Metamath Proof Explorer


Theorem fourierdlem113

Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem113.f φF:
fourierdlem113.t T=2π
fourierdlem113.per φxFx+T=Fx
fourierdlem113.x φX
fourierdlem113.l φLF−∞XlimX
fourierdlem113.r φRFX+∞limX
fourierdlem113.p P=np0n|p0=πpn=πi0..^npi<pi+1
fourierdlem113.m φM
fourierdlem113.q φQPM
fourierdlem113.dvcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem113.dvlb φi0..^MFQiQi+1limQi
fourierdlem113.dvub φi0..^MFQiQi+1limQi+1
fourierdlem113.a A=n0ππFxcosnxdxπ
fourierdlem113.b B=nππFxsinnxdxπ
fourierdlem113.15 S=nAncosnX+BnsinnX
fourierdlem113.e E=xx+πxTT
fourierdlem113.exq φEXranQ
Assertion fourierdlem113 φseq1+SL+R2A02A02+nAncosnX+BnsinnX=L+R2

Proof

Step Hyp Ref Expression
1 fourierdlem113.f φF:
2 fourierdlem113.t T=2π
3 fourierdlem113.per φxFx+T=Fx
4 fourierdlem113.x φX
5 fourierdlem113.l φLF−∞XlimX
6 fourierdlem113.r φRFX+∞limX
7 fourierdlem113.p P=np0n|p0=πpn=πi0..^npi<pi+1
8 fourierdlem113.m φM
9 fourierdlem113.q φQPM
10 fourierdlem113.dvcn φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem113.dvlb φi0..^MFQiQi+1limQi
12 fourierdlem113.dvub φi0..^MFQiQi+1limQi+1
13 fourierdlem113.a A=n0ππFxcosnxdxπ
14 fourierdlem113.b B=nππFxsinnxdxπ
15 fourierdlem113.15 S=nAncosnX+BnsinnX
16 fourierdlem113.e E=xx+πxTT
17 fourierdlem113.exq φEXranQ
18 oveq1 w=ywmod2π=ymod2π
19 18 eqeq1d w=ywmod2π=0ymod2π=0
20 oveq2 w=yk+12w=k+12y
21 20 fveq2d w=ysink+12w=sink+12y
22 oveq1 w=yw2=y2
23 22 fveq2d w=ysinw2=siny2
24 23 oveq2d w=y2πsinw2=2πsiny2
25 21 24 oveq12d w=ysink+12w2πsinw2=sink+12y2πsiny2
26 19 25 ifbieq2d w=yifwmod2π=02k+12πsink+12w2πsinw2=ifymod2π=02k+12πsink+12y2πsiny2
27 26 cbvmptv wifwmod2π=02k+12πsink+12w2πsinw2=yifymod2π=02k+12πsink+12y2πsiny2
28 oveq2 k=m2k=2m
29 28 oveq1d k=m2k+1=2m+1
30 29 oveq1d k=m2k+12π=2m+12π
31 oveq1 k=mk+12=m+12
32 31 oveq1d k=mk+12y=m+12y
33 32 fveq2d k=msink+12y=sinm+12y
34 33 oveq1d k=msink+12y2πsiny2=sinm+12y2πsiny2
35 30 34 ifeq12d k=mifymod2π=02k+12πsink+12y2πsiny2=ifymod2π=02m+12πsinm+12y2πsiny2
36 35 mpteq2dv k=myifymod2π=02k+12πsink+12y2πsiny2=yifymod2π=02m+12πsinm+12y2πsiny2
37 27 36 eqtrid k=mwifwmod2π=02k+12πsink+12w2πsinw2=yifymod2π=02m+12πsinm+12y2πsiny2
38 37 cbvmptv kwifwmod2π=02k+12πsink+12w2πsinw2=myifymod2π=02m+12πsinm+12y2πsiny2
39 oveq1 w=yw+jT=y+jT
40 39 eleq1d w=yw+jTranQy+jTranQ
41 40 rexbidv w=yjw+jTranQjy+jTranQ
42 41 cbvrabv w-π+Xπ+X|jw+jTranQ=y-π+Xπ+X|jy+jTranQ
43 42 uneq2i -π+Xπ+Xw-π+Xπ+X|jw+jTranQ=-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
