| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logdivsum.1 |
|
| 2 |
|
mulog2sumlem.1 |
|
| 3 |
|
mulog2sumlem2.t |
|
| 4 |
|
mulog2sumlem2.r |
|
| 5 |
|
1red |
|
| 6 |
|
2re |
|
| 7 |
|
fzfid |
|
| 8 |
|
simpr |
|
| 9 |
|
elfznn |
|
| 10 |
9
|
nnrpd |
|
| 11 |
|
rpdivcl |
|
| 12 |
8 10 11
|
syl2an |
|
| 13 |
12
|
relogcld |
|
| 14 |
|
simplr |
|
| 15 |
13 14
|
rerpdivcld |
|
| 16 |
7 15
|
fsumrecl |
|
| 17 |
|
remulcl |
|
| 18 |
6 16 17
|
sylancr |
|
| 19 |
|
halfre |
|
| 20 |
|
emre |
|
| 21 |
|
rlimcl |
|
| 22 |
2 21
|
syl |
|
| 23 |
22
|
abscld |
|
| 24 |
|
readdcl |
|
| 25 |
20 23 24
|
sylancr |
|
| 26 |
|
readdcl |
|
| 27 |
19 25 26
|
sylancr |
|
| 28 |
|
fzfid |
|
| 29 |
|
epr |
|
| 30 |
|
elfznn |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
nnrpd |
|
| 33 |
|
rpdivcl |
|
| 34 |
29 32 33
|
sylancr |
|
| 35 |
34
|
relogcld |
|
| 36 |
35 31
|
nndivred |
|
| 37 |
28 36
|
fsumrecl |
|
| 38 |
27 37
|
readdcld |
|
| 39 |
4 38
|
eqeltrid |
|
| 40 |
|
remulcl |
|
| 41 |
39 6 40
|
sylancl |
|
| 42 |
41
|
adantr |
|
| 43 |
6
|
a1i |
|
| 44 |
|
rpssre |
|
| 45 |
|
2cnd |
|
| 46 |
|
o1const |
|
| 47 |
44 45 46
|
sylancr |
|
| 48 |
|
logfacrlim2 |
|
| 49 |
|
rlimo1 |
|
| 50 |
48 49
|
mp1i |
|
| 51 |
43 16 47 50
|
o1mul2 |
|
| 52 |
41
|
recnd |
|
| 53 |
|
o1const |
|
| 54 |
44 52 53
|
sylancr |
|
| 55 |
18 42 51 54
|
o1add2 |
|
| 56 |
18 42
|
readdcld |
|
| 57 |
9
|
adantl |
|
| 58 |
|
mucl |
|
| 59 |
57 58
|
syl |
|
| 60 |
59
|
zred |
|
| 61 |
60 57
|
nndivred |
|
| 62 |
61
|
recnd |
|
| 63 |
13
|
recnd |
|
| 64 |
63
|
sqcld |
|
| 65 |
64
|
halfcld |
|
| 66 |
|
remulcl |
|
| 67 |
20 13 66
|
sylancr |
|
| 68 |
67
|
recnd |
|
| 69 |
22
|
ad2antrr |
|
| 70 |
68 69
|
subcld |
|
| 71 |
65 70
|
addcld |
|
| 72 |
3 71
|
eqeltrid |
|
| 73 |
62 72
|
mulcld |
|
| 74 |
7 73
|
fsumcl |
|
| 75 |
|
relogcl |
|
| 76 |
75
|
adantl |
|
| 77 |
76
|
recnd |
|
| 78 |
74 77
|
subcld |
|
| 79 |
78
|
abscld |
|
| 80 |
79
|
adantrr |
|
| 81 |
56
|
adantrr |
|
| 82 |
56
|
recnd |
|
| 83 |
82
|
abscld |
|
| 84 |
83
|
adantrr |
|
| 85 |
59
|
zcnd |
|
| 86 |
|
fzfid |
|
| 87 |
|
elfznn |
|
| 88 |
|
nnrp |
|
| 89 |
|
rpdivcl |
|
| 90 |
12 88 89
|
syl2an |
|
| 91 |
90
|
relogcld |
|
| 92 |
|
simpr |
