Metamath Proof Explorer


Theorem algextdeglem8

Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K=E𝑠F
algextdeg.l No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
algextdeg.d D=deg1E
algextdeg.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
algextdeg.f φEField
algextdeg.e φFSubDRingE
algextdeg.a φAEIntgRingF
algextdeglem.o O=EevalSub1F
algextdeglem.y P=Poly1K
algextdeglem.u U=BaseP
algextdeglem.g G=pUOpA
algextdeglem.n N=xUxP~QGZ
algextdeglem.z Z=G-10L
algextdeglem.q Q=P/𝑠P~QGZ
algextdeglem.j J=pBaseQGp
algextdeglem.r R=rem1pK
algextdeglem.h H=pUpRMA
algextdeglem.t T=deg1K-1−∞DMA
Assertion algextdeglem8 φdimH𝑠P=DMA

Proof

Step Hyp Ref Expression
1 algextdeg.k K=E𝑠F
2 algextdeg.l Could not format L = ( E |`s ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
3 algextdeg.d D=deg1E
4 algextdeg.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 algextdeg.f φEField
6 algextdeg.e φFSubDRingE
7 algextdeg.a φAEIntgRingF
8 algextdeglem.o O=EevalSub1F
9 algextdeglem.y P=Poly1K
10 algextdeglem.u U=BaseP
11 algextdeglem.g G=pUOpA
12 algextdeglem.n N=xUxP~QGZ
13 algextdeglem.z Z=G-10L
14 algextdeglem.q Q=P/𝑠P~QGZ
15 algextdeglem.j J=pBaseQGp
16 algextdeglem.r R=rem1pK
17 algextdeglem.h H=pUpRMA
18 algextdeglem.t T=deg1K-1−∞DMA
19 eqidd φH𝑠P=H𝑠P
20 10 a1i φU=BaseP
21 1 sdrgdrng FSubDRingEKDivRing
22 6 21 syl φKDivRing
23 22 drngringd φKRing
24 23 adantr φpUKRing
25 simpr φpUpU
26 eqid 0Poly1E=0Poly1E
27 1 fveq2i Monic1pK=Monic1pE𝑠F
28 26 5 6 4 7 27 minplym1p φMAMonic1pK
29 28 adantr φpUMAMonic1pK
30 eqid Unic1pK=Unic1pK
31 eqid Monic1pK=Monic1pK
32 30 31 mon1puc1p KRingMAMonic1pKMAUnic1pK
33 24 29 32 syl2anc φpUMAUnic1pK
34 16 9 10 30 r1pcl KRingpUMAUnic1pKpRMAU
35 24 25 33 34 syl3anc φpUpRMAU
36 eqid deg1K=deg1K
37 16 9 10 30 36 r1pdeglt KRingpUMAUnic1pKdeg1KpRMA<deg1KMA
38 24 25 33 37 syl3anc φpUdeg1KpRMA<deg1KMA
39 1 fveq2i Poly1K=Poly1E𝑠F
40 9 39 eqtri P=Poly1E𝑠F
41 eqid BaseE=BaseE
42 eqid 0E=0E
43 5 fldcrngd φECRing
44 sdrgsubrg FSubDRingEFSubRingE
45 6 44 syl φFSubRingE
46 8 1 41 42 43 45 irngssv φEIntgRingFBaseE
47 46 7 sseldd φABaseE
48 eqid pdomO|OpA=0E=pdomO|OpA=0E
49 eqid RSpanP=RSpanP
50 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
51 8 40 41 5 6 47 42 48 49 50 4 minplycl φMABaseP
52 51 10 eleqtrrdi φMAU
53 1 3 9 10 52 45 ressdeg1 φDMA=deg1KMA
54 53 adantr φpUDMA=deg1KMA
55 38 54 breqtrrd φpUdeg1KpRMA<DMA
56 5 flddrngd φEDivRing
57 56 drngringd φERing
58 eqid Poly1E=Poly1E
59 eqid PwSer1K=PwSer1K
60 eqid BasePwSer1K=BasePwSer1K
61 eqid BasePoly1E=BasePoly1E
62 58 1 9 10 45 59 60 61 ressply1bas2 φU=BasePwSer1KBasePoly1E
63 inss2 BasePwSer1KBasePoly1EBasePoly1E
64 62 63 eqsstrdi φUBasePoly1E
65 64 52 sseldd φMABasePoly1E