44 43 fveq2i -π+Xπ+Xw-π+Xπ+X|jw+jTranQ=-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
45 44 oveq1i -π+Xπ+Xw-π+Xπ+X|jw+jTranQ1=-π+Xπ+Xy-π+Xπ+X|jy+jTranQ1
46 oveq1 k=jkT=jT
47 46 oveq2d k=jy+kT=y+jT
48 47 eleq1d k=jy+kTranQy+jTranQ
49 48 cbvrexvw ky+kTranQjy+jTranQ
50 49 a1i y-π+Xπ+Xky+kTranQjy+jTranQ
51 50 rabbiia y-π+Xπ+X|ky+kTranQ=y-π+Xπ+X|jy+jTranQ
52 51 uneq2i -π+Xπ+Xy-π+Xπ+X|ky+kTranQ=-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
53 isoeq5 -π+Xπ+Xy-π+Xπ+X|ky+kTranQ=-π+Xπ+Xy-π+Xπ+X|jy+jTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
54 52 53 ax-mp gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
55 54 a1i g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
56 46 oveq2d k=jw+kT=w+jT
57 56 eleq1d k=jw+kTranQw+jTranQ
58 57 cbvrexvw kw+kTranQjw+jTranQ
59 58 a1i w-π+Xπ+Xkw+kTranQjw+jTranQ
60 59 rabbiia w-π+Xπ+X|kw+kTranQ=w-π+Xπ+X|jw+jTranQ
61 60 uneq2i -π+Xπ+Xw-π+Xπ+X|kw+kTranQ=-π+Xπ+Xw-π+Xπ+X|jw+jTranQ
62 61 fveq2i -π+Xπ+Xw-π+Xπ+X|kw+kTranQ=-π+Xπ+Xw-π+Xπ+X|jw+jTranQ
63 62 oveq1i -π+Xπ+Xw-π+Xπ+X|kw+kTranQ1=-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1
64 63 oveq2i 0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1=0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1
65 isoeq4 0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1=0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
66 64 65 ax-mp gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
67 66 a1i g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQgIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
68 isoeq1 g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
69 55 67 68 3bitrd g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
70 69 cbviotavw ιg|gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQ=ιf|fIsom<,<0-π+Xπ+Xw-π+Xπ+X|jw+jTranQ1-π+Xπ+Xy-π+Xπ+X|jy+jTranQ
71 pire π
72 71 renegcli π
73 72 a1i φπ
74 71 a1i φπ
75 negpilt0 π<0
76 75 a1i φπ<0
77 pipos 0<π
78 77 a1i φ0<π
79 picn π
80 79 2timesi 2π=π+π
81 79 79 subnegi ππ=π+π
82 80 2 81 3eqtr4i T=ππ
83 7 fourierdlem2 MQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
84 8 83 syl φQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
85 9 84 mpbid φQ0MQ0=πQM=πi0..^MQi<Qi+1
86 85 simpld φQ0M
87 elmapi Q0MQ:0M
88 86 87 syl φQ:0M
89 fzfid φ0MFin
90 rnffi Q:0M0MFinranQFin
91 88 89 90 syl2anc φranQFin
92 7 8 9 fourierdlem15 φQ:0Mππ
93 frn Q:0MππranQππ
94 92 93 syl φranQππ
95 85 simprd φQ0=πQM=πi0..^MQi<Qi+1
96 95 simplrd φQM=π
97 ffun Q:0MππFunQ
98 92 97 syl φFunQ
99 8 nnnn0d φM0
100 nn0uz 0=0
101 99 100 eleqtrdi φM0
