Metamath Proof Explorer


Theorem leibpi

Description: The Leibniz formula for _pi . This proof depends on three main facts: (1) the series F is convergent, because it is an alternating series ( iseralt ). (2) Using leibpilem2 to rewrite the series as a power series, it is the x = 1 special case of the Taylor series for arctan ( atantayl2 ). (3) Although we cannot directly plug x = 1 into atantayl2 , Abel's theorem ( abelth2 ) says that the limit along any sequence converging to 1 , such as 1 - 1 / n , of the power series converges to the power series extended to 1 , and then since arctan is continuous at 1 ( atancn ) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis leibpi.1 F = n 0 1 n 2 n + 1
Assertion leibpi seq 0 + F π 4

Proof

Step Hyp Ref Expression
1 leibpi.1 F = n 0 1 n 2 n + 1
2 nn0uz 0 = 0
3 0zd 0
4 eqidd j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j = k 0 if k = 0 2 k 0 1 k 1 2 k j
5 0cnd k 0 k = 0 2 k 0
6 ioran ¬ k = 0 2 k ¬ k = 0 ¬ 2 k
7 neg1rr 1
8 leibpilem1 k 0 ¬ k = 0 ¬ 2 k k k 1 2 0
9 8 simprd k 0 ¬ k = 0 ¬ 2 k k 1 2 0
10 reexpcl 1 k 1 2 0 1 k 1 2
11 7 9 10 sylancr k 0 ¬ k = 0 ¬ 2 k 1 k 1 2
12 8 simpld k 0 ¬ k = 0 ¬ 2 k k
13 11 12 nndivred k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 k
14 13 recnd k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 k
15 6 14 sylan2b k 0 ¬ k = 0 2 k 1 k 1 2 k
16 5 15 ifclda k 0 if k = 0 2 k 0 1 k 1 2 k
17 16 adantl k 0 if k = 0 2 k 0 1 k 1 2 k
18 17 fmpttd k 0 if k = 0 2 k 0 1 k 1 2 k : 0
19 18 ffvelrnda j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
20 2nn0 2 0
21 20 a1i 2 0
22 nn0mulcl 2 0 n 0 2 n 0
23 21 22 sylan n 0 2 n 0
24 nn0p1nn 2 n 0 2 n + 1
25 23 24 syl n 0 2 n + 1
26 25 nnrecred n 0 1 2 n + 1
27 26 fmpttd n 0 1 2 n + 1 : 0
28 nn0mulcl 2 0 k 0 2 k 0
29 21 28 sylan k 0 2 k 0
30 29 nn0red k 0 2 k
31 peano2nn0 k 0 k + 1 0
32 31 adantl k 0 k + 1 0
33 nn0mulcl 2 0 k + 1 0 2 k + 1 0
34 20 32 33 sylancr k 0 2 k + 1 0
35 34 nn0red k 0 2 k + 1
36 1red k 0 1
37 nn0re k 0 k
38 37 adantl k 0 k
39 38 lep1d k 0 k k + 1
40 peano2re k k + 1
41 38 40 syl k 0 k + 1
42 2re 2
43 42 a1i k 0 2
44 2pos 0 < 2
45 44 a1i k 0 0 < 2
46 lemul2 k k + 1 2 0 < 2 k k + 1 2 k 2 k + 1
47 38 41 43 45 46 syl112anc k 0 k k + 1 2 k 2 k + 1
48 39 47 mpbid k 0 2 k 2 k + 1
49 30 35 36 48 leadd1dd k 0 2 k + 1 2 k + 1 + 1
50 nn0p1nn 2 k 0 2 k + 1
51 29 50 syl k 0 2 k + 1
52 51 nnred k 0 2 k + 1
53 51 nngt0d k 0 0 < 2 k + 1
54 nn0p1nn 2 k + 1 0 2 k + 1 + 1
55 34 54 syl k 0 2 k + 1 + 1
56 55 nnred k 0 2 k + 1 + 1
57 55 nngt0d k 0 0 < 2 k + 1 + 1