|
| 93 |
91 92
|
nndivred |
|
| 94 |
93
|
recnd |
|
| 95 |
87 94
|
sylan2 |
|
| 96 |
86 95
|
fsumcl |
|
| 97 |
72 96
|
subcld |
|
| 98 |
57
|
nncnd |
|
| 99 |
57
|
nnne0d |
|
| 100 |
85 97 98 99
|
div23d |
|
| 101 |
62 72 96
|
subdid |
|
| 102 |
100 101
|
eqtrd |
|
| 103 |
102
|
sumeq2dv |
|
| 104 |
62 96
|
mulcld |
|
| 105 |
7 73 104
|
fsumsub |
|
| 106 |
103 105
|
eqtrd |
|
| 107 |
106
|
adantrr |
|
| 108 |
86 62 95
|
fsummulc2 |
|
| 109 |
85
|
adantr |
|
| 110 |
98 99
|
jca |
|
| 111 |
110
|
adantr |
|
| 112 |
|
div23 |
|
| 113 |
|
divass |
|
| 114 |
112 113
|
eqtr3d |
|
| 115 |
109 94 111 114
|
syl3anc |
|
| 116 |
91
|
recnd |
|
| 117 |
92
|
nnrpd |
|
| 118 |
|
rpcnne0 |
|
| 119 |
117 118
|
syl |
|
| 120 |
|
divdiv1 |
|
| 121 |
116 119 111 120
|
syl3anc |
|
| 122 |
|
rpre |
|
| 123 |
122
|
adantl |
|
| 124 |
123
|
adantr |
|
| 125 |
124
|
recnd |
|
| 126 |
125
|
adantr |
|
| 127 |
|
divdiv1 |
|
| 128 |
126 111 119 127
|
syl3anc |
|
| 129 |
128
|
fveq2d |
|
| 130 |
92
|
nncnd |
|
| 131 |
98
|
adantr |
|
| 132 |
130 131
|
mulcomd |
|
| 133 |
129 132
|
oveq12d |
|
| 134 |
121 133
|
eqtrd |
|
| 135 |
134
|
oveq2d |
|
| 136 |
115 135
|
eqtrd |
|
| 137 |
87 136
|
sylan2 |
|
| 138 |
137
|
sumeq2dv |
|
| 139 |
108 138
|
eqtrd |
|
| 140 |
139
|
sumeq2dv |
|
| 141 |
|
oveq2 |
|
| 142 |
141
|
fveq2d |
|
| 143 |
|
id |
|
| 144 |
142 143
|
oveq12d |
|
| 145 |
144
|
oveq2d |
|
| 146 |
8
|
rpred |
|
| 147 |
|
ssrab2 |
|
| 148 |
|
simprr |
|
| 149 |
147 148
|
sselid |
|
| 150 |
149 58
|
syl |
|
| 151 |
150
|
zred |
|
| 152 |
|
elfznn |
|
| 153 |
152
|
adantr |
|
| 154 |
153
|
nnrpd |
|
| 155 |
|
rpdivcl |
|
| 156 |
8 154 155
|
syl2an |
|
| 157 |
156
|
relogcld |
|
| 158 |
152
|
ad2antrl |
|
| 159 |
157 158
|
nndivred |
|
| 160 |
151 159
|
remulcld |
|
| 161 |
160
|
recnd |
|
| 162 |
145 146 161
|
dvdsflsumcom |
|
| 163 |
140 162
|
eqtr4d |
|
| 164 |
163
|
adantrr |
|
| 165 |
|
oveq2 |
|
| 166 |
165
|
fveq2d |
|
| 167 |
|
id |
|
| 168 |
166 167
|
oveq12d |
|
| 169 |
|
fzfid |
|
| 170 |
|
fz1ssnn |
|
| 171 |
170
|
a1i |
|
| 172 |
123
|
adantrr |
|
| 173 |
|
simprr |
|
| 174 |
|
flge1nn |
|
| 175 |
172 173 174
|
syl2anc |
|
| 176 |
|
nnuz |
|
| 177 |
175 176
|
eleqtrdi |
|
| 178 |
|
eluzfz1 |