102 eluzfz2 M0M0M
103 101 102 syl φM0M
104 fdm Q:0MππdomQ=0M
105 92 104 syl φdomQ=0M
106 105 eqcomd φ0M=domQ
107 103 106 eleqtrd φMdomQ
108 fvelrn FunQMdomQQMranQ
109 98 107 108 syl2anc φQMranQ
110 96 109 eqeltrrd φπranQ
111 eqid -π+Xπ+Xw-π+Xπ+X|kw+kTranQ=-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
112 isoeq1 g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQ
113 43 61 52 3eqtr4ri -π+Xπ+Xy-π+Xπ+X|ky+kTranQ=-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
114 isoeq5 -π+Xπ+Xy-π+Xπ+X|ky+kTranQ=-π+Xπ+Xw-π+Xπ+X|kw+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
115 113 114 ax-mp fIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
116 112 115 bitrdi g=fgIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQfIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
117 116 cbviotavw ιg|gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQ=ιf|fIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xw-π+Xπ+X|kw+kTranQ
118 eqid w-π+Xπ+X|kw+kTranQ=w-π+Xπ+X|kw+kTranQ
119 73 74 76 78 82 91 94 110 16 4 17 111 117 118 fourierdlem51 φXranιg|gIsom<,<0-π+Xπ+Xw-π+Xπ+X|kw+kTranQ1-π+Xπ+Xy-π+Xπ+X|ky+kTranQ
120 ax-resscn
121 120 a1i φi0..^M
122 ioossre QiQi+1
123 122 a1i φQiQi+1
124 1 123 fssresd φFQiQi+1:QiQi+1
125 120 a1i φ
126 124 125 fssd φFQiQi+1:QiQi+1
127 126 adantr φi0..^MFQiQi+1:QiQi+1
128 122 a1i φi0..^MQiQi+1
129 1 125 fssd φF:
130 129 adantr φi0..^MF:
131 ssid
132 131 a1i φi0..^M
133 eqid TopOpenfld=TopOpenfld
134 133 tgioo2 topGenran.=TopOpenfld𝑡
135 133 134 dvres F:QiQi+1DFQiQi+1=FinttopGenran.QiQi+1
136 121 130 132 128 135 syl22anc φi0..^MDFQiQi+1=FinttopGenran.QiQi+1
137 136 dmeqd φi0..^MdomFQiQi+1=domFinttopGenran.QiQi+1
138 ioontr inttopGenran.QiQi+1=QiQi+1
139 138 reseq2i FinttopGenran.QiQi+1=FQiQi+1
140 139 dmeqi domFinttopGenran.QiQi+1=domFQiQi+1
141 140 a1i φi0..^MdomFinttopGenran.QiQi+1=domFQiQi+1
142 cncff FQiQi+1:QiQi+1cnFQiQi+1:QiQi+1
143 fdm FQiQi+1:QiQi+1domFQiQi+1=QiQi+1
144 10 142 143 3syl φi0..^MdomFQiQi+1=QiQi+1
145 137 141 144 3eqtrd φi0..^MdomFQiQi+1=QiQi+1
146 dvcn FQiQi+1:QiQi+1QiQi+1domFQiQi+1=QiQi+1FQiQi+1:QiQi+1cn
147 121 127 128 145 146 syl31anc φi0..^MFQiQi+1:QiQi+1cn
148 128 121 sstrd φi0..^MQiQi+1
149 88 adantr φi0..^MQ:0M
150 fzofzp1 i0..^Mi+10M
151 150 adantl φi0..^Mi+10M
152 149 151 ffvelcdmd φi0..^MQi+1
153 152 rexrd φi0..^MQi+1*
154 elfzofz i0..^Mi0M
155 154 adantl φi0..^Mi0M
156 149 155 ffvelcdmd φi0..^MQi
157 85 simprrd φi0..^MQi<Qi+1
158 157 r19.21bi φi0..^MQi<Qi+1
159 133 153 156 158 lptioo1cn φi0..^MQilimPtTopOpenfldQiQi+1