66 26 5 6 4 7 irngnminplynz φMA0Poly1E
67 3 58 26 61 deg1nn0cl ERingMABasePoly1EMA0Poly1EDMA0
68 57 65 66 67 syl3anc φDMA0
69 9 36 18 68 23 10 ply1degleel φpRMATpRMAUdeg1KpRMA<DMA
70 69 adantr φpUpRMATpRMAUdeg1KpRMA<DMA
71 35 55 70 mpbir2and φpUpRMAT
72 71 ralrimiva φpUpRMAT
73 oveq1 p=qpRMA=qRMA
74 73 eqeq2d p=qq=pRMAq=qRMA
75 eqcom q=qRMAqRMA=q
76 74 75 bitrdi p=qq=pRMAqRMA=q
77 9 36 18 68 23 10 ply1degltel φqTqUdeg1KqDMA1
78 77 simprbda φqTqU
79 77 simplbda φqTdeg1KqDMA1
80 53 oveq1d φDMA1=deg1KMA1
81 80 adantr φqTDMA1=deg1KMA1
82 79 81 breqtrd φqTdeg1Kqdeg1KMA1
83 36 9 10 deg1cl qUdeg1Kq0−∞
84 78 83 syl φqTdeg1Kq0−∞
85 68 nn0zd φDMA
86 53 85 eqeltrrd φdeg1KMA
87 86 adantr φqTdeg1KMA
88 degltlem1 deg1Kq0−∞deg1KMAdeg1Kq<deg1KMAdeg1Kqdeg1KMA1
89 84 87 88 syl2anc φqTdeg1Kq<deg1KMAdeg1Kqdeg1KMA1
90 82 89 mpbird φqTdeg1Kq<deg1KMA
91 fldsdrgfld EFieldFSubDRingEE𝑠FField
92 5 6 91 syl2anc φE𝑠FField
93 1 92 eqeltrid φKField
94 fldidom KFieldKIDomn
95 93 94 syl φKIDomn
96 95 adantr φqTKIDomn
97 23 28 32 syl2anc φMAUnic1pK
98 97 adantr φqTMAUnic1pK
99 9 10 30 16 96 36 78 98 r1pid2 φqTqRMA=qdeg1Kq<deg1KMA
100 90 99 mpbird φqTqRMA=q
101 76 78 100 rspcedvdw φqTpUq=pRMA
102 101 ralrimiva φqTpUq=pRMA
103 17 fompt H:UontoTpUpRMATqTpUq=pRMA
104 72 102 103 sylanbrc φH:UontoT
105 9 ply1ring KRingPRing
106 23 105 syl φPRing
107 19 20 104 106 imasbas φT=BaseH𝑠P
108 78 ex φqTqU
109 108 ssrdv φTU
110 eqid P𝑠T=P𝑠T
111 110 10 ressbas2 TUT=BaseP𝑠T
112 109 111 syl φT=BaseP𝑠T
113 ssidd φTT
114 eqid H𝑠P=H𝑠P
115 eqid BaseH𝑠P=BaseH𝑠P
116 109 ad2antrr φxTyTTU
117 simplr φxTyTxT
118 116 117 sseldd φxTyTxU
119 simpr φxTyTyT
120 116 119 sseldd φxTyTyU
121 foeq3 T=BaseH𝑠PH:UontoTH:UontoBaseH𝑠P
122 107 121 syl φH:UontoTH:UontoBaseH𝑠P
123 104 122 mpbid φH:UontoBaseH𝑠P
124 123 ad2antrr φxTyTH:UontoBaseH𝑠P
125 9 10 16 30 17 23 97 r1plmhm φHPLMHomH𝑠P
126 125 lmhmghmd φHPGrpHomH𝑠P
127 ghmmhm HPGrpHomH𝑠PHPMndHomH𝑠P
128 126 127 syl φHPMndHomH𝑠P
129 128 ad2antrr φxTyTHPMndHomH𝑠P
130 eqid +P=+P
131 eqid +H𝑠P=+H𝑠P
132 114 10 115 118 120 124 129 130 131 mhmimasplusg φxTyTHx+H𝑠PHy=Hx+Py
133 5 ad2antrr φxTyTEField
134 6 ad2antrr φxTyTFSubDRingE
135 7 ad2antrr φxTyTAEIntgRingF
136 1 2 3 4 133 134 135 8 9 10 11 12 13 14 15 16 17 18 118 algextdeglem7 φxTyTxTHx=x
137 117 136 mpbid φxTyTHx=x
138 1 2 3 4 133 134 135 8 9 10 11 12 13 14 15 16 17 18 120 algextdeglem7 φxTyTyTHy=y
139 119 138 mpbid φxTyTHy=y
140 137 139 oveq12d φxTyTHx+H𝑠PHy=x+H𝑠Py
141 106 ringgrpd φPGrp
142 9 22 ply1lvec φPLVec
143 9 36 18 68 23 ply1degltlss φTLSubSpP
144 eqid LSubSpP=LSubSpP
145 110 144 lsslvec PLVecTLSubSpPP𝑠TLVec
146 142 143 145 syl2anc φP𝑠TLVec
147 146 lvecgrpd φP𝑠TGrp
148 10 issubg TSubGrpPPGrpTUP𝑠TGrp
149 141 109 147 148 syl3anbrc φTSubGrpP
