n1xxn<eT+m=1xnlogxnmmR
489 318 325 319 326 488 letrd φx+n1xxn<eTm=1xnlogxnmmR
490 317 318 319 320 489 letrd φx+n1xxn<eμnTm=1xnlogxnmmR
491 8 209 249 250 252 273 316 490 fsumharmonic φx+n=1xμnTm=1xnlogxnmmnn=1x2logxnx+Rloge+1
492 2cnd φx+2
493 7 492 303 fsummulc2 φx+2n=1xlogxnx=n=1x2logxnx
494 df-2 2=1+1
495 357 oveq1i loge+1=1+1
496 494 495 eqtr4i 2=loge+1
497 496 a1i φx+2=loge+1
498 497 oveq2d φx+R2=Rloge+1
499 493 498 oveq12d φx+2n=1xlogxnx+R2=n=1x2logxnx+Rloge+1
500 491 499 breqtrrd φx+n=1xμnTm=1xnlogxnmmn2n=1xlogxnx+R2
501 500 adantrr φx+1xn=1xμnTm=1xnlogxnmmn2n=1xlogxnx+R2
502 199 501 eqbrtrrd φx+1xn=1xμnnTlogx2n=1xlogxnx+R2
503 56 leabsd φx+2n=1xlogxnx+R22n=1xlogxnx+R2
504 503 adantrr φx+1x2n=1xlogxnx+R22n=1xlogxnx+R2
505 80 81 84 502 504 letrd φx+1xn=1xμnnTlogx2n=1xlogxnx+R2
506 5 55 56 78 505 o1le φx+n=1xμnnTlogx𝑂1