160 124 adantr φi0..^MFQiQi+1:QiQi+1
161 131 a1i φ
162 125 129 161 dvbss φdomF
163 dvfre F:F:domF
164 1 161 163 syl2anc φF:domF
165 0re 0
166 72 165 71 lttri π<00<ππ<π
167 75 77 166 mp2an π<π
168 167 a1i φπ<π
169 95 simplld φQ0=π
170 10 142 syl φi0..^MFQiQi+1:QiQi+1
171 170 148 159 11 133 ellimciota φi0..^Mιx|xFQiQi+1limQiFQiQi+1limQi
172 156 rexrd φi0..^MQi*
173 133 172 152 158 lptioo2cn φi0..^MQi+1limPtTopOpenfldQiQi+1
174 170 148 173 12 133 ellimciota φi0..^Mιx|xFQiQi+1limQi+1FQiQi+1limQi+1
175 129 adantr φkF:
176 zre kk
177 176 adantl φkk
178 2re 2
179 178 71 remulcli 2π
180 179 a1i φ2π
181 2 180 eqeltrid φT
182 181 adantr φkT
183 177 182 remulcld φkkT
184 175 adantr φktF:
185 182 adantr φktT
186 simplr φktk
187 simpr φktt
188 3 ad4ant14 φktxFx+T=Fx
189 184 185 186 187 188 fperiodmul φktFt+kT=Ft
190 eqid DF=DF
191 175 183 189 190 fperdvper φktdomFt+kTdomFFt+kT=Ft
192 191 an32s φtdomFkt+kTdomFFt+kT=Ft
193 192 simpld φtdomFkt+kTdomF
194 192 simprd φtdomFkFt+kT=Ft
195 fveq2 j=iQj=Qi
196 oveq1 j=ij+1=i+1
197 196 fveq2d j=iQj+1=Qi+1
198 195 197 oveq12d j=iQjQj+1=QiQi+1
199 198 cbvmptv j0..^MQjQj+1=i0..^MQiQi+1
200 eqid tt+πtTT=tt+πtTT
201 162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200 fourierdlem71 φztdomFFtz
202 201 adantr φi0..^MztdomFFtz
203 nfv tφi0..^M
204 nfra1 ttdomFFtz
205 203 204 nfan tφi0..^MtdomFFtz
206 136 139 eqtrdi φi0..^MDFQiQi+1=FQiQi+1
207 206 fveq1d φi0..^MFQiQi+1t=FQiQi+1t
208 fvres tQiQi+1FQiQi+1t=Ft
209 207 208 sylan9eq φi0..^MtQiQi+1FQiQi+1t=Ft
210 209 fveq2d φi0..^MtQiQi+1FQiQi+1t=Ft
211 210 adantlr φi0..^MtdomFFtztQiQi+1FQiQi+1t=Ft
212 simplr φi0..^MtdomFFtztQiQi+1tdomFFtz
213 ssdmres QiQi+1domFdomFQiQi+1=QiQi+1
214 144 213 sylibr φi0..^MQiQi+1domF
215 214 ad2antrr φi0..^MtdomFFtztQiQi+1QiQi+1domF
216 simpr φi0..^MtdomFFtztQiQi+1tQiQi+1
217 215 216 sseldd φi0..^MtdomFFtztQiQi+1tdomF
218 rspa tdomFFtztdomFFtz
219 212 217 218 syl2anc φi0..^MtdomFFtztQiQi+1Ftz
220 211 219 eqbrtrd φi0..^MtdomFFtztQiQi+1FQiQi+1tz
221 220 ex φi0..^MtdomFFtztQiQi+1FQiQi+1tz
222 205 221 ralrimi φi0..^MtdomFFtztQiQi+1FQiQi+1tz
223 222 ex φi0..^MtdomFFtztQiQi+1FQiQi+1tz
224 223 reximdv φi0..^MztdomFFtzztQiQi+1FQiQi+1tz
225 202 224 mpd φi0..^MztQiQi+1FQiQi+1tz
226 156 152 160 145 225 ioodvbdlimc1 φi0..^MFQiQi+1limQi
227 127 148 159 226 133 ellimciota φi0..^Mιy|yFQiQi+1limQiFQiQi+1limQi
228 156 152 160 145 225 ioodvbdlimc2 φi0..^MFQiQi+1limQi+1
229 127 148 173 228 133 ellimciota φi0..^Mιy|yFQiQi+1limQi+1FQiQi+1limQi+1
230 frel F:domFRelF
231 164 230 syl φRelF