150 149 ad2antrr φxTyTTSubGrpP
151 130 subgcl TSubGrpPxTyTx+PyT
152 150 117 119 151 syl3anc φxTyTx+PyT
153 141 ad2antrr φxTyTPGrp
154 10 130 153 118 120 grpcld φxTyTx+PyU
155 1 2 3 4 133 134 135 8 9 10 11 12 13 14 15 16 17 18 154 algextdeglem7 φxTyTx+PyTHx+Py=x+Py
156 152 155 mpbid φxTyTHx+Py=x+Py
157 132 140 156 3eqtr3d φxTyTx+H𝑠Py=x+Py
158 fvex deg1KV
159 cnvexg deg1KVdeg1K-1V
160 imaexg deg1K-1Vdeg1K-1−∞DMAV
161 158 159 160 mp2b deg1K-1−∞DMAV
162 18 161 eqeltri TV
163 110 130 ressplusg TV+P=+P𝑠T
164 162 163 ax-mp +P=+P𝑠T
165 164 oveqi x+Py=x+P𝑠Ty
166 157 165 eqtrdi φxTyTx+H𝑠Py=x+P𝑠Ty
167 166 anasss φxTyTx+H𝑠Py=x+P𝑠Ty
168 simprr φxFyTyT
169 5 adantr φxFyTEField
170 6 adantr φxFyTFSubDRingE
171 7 adantr φxFyTAEIntgRingF
172 109 adantr φxFyTTU
173 172 168 sseldd φxFyTyU
174 1 2 3 4 169 170 171 8 9 10 11 12 13 14 15 16 17 18 173 algextdeglem7 φxFyTyTHy=y
175 168 174 mpbid φxFyTHy=y
176 175 oveq2d φxFyTxH𝑠PHy=xH𝑠Py
177 simprl φxFyTxF
178 41 sdrgss FSubDRingEFBaseE
179 1 41 ressbas2 FBaseEF=BaseK
180 6 178 179 3syl φF=BaseK
181 9 ply1sca KRingK=ScalarP
182 23 181 syl φK=ScalarP
183 182 fveq2d φBaseK=BaseScalarP
184 180 183 eqtrd φF=BaseScalarP
185 184 adantr φxFyTF=BaseScalarP
186 177 185 eleqtrd φxFyTxBaseScalarP
187 123 adantr φxFyTH:UontoBaseH𝑠P
188 125 adantr φxFyTHPLMHomH𝑠P
189 eqid P=P
190 eqid H𝑠P=H𝑠P
191 eqid BaseScalarP=BaseScalarP
192 114 10 115 186 173 187 188 189 190 191 lmhmimasvsca φxFyTxH𝑠PHy=HxPy
193 176 192 eqtr3d φxFyTxH𝑠Py=HxPy
194 71 17 fmptd φH:UT
195 194 adantr φxFyTH:UT
196 eqid ScalarP=ScalarP
197 142 lveclmodd φPLMod
198 197 adantr φxFyTPLMod
199 10 196 189 191 198 186 173 lmodvscld φxFyTxPyU
200 195 199 ffvelcdmd φxFyTHxPyT
201 193 200 eqeltrd φxFyTxH𝑠PyT
202 143 adantr φxFyTTLSubSpP
203 196 189 191 144 lssvscl PLModTLSubSpPxBaseScalarPyTxPyT
204 198 202 186 168 203 syl22anc φxFyTxPyT
205 1 2 3 4 169 170 171 8 9 10 11 12 13 14 15 16 17 18 199 algextdeglem7 φxFyTxPyTHxPy=xPy
206 204 205 mpbid φxFyTHxPy=xPy
207 110 189 ressvsca TVP=P𝑠T
208 162 207 mp1i φxFyTP=P𝑠T
209 208 oveqd φxFyTxPy=xP𝑠Ty
210 193 206 209 3eqtrd φxFyTxH𝑠Py=xP𝑠Ty
211 eqid ScalarH𝑠P=ScalarH𝑠P
212 110 196 resssca TVScalarP=ScalarP𝑠T
213 162 212 ax-mp ScalarP=ScalarP𝑠T
214 19 20 104 106 196 imassca φScalarP=ScalarH𝑠P
215 182 214 eqtrd φK=ScalarH𝑠P
216 215 fveq2d φBaseK=BaseScalarH𝑠P
217 180 216 eqtrd φF=BaseScalarH𝑠P
218 214 fveq2d φ+ScalarP=+ScalarH𝑠P
219 218 oveqd φx+ScalarPy=x+ScalarH𝑠Py
220 219 eqcomd φx+ScalarH𝑠Py=x+ScalarPy
221 220 adantr φxFyFx+ScalarH𝑠Py=x+ScalarPy
222 lmhmlvec2 PLVecHPLMHomH𝑠PH𝑠PLVec
223 142 125 222 syl2anc φH𝑠PLVec
224 107 112 113 167 201 210 211 213 217 184 221 223 146 dimpropd φdimH𝑠P=dimP𝑠T
225 9 36 18 68 22 110 ply1degltdim φdimP𝑠T=DMA
226 224 225 eqtrd φdimH𝑠P=DMA