|
| 179 |
177 178
|
syl |
|
| 180 |
152
|
nnrpd |
|
| 181 |
8 180 155
|
syl2an |
|
| 182 |
181
|
relogcld |
|
| 183 |
170
|
a1i |
|
| 184 |
183
|
sselda |
|
| 185 |
182 184
|
nndivred |
|
| 186 |
185
|
recnd |
|
| 187 |
186
|
adantlrr |
|
| 188 |
168 169 171 179 187
|
musumsum |
|
| 189 |
8
|
rpcnd |
|
| 190 |
189
|
div1d |
|
| 191 |
190
|
fveq2d |
|
| 192 |
191
|
oveq1d |
|
| 193 |
77
|
div1d |
|
| 194 |
192 193
|
eqtrd |
|
| 195 |
194
|
adantrr |
|
| 196 |
164 188 195
|
3eqtrd |
|
| 197 |
196
|
oveq2d |
|
| 198 |
107 197
|
eqtrd |
|
| 199 |
198
|
fveq2d |
|
| 200 |
|
ere |
|
| 201 |
200
|
a1i |
|
| 202 |
|
1re |
|
| 203 |
|
1lt2 |
|
| 204 |
|
egt2lt3 |
|
| 205 |
204
|
simpli |
|
| 206 |
202 6 200
|
lttri |
|
| 207 |
203 205 206
|
mp2an |
|
| 208 |
202 200 207
|
ltleii |
|
| 209 |
201 208
|
jctir |
|
| 210 |
39
|
adantr |
|
| 211 |
19
|
a1i |
|
| 212 |
|
1rp |
|
| 213 |
|
rphalfcl |
|
| 214 |
212 213
|
ax-mp |
|
| 215 |
|
rpge0 |
|
| 216 |
214 215
|
mp1i |
|
| 217 |
20
|
a1i |
|
| 218 |
|
0re |
|
| 219 |
|
emgt0 |
|
| 220 |
218 20 219
|
ltleii |
|
| 221 |
220
|
a1i |
|
| 222 |
22
|
absge0d |
|
| 223 |
217 23 221 222
|
addge0d |
|
| 224 |
211 25 216 223
|
addge0d |
|
| 225 |
|
log1 |
|
| 226 |
31
|
nncnd |
|
| 227 |
226
|
mullidd |
|
| 228 |
32
|
rpred |
|
| 229 |
6
|
a1i |
|
| 230 |
200
|
a1i |
|
| 231 |
|
elfzle2 |
|
| 232 |
231
|
adantl |
|
| 233 |
6 200 205
|
ltleii |
|
| 234 |
233
|
a1i |
|
| 235 |
228 229 230 232 234
|
letrd |
|
| 236 |
227 235
|
eqbrtrd |
|
| 237 |
|
1red |
|
| 238 |
237 230 32
|
lemuldivd |
|
| 239 |
236 238
|
mpbid |
|
| 240 |
|
logleb |
|
| 241 |
212 34 240
|
sylancr |
|
| 242 |
239 241
|
mpbid |
|
| 243 |
225 242
|
eqbrtrrid |
|
| 244 |
35 32 243
|
divge0d |
|
| 245 |
28 36 244
|
fsumge0 |
|
| 246 |
27 37 224 245
|
addge0d |
|
| 247 |
246 4
|
breqtrrdi |
|
| 248 |
247
|
adantr |
|
| 249 |
210 248
|
jca |
|
| 250 |
85 97
|
mulcld |
|
| 251 |
|
remulcl |
|
| 252 |
6 15 251
|
sylancr |
|
| 253 |
6
|
a1i |
|
| 254 |
|
0le2 |
|
| 255 |
254
|
a1i |
|
| 256 |
98
|
mullidd |
|
| 257 |
|
fznnfl |
|
| 258 |
123 257
|
syl |
|
| 259 |
258
|
simplbda |
|
| 260 |
256 259
|
eqbrtrd |
|
| 261 |
|
1red |
|
| 262 |
57
|
nnrpd |
|
| 263 |
261 124 262
|
lemuldivd |
|