232 resindm RelFF−∞XdomF=F−∞X
233 231 232 syl φF−∞XdomF=F−∞X
234 inss2 −∞XdomFdomF
235 234 a1i φ−∞XdomFdomF
236 164 235 fssresd φF−∞XdomF:−∞XdomF
237 233 236 feq1dd φF−∞X:−∞XdomF
238 237 125 fssd φF−∞X:−∞XdomF
239 ioosscn −∞X
240 ssinss1 −∞X−∞XdomF
241 239 240 ax-mp −∞XdomF
242 241 a1i φ−∞XdomF
243 3simpb φxdomFkφk
244 simp2 φxdomFkxdomF
245 175 adantr φkxF:
246 182 adantr φkxT
247 simplr φkxk
248 simpr φkxx
249 eleq1w x=yxy
250 249 anbi2d x=yφxφy
251 oveq1 x=yx+T=y+T
252 251 fveq2d x=yFx+T=Fy+T
253 fveq2 x=yFx=Fy
254 252 253 eqeq12d x=yFx+T=FxFy+T=Fy
255 250 254 imbi12d x=yφxFx+T=FxφyFy+T=Fy
256 255 3 chvarvv φyFy+T=Fy
257 256 ad4ant14 φkxyFy+T=Fy
258 245 246 247 248 257 fperiodmul φkxFx+kT=Fx
259 175 183 258 190 fperdvper φkxdomFx+kTdomFFx+kT=Fx
260 243 244 259 syl2anc φxdomFkx+kTdomFFx+kT=Fx
261 260 simpld φxdomFkx+kTdomF
262 oveq2 w=xπw=πx
263 262 oveq1d w=xπwT=πxT
264 263 fveq2d w=xπwT=πxT
265 264 oveq1d w=xπwTT=πxTT
266 265 cbvmptv wπwTT=xπxTT
267 eqid xx+wπwTTx=xx+wπwTTx
268 73 74 168 82 261 4 266 267 7 8 9 214 fourierdlem41 φyy<XyXdomFyX<yXydomF
269 268 simpld φyy<XyXdomF
270 133 cnfldtop TopOpenfldTop
271 270 a1i φyyXdomFTopOpenfldTop
272 241 a1i φyyXdomF−∞XdomF
273 mnfxr −∞*
274 273 a1i y−∞*
275 rexr yy*
276 mnflt y−∞<y
277 274 275 276 xrltled y−∞y
278 iooss1 −∞*−∞yyX−∞X
279 274 277 278 syl2anc yyX−∞X
280 279 3ad2ant2 φyyXdomFyX−∞X
281 simp3 φyyXdomFyXdomF
282 280 281 ssind φyyXdomFyX−∞XdomF
283 unicntop =TopOpenfld
284 283 lpss3 TopOpenfldTop−∞XdomFyX−∞XdomFlimPtTopOpenfldyXlimPtTopOpenfld−∞XdomF
285 271 272 282 284 syl3anc φyyXdomFlimPtTopOpenfldyXlimPtTopOpenfld−∞XdomF
286 285 3adant3l φyy<XyXdomFlimPtTopOpenfldyXlimPtTopOpenfld−∞XdomF
287 275 3ad2ant2 φyy<XyXdomFy*
288 4 3ad2ant1 φyy<XyXdomFX
289 simp3l φyy<XyXdomFy<X
290 133 287 288 289 lptioo2cn φyy<XyXdomFXlimPtTopOpenfldyX
291 286 290 sseldd φyy<XyXdomFXlimPtTopOpenfld−∞XdomF
292 291 rexlimdv3a φyy<XyXdomFXlimPtTopOpenfld−∞XdomF
293 269 292 mpd φXlimPtTopOpenfld−∞XdomF
294 260 simprd φxdomFkFx+kT=Fx
295 oveq2 y=xπy=πx
296 295 oveq1d y=xπyT=πxT
297 296 fveq2d y=xπyT=πxT
298 297 oveq1d y=xπyTT=πxTT
299 298 cbvmptv yπyTT=xπxTT
300 id z=xz=x
301 fveq2 z=xyπyTTz=yπyTTx
302 300 301 oveq12d z=xz+yπyTTz=x+yπyTTx
303 302 cbvmptv zz+yπyTTz=xx+yπyTTx
304 73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303 fourierdlem49 φF−∞XlimX
305 238 242 293 304 133 ellimciota φιx|xF−∞XlimXF−∞XlimX
306 resindm RelFFX+∞domF=FX+∞
307 231 306 syl φFX+∞domF=FX+∞
308 inss2 X+∞domFdomF
309 308 a1i φX+∞domFdomF
310 164 309 fssresd φFX+∞domF:X+∞domF