58 lerec 2 k + 1 0 < 2 k + 1 2 k + 1 + 1 0 < 2 k + 1 + 1 2 k + 1 2 k + 1 + 1 1 2 k + 1 + 1 1 2 k + 1
59 52 53 56 57 58 syl22anc k 0 2 k + 1 2 k + 1 + 1 1 2 k + 1 + 1 1 2 k + 1
60 49 59 mpbid k 0 1 2 k + 1 + 1 1 2 k + 1
61 oveq2 n = k + 1 2 n = 2 k + 1
62 61 oveq1d n = k + 1 2 n + 1 = 2 k + 1 + 1
63 62 oveq2d n = k + 1 1 2 n + 1 = 1 2 k + 1 + 1
64 eqid n 0 1 2 n + 1 = n 0 1 2 n + 1
65 ovex 1 2 k + 1 + 1 V
66 63 64 65 fvmpt k + 1 0 n 0 1 2 n + 1 k + 1 = 1 2 k + 1 + 1
67 32 66 syl k 0 n 0 1 2 n + 1 k + 1 = 1 2 k + 1 + 1
68 oveq2 n = k 2 n = 2 k
69 68 oveq1d n = k 2 n + 1 = 2 k + 1
70 69 oveq2d n = k 1 2 n + 1 = 1 2 k + 1
71 ovex 1 2 k + 1 V
72 70 64 71 fvmpt k 0 n 0 1 2 n + 1 k = 1 2 k + 1
73 72 adantl k 0 n 0 1 2 n + 1 k = 1 2 k + 1
74 60 67 73 3brtr4d k 0 n 0 1 2 n + 1 k + 1 n 0 1 2 n + 1 k
75 nnuz = 1
76 1zzd 1
77 ax-1cn 1
78 divcnv 1 n 1 n 0
79 77 78 mp1i n 1 n 0
80 nn0ex 0 V
81 80 mptex n 0 1 2 n + 1 V
82 81 a1i n 0 1 2 n + 1 V
83 oveq2 n = k 1 n = 1 k
84 eqid n 1 n = n 1 n
85 ovex 1 k V
86 83 84 85 fvmpt k n 1 n k = 1 k
87 86 adantl k n 1 n k = 1 k
88 nnrecre k 1 k
89 88 adantl k 1 k
90 87 89 eqeltrd k n 1 n k
91 nnnn0 k k 0
92 91 adantl k k 0
93 92 72 syl k n 0 1 2 n + 1 k = 1 2 k + 1
94 91 51 sylan2 k 2 k + 1
95 94 nnrecred k 1 2 k + 1
96 93 95 eqeltrd k n 0 1 2 n + 1 k
97 nnre k k
98 97 adantl k k
99 20 92 28 sylancr k 2 k 0
100 99 nn0red k 2 k
101 peano2re 2 k 2 k + 1
102 100 101 syl k 2 k + 1
103 nn0addge1 k k 0 k k + k
104 98 92 103 syl2anc k k k + k
105 98 recnd k k
106 105 2timesd k 2 k = k + k
107 104 106 breqtrrd k k 2 k
108 100 lep1d k 2 k 2 k + 1
109 98 100 102 107 108 letrd k k 2 k + 1
110 nngt0 k 0 < k
111 110 adantl k 0 < k
112 94 nnred k 2 k + 1
113 94 nngt0d k 0 < 2 k + 1
114 lerec k 0 < k 2 k + 1 0 < 2 k + 1 k 2 k + 1 1 2 k + 1 1 k
115 98 111 112 113 114 syl22anc k k 2 k + 1 1 2 k + 1 1 k
116 109 115 mpbid k 1 2 k + 1 1 k
117 116 93 87 3brtr4d k n 0 1 2 n + 1 k n 1 n k
118 94 nnrpd k 2 k + 1 +
119 118 rpreccld k 1 2 k + 1 +
120 119 rpge0d k 0 1 2 k + 1
121 120 93 breqtrrd k 0 n 0 1 2 n + 1 k
122 75 76 79 82 90 96 117 121 climsqz2 n 0 1 2 n + 1 0
123 neg1cn 1
124 123 a1i 1
125 expcl 1 k 0 1 k
126 124 125 sylan k 0 1 k
127 51 nncnd k 0 2 k + 1
128 51 nnne0d k 0 2 k + 1 0
129 126 127 128 divrecd k 0 1 k 2 k + 1 = 1 k 1 2 k + 1
130 oveq2 n = k 1 n = 1 k
131 130 69 oveq12d n = k 1 n 2 n + 1 = 1 k 2 k + 1
132 eqid n 0 1 n 2 n + 1 = n 0 1 n 2 n + 1
133 ovex 1 k 2 k + 1 V
134 131 132 133 fvmpt k 0 n 0 1 n 2 n + 1 k = 1 k 2 k + 1
135 134 adantl k 0 n 0 1 n 2 n + 1 k = 1 k 2 k + 1
136 73 oveq2d k 0 1 k n 0 1 2 n + 1 k = 1 k 1 2 k + 1