| 264 |
260 263
|
mpbid |
|
| 265 |
|
logleb |
|
| 266 |
212 12 265
|
sylancr |
|
| 267 |
264 266
|
mpbid |
|
| 268 |
225 267
|
eqbrtrrid |
|
| 269 |
|
rpregt0 |
|
| 270 |
269
|
ad2antlr |
|
| 271 |
|
divge0 |
|
| 272 |
13 268 270 271
|
syl21anc |
|
| 273 |
253 15 255 272
|
mulge0d |
|
| 274 |
250
|
abscld |
|
| 275 |
274
|
adantr |
|
| 276 |
97
|
adantr |
|
| 277 |
276
|
abscld |
|
| 278 |
262
|
rpred |
|
| 279 |
252 278
|
remulcld |
|
| 280 |
279
|
adantr |
|
| 281 |
85 97
|
absmuld |
|
| 282 |
85
|
abscld |
|
| 283 |
97
|
abscld |
|
| 284 |
97
|
absge0d |
|
| 285 |
|
mule1 |
|
| 286 |
57 285
|
syl |
|
| 287 |
282 261 283 284 286
|
lemul1ad |
|
| 288 |
283
|
recnd |
|
| 289 |
288
|
mullidd |
|
| 290 |
287 289
|
breqtrd |
|
| 291 |
281 290
|
eqbrtrd |
|
| 292 |
291
|
adantr |
|
| 293 |
2
|
ad3antrrr |
|
| 294 |
12
|
adantr |
|
| 295 |
|
simpr |
|
| 296 |
1 293 294 295
|
mulog2sumlem1 |
|
| 297 |
72 96
|
abssubd |
|
| 298 |
297
|
adantr |
|
| 299 |
3
|
oveq2i |
|
| 300 |
299
|
fveq2i |
|
| 301 |
298 300
|
eqtrdi |
|
| 302 |
|
2cnd |
|
| 303 |
15
|
recnd |
|
| 304 |
302 303 98
|
mulassd |
|
| 305 |
|
rpcnne0 |
|
| 306 |
305
|
ad2antlr |
|
| 307 |
|
divdiv2 |
|
| 308 |
63 306 110 307
|
syl3anc |
|
| 309 |
|
div23 |
|
| 310 |
63 98 306 309
|
syl3anc |
|
| 311 |
308 310
|
eqtrd |
|
| 312 |
311
|
oveq2d |
|
| 313 |
304 312
|
eqtr4d |
|
| 314 |
313
|
adantr |
|
| 315 |
296 301 314
|
3brtr4d |
|
| 316 |
275 277 280 292 315
|
letrd |
|
| 317 |
274
|
adantr |
|
| 318 |
283
|
adantr |
|
| 319 |
39
|
ad3antrrr |
|
| 320 |
291
|
adantr |
|
| 321 |
72
|
adantr |
|
| 322 |
321
|
abscld |
|
| 323 |
96
|
adantr |
|
| 324 |
323
|
abscld |
|
| 325 |
322 324
|
readdcld |
|
| 326 |
321 323
|
abs2dif2d |
|
| 327 |
27
|
ad3antrrr |
|
| 328 |
37
|
ad3antrrr |
|
| 329 |
3
|
fveq2i |
|
| 330 |
329 322
|
eqeltrrid |
|
| 331 |
65
|
adantr |
|
| 332 |
331
|
abscld |
|
| 333 |
70
|
adantr |
|
| 334 |
333
|
abscld |
|
| 335 |
332 334
|
readdcld |
|
| 336 |
331 333
|
abstrid |
|
| 337 |
19
|
a1i |
|
| 338 |
25
|
ad3antrrr |
|
| 339 |
13
|
resqcld |
|
| 340 |
339
|
rehalfcld |
|
| 341 |
13
|
sqge0d |
|
| 342 |
|
2pos |
|
| 343 |
6 342
|
pm3.2i |
|
| 344 |
343
|
a1i |
|
| 345 |
|
divge0 |
|
| 346 |
339 341 344 345