311 307 310 feq1dd φFX+∞:X+∞domF
312 311 125 fssd φFX+∞:X+∞domF
313 ioosscn X+∞
314 ssinss1 X+∞X+∞domF
315 313 314 ax-mp X+∞domF
316 315 a1i φX+∞domF
317 268 simprd φyX<yXydomF
318 270 a1i φyXydomFTopOpenfldTop
319 315 a1i φyXydomFX+∞domF
320 pnfxr +∞*
321 320 a1i y+∞*
322 ltpnf yy<+∞
323 275 321 322 xrltled yy+∞
324 iooss2 +∞*y+∞XyX+∞
325 321 323 324 syl2anc yXyX+∞
326 325 3ad2ant2 φyXydomFXyX+∞
327 simp3 φyXydomFXydomF
328 326 327 ssind φyXydomFXyX+∞domF
329 283 lpss3 TopOpenfldTopX+∞domFXyX+∞domFlimPtTopOpenfldXylimPtTopOpenfldX+∞domF
330 318 319 328 329 syl3anc φyXydomFlimPtTopOpenfldXylimPtTopOpenfldX+∞domF
331 330 3adant3l φyX<yXydomFlimPtTopOpenfldXylimPtTopOpenfldX+∞domF
332 275 3ad2ant2 φyX<yXydomFy*
333 4 3ad2ant1 φyX<yXydomFX
334 simp3l φyX<yXydomFX<y
335 133 332 333 334 lptioo1cn φyX<yXydomFXlimPtTopOpenfldXy
336 331 335 sseldd φyX<yXydomFXlimPtTopOpenfldX+∞domF
337 336 rexlimdv3a φyX<yXydomFXlimPtTopOpenfldX+∞domF
338 317 337 mpd φXlimPtTopOpenfldX+∞domF
339 biid φi0..^MwQiQi+1kw=X+kTφi0..^MwQiQi+1kw=X+kT
340 73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339 fourierdlem48 φFX+∞limX
341 312 316 338 340 133 ellimciota φιx|xFX+∞limXFX+∞limX
342 fveq2 n=kAn=Ak
343 oveq1 n=knX=kX
344 343 fveq2d n=kcosnX=coskX
345 342 344 oveq12d n=kAncosnX=AkcoskX
346 fveq2 n=kBn=Bk
347 343 fveq2d n=ksinnX=sinkX
348 346 347 oveq12d n=kBnsinnX=BksinkX
349 345 348 oveq12d n=kAncosnX+BnsinnX=AkcoskX+BksinkX
350 349 cbvsumv n=1mAncosnX+BnsinnX=k=1mAkcoskX+BksinkX
351 oveq2 j=m1j=1m
352 351 eqcomd j=m1m=1j
353 352 sumeq1d j=mk=1mAkcoskX+BksinkX=k=1jAkcoskX+BksinkX
354 350 353 eqtr2id j=mk=1jAkcoskX+BksinkX=n=1mAncosnX+BnsinnX
355 354 oveq2d j=mA02+k=1jAkcoskX+BksinkX=A02+n=1mAncosnX+BnsinnX
356 355 cbvmptv jA02+k=1jAkcoskX+BksinkX=mA02+n=1mAncosnX+BnsinnX
357 fdm F:domF=
358 1 357 syl φdomF=
359 358 161 eqsstrd φdomF
360 358 feq2d φF:domFF:
361 1 360 mpbird φF:domF
362 359 sselda φtdomFt
363 362 adantr φtdomFkt
364 176 adantl φtdomFkk
365 182 adantlr φtdomFkT
366 364 365 remulcld φtdomFkkT
367 363 366 readdcld φtdomFkt+kT
368 358 eqcomd φ=domF
369 368 ad2antrr φtdomFk=domF
370 367 369 eleqtrd φtdomFkt+kTdomF
371 id φkφk
372 371 adantlr φtdomFkφk
373 372 363 189 syl2anc φtdomFkFt+kT=Ft
374 359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200 fourierdlem71 φutdomFFtu
375 358 raleqdv φtdomFFtutFtu
376 375 rexbidv φutdomFFtuutFtu
377 374 376 mpbid φutFtu
378 1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4 fourierdlem112 φseq1+SL+R2A02A02+nAncosnX+BnsinnX=L+R2