137 129 135 136 3eqtr4d k 0 n 0 1 n 2 n + 1 k = 1 k n 0 1 2 n + 1 k
138 2 3 27 74 122 137 iseralt seq 0 + n 0 1 n 2 n + 1 dom
139 climdm seq 0 + n 0 1 n 2 n + 1 dom seq 0 + n 0 1 n 2 n + 1 seq 0 + n 0 1 n 2 n + 1
140 138 139 sylib seq 0 + n 0 1 n 2 n + 1 seq 0 + n 0 1 n 2 n + 1
141 eqid k 0 if k = 0 2 k 0 1 k 1 2 k = k 0 if k = 0 2 k 0 1 k 1 2 k
142 fvex seq 0 + n 0 1 n 2 n + 1 V
143 132 141 142 leibpilem2 seq 0 + n 0 1 n 2 n + 1 seq 0 + n 0 1 n 2 n + 1 seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k seq 0 + n 0 1 n 2 n + 1
144 140 143 sylib seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k seq 0 + n 0 1 n 2 n + 1
145 seqex seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k V
146 145 142 breldm seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k seq 0 + n 0 1 n 2 n + 1 seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k dom
147 144 146 syl seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k dom
148 2 3 4 19 147 isumclim2 seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
149 eqid x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j
150 18 147 149 abelth2 x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j : 0 1 cn
151 nnrp n n +
152 151 adantl n n +
153 152 rpreccld n 1 n +
154 153 rpred n 1 n
155 153 rpge0d n 0 1 n
156 nnge1 n 1 n
157 156 adantl n 1 n
158 nnre n n
159 158 adantl n n
160 159 recnd n n
161 160 mulid1d n n 1 = n
162 157 161 breqtrrd n 1 n 1
163 1red n 1
164 nngt0 n 0 < n
165 164 adantl n 0 < n
166 ledivmul 1 1 n 0 < n 1 n 1 1 n 1
167 163 163 159 165 166 syl112anc n 1 n 1 1 n 1
168 162 167 mpbird n 1 n 1
169 elicc01 1 n 0 1 1 n 0 1 n 1 n 1
170 154 155 168 169 syl3anbrc n 1 n 0 1
171 iirev 1 n 0 1 1 1 n 0 1
172 170 171 syl n 1 1 n 0 1
173 172 fmpttd n 1 1 n : 0 1
174 1cnd 1
175 nnex V
176 175 mptex n 1 1 n V
177 176 a1i n 1 1 n V
178 90 recnd k n 1 n k
179 83 oveq2d n = k 1 1 n = 1 1 k
180 eqid n 1 1 n = n 1 1 n
181 ovex 1 1 k V
182 179 180 181 fvmpt k n 1 1 n k = 1 1 k
183 86 oveq2d k 1 n 1 n k = 1 1 k
184 182 183 eqtr4d k n 1 1 n k = 1 n 1 n k
185 184 adantl k n 1 1 n k = 1 n 1 n k
186 75 76 79 174 177 178 185 climsubc2 n 1 1 n 1 0
187 1m0e1 1 0 = 1
188 186 187 breqtrdi n 1 1 n 1
189 1elunit 1 0 1
190 189 a1i 1 0 1
191 75 76 150 173 188 190 climcncf x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j n 1 1 n x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j 1
192 eqidd n 1 1 n = n 1 1 n
193 eqidd x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j
194 oveq1 x = 1 1 n x j = 1 1 n j
195 194 oveq2d x = 1 1 n k 0 if k = 0 2 k 0 1 k 1 2 k j x j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