|
syl21anc |
|
| 347 |
340 346
|
absidd |
|
| 348 |
347
|
adantr |
|
| 349 |
12
|
rpred |
|
| 350 |
|
ltle |
|
| 351 |
349 200 350
|
sylancl |
|
| 352 |
351
|
imp |
|
| 353 |
12
|
adantr |
|
| 354 |
|
logleb |
|
| 355 |
353 29 354
|
sylancl |
|
| 356 |
352 355
|
mpbid |
|
| 357 |
|
loge |
|
| 358 |
356 357
|
breqtrdi |
|
| 359 |
|
0le1 |
|
| 360 |
359
|
a1i |
|
| 361 |
13 261 268 360
|
le2sqd |
|
| 362 |
361
|
adantr |
|
| 363 |
358 362
|
mpbid |
|
| 364 |
|
sq1 |
|
| 365 |
363 364
|
breqtrdi |
|
| 366 |
339
|
adantr |
|
| 367 |
|
1red |
|
| 368 |
343
|
a1i |
|
| 369 |
|
lediv1 |
|
| 370 |
366 367 368 369
|
syl3anc |
|
| 371 |
365 370
|
mpbid |
|
| 372 |
348 371
|
eqbrtrd |
|
| 373 |
69
|
abscld |
|
| 374 |
67 373
|
readdcld |
|
| 375 |
374
|
adantr |
|
| 376 |
68
|
adantr |
|
| 377 |
22
|
ad3antrrr |
|
| 378 |
376 377
|
abs2dif2d |
|
| 379 |
20
|
a1i |
|
| 380 |
220
|
a1i |
|
| 381 |
379 13 380 268
|
mulge0d |
|
| 382 |
67 381
|
absidd |
|
| 383 |
382
|
adantr |
|
| 384 |
383
|
oveq1d |
|
| 385 |
378 384
|
breqtrd |
|
| 386 |
67
|
adantr |
|
| 387 |
20
|
a1i |
|
| 388 |
377
|
abscld |
|
| 389 |
13
|
adantr |
|
| 390 |
387 219
|
jctir |
|
| 391 |
|
lemul2 |
|
| 392 |
389 367 390 391
|
syl3anc |
|
| 393 |
358 392
|
mpbid |
|
| 394 |
20
|
recni |
|
| 395 |
394
|
mulridi |
|
| 396 |
393 395
|
breqtrdi |
|
| 397 |
386 387 388 396
|
leadd1dd |
|
| 398 |
334 375 338 385 397
|
letrd |
|
| 399 |
332 334 337 338 372 398
|
le2addd |
|
| 400 |
330 335 327 336 399
|
letrd |
|
| 401 |
329 400
|
eqbrtrid |
|
| 402 |
87 93
|
sylan2 |
|
| 403 |
86 402
|
fsumrecl |
|
| 404 |
403
|
adantr |
|
| 405 |
87 91
|
sylan2 |
|
| 406 |
87 130
|
sylan2 |
|
| 407 |
406
|
mullidd |
|
| 408 |
|
fznnfl |
|
| 409 |
349 408
|
syl |
|
| 410 |
409
|
simplbda |
|
| 411 |
407 410
|
eqbrtrd |
|
| 412 |
|
1red |
|
| 413 |
349
|
adantr |
|
| 414 |
117
|
rpregt0d |
|
| 415 |
87 414
|
sylan2 |
|
| 416 |
|
lemuldiv |
|
| 417 |
412 413 415 416
|
syl3anc |
|
| 418 |
411 417
|
mpbid |
|
| 419 |
87 90
|
sylan2 |
|
| 420 |
|
logleb |
|
| 421 |
212 419 420
|
sylancr |
|
| 422 |
418 421
|
mpbid |
|
| 423 |
225 422
|
eqbrtrrid |
|
| 424 |
|
divge0 |
|
| 425 |
405 423 415 424
|
syl21anc |
|
| 426 |
86 402 425
|
fsumge0 |
|
| 427 |
426
|
adantr |
|
| 428 |
404 427
|
absidd |
|
| 429 |
|
fzfid |
|
| 430 |
349
|
flcld |
|
| 431 |
430
|
adantr |
|
| 432 |
|
2z |
|
| 433 |
432
|
a1i |
|
| 434 |
349
|
adantr |
|
| 435 |
200
|
a1i |
|
| 436 |
|
3re |
|
| 437 |
436
|
a1i |
|
| 438 |
|
simpr |
|
| 439 |
204
|
simpri |
|
| 440 |
439
|
a1i |
|
| 441 |
434 435 437 438 440
|
lttrd |
|
| 442 |
|
3z |
|
| 443 |
|
fllt |
|
| 444 |
434 442 443
|
sylancl |
|
| 445 |
441 444
|
mpbid |
|
| 446 |
|
df-3 |
|
| 447 |
445 446
|
breqtrdi |
|
| 448 |
|
zleltp1 |
|
| 449 |
431 432 448
|
sylancl |
|
| 450 |
447 449
|
mpbird |
|
| 451 |
|
eluz2 |
|
| 452 |
431 433 450 451
|
syl3anbrc |
|
| 453 |
|
fzss2 |
|
| 454 |
452 453
|
syl |
|
| 455 |
454
|
sselda |
|
| 456 |
36
|
ad5ant15 |
|
| 457 |
455 456
|
syldan |
|
| 458 |
429 457
|
fsumrecl |
|
| 459 |
93
|
adantlr |
|
| 460 |
87 459
|
sylan2 |
|
| 461 |
352
|
adantr |
|
| 462 |
434
|
adantr |
|
| 463 |
200
|
a1i |
|
| 464 |
32
|
rpregt0d |
|
| 465 |
464
|
ad5ant15 |
|
| 466 |
|
lediv1 |
|
| 467 |
462 463 465 466
|
syl3anc |
|
| 468 |
461 467
|
mpbid |
|
| 469 |
90
|
adantlr |
|
| 470 |
30 469
|
sylan2 |
|
| 471 |
34
|
ad5ant15 |
|
| 472 |
470 471
|
logled |
|
| 473 |
468 472
|
mpbid |
|
| 474 |
91
|
adantlr |
|
| 475 |
30 474
|
sylan2 |
|
| 476 |
35
|
ad5ant15 |
|
| 477 |
|
lediv1 |
|
| 478 |
475 476 465 477
|
syl3anc |
|
| 479 |
473 478
|
mpbid |
|
| 480 |
455 479
|
syldan |
|
| 481 |
429 460 457 480
|
fsumle |
|
| 482 |
|
fzfid |
|
| 483 |
244
|
ad5ant15 |
|
| 484 |
482 456 483 454
|
fsumless |
|
| 485 |
404 458 328 481 484
|
letrd |
|
| 486 |
428 485
|
eqbrtrd |
|
| 487 |
322 324 327 328 401 486
|
le2addd |
|
| 488 |
487 4
|
breqtrrdi |
|
| 489 |
318 325 319 326 488
|
letrd |
|
| 490 |
317 318 319 320 489
|
letrd |
|
| 491 |
8 209 249 250 252 273 316 490
|
fsumharmonic |
|
| 492 |
|
2cnd |
|
| 493 |
7 492 303
|
fsummulc2 |
|
| 494 |
|
df-2 |
|
| 495 |
357
|
oveq1i |
|
| 496 |
494 495
|
eqtr4i |
|
| 497 |
496
|
a1i |
|
| 498 |
497
|
oveq2d |
|
| 499 |
493 498
|
oveq12d |
|
| 500 |
491 499
|
breqtrrd |
|
| 501 |
500
|
adantrr |
|
| 502 |
199 501
|
eqbrtrrd |
|
| 503 |
56
|
leabsd |
|
| 504 |
503
|
adantrr |
|
| 505 |
80 81 84 502 504
|
letrd |
|
| 506 |
5 55 56 78 505
|
o1le |
|