196 195 sumeq2sdv x = 1 1 n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
197 172 192 193 196 fmptco x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j n 1 1 n = n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
198 0zd n 0
199 9 adantll k 0 ¬ k = 0 ¬ 2 k k 1 2 0
200 7 199 10 sylancr k 0 ¬ k = 0 ¬ 2 k 1 k 1 2
201 200 recnd k 0 ¬ k = 0 ¬ 2 k 1 k 1 2
202 201 adantllr n k 0 ¬ k = 0 ¬ 2 k 1 k 1 2
203 1re 1
204 resubcl 1 1 n 1 1 n
205 203 154 204 sylancr n 1 1 n
206 205 ad2antrr n k 0 ¬ k = 0 ¬ 2 k 1 1 n
207 simplr n k 0 ¬ k = 0 ¬ 2 k k 0
208 206 207 reexpcld n k 0 ¬ k = 0 ¬ 2 k 1 1 n k
209 208 recnd n k 0 ¬ k = 0 ¬ 2 k 1 1 n k
210 nn0cn k 0 k
211 210 ad2antlr n k 0 ¬ k = 0 ¬ 2 k k
212 12 adantll n k 0 ¬ k = 0 ¬ 2 k k
213 212 nnne0d n k 0 ¬ k = 0 ¬ 2 k k 0
214 202 209 211 213 div12d n k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 1 1 n k k = 1 1 n k 1 k 1 2 k
215 14 adantll n k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 k
216 209 215 mulcomd n k 0 ¬ k = 0 ¬ 2 k 1 1 n k 1 k 1 2 k = 1 k 1 2 k 1 1 n k
217 214 216 eqtrd n k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 1 1 n k k = 1 k 1 2 k 1 1 n k
218 6 217 sylan2b n k 0 ¬ k = 0 2 k 1 k 1 2 1 1 n k k = 1 k 1 2 k 1 1 n k
219 218 ifeq2da n k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = if k = 0 2 k 0 1 k 1 2 k 1 1 n k
220 205 recnd n 1 1 n
221 expcl 1 1 n k 0 1 1 n k
222 220 221 sylan n k 0 1 1 n k
223 222 mul02d n k 0 0 1 1 n k = 0
224 223 ifeq1d n k 0 if k = 0 2 k 0 1 1 n k 1 k 1 2 k 1 1 n k = if k = 0 2 k 0 1 k 1 2 k 1 1 n k
225 219 224 eqtr4d n k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = if k = 0 2 k 0 1 1 n k 1 k 1 2 k 1 1 n k
226 ovif if k = 0 2 k 0 1 k 1 2 k 1 1 n k = if k = 0 2 k 0 1 1 n k 1 k 1 2 k 1 1 n k
227 225 226 syl6eqr n k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = if k = 0 2 k 0 1 k 1 2 k 1 1 n k
228 simpr n k 0 k 0
229 c0ex 0 V
230 ovex 1 k 1 2 1 1 n k k V
231 229 230 ifex if k = 0 2 k 0 1 k 1 2 1 1 n k k V
232 eqid k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k
233 232 fvmpt2 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k V k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = if k = 0 2 k 0 1 k 1 2 1 1 n k k
234 228 231 233 sylancl n k 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = if k = 0 2 k 0 1 k 1 2 1 1 n k k
235 ovex 1 k 1 2 k V
236 229 235 ifex if k = 0 2 k 0 1 k 1 2 k V
237 141 fvmpt2 k 0 if k = 0 2 k 0 1 k 1 2 k V k 0 if k = 0 2 k 0 1 k 1 2 k k = if k = 0 2 k 0 1 k 1 2 k
238 228 236 237 sylancl n k 0 k 0 if k = 0 2 k 0 1 k 1 2 k k = if k = 0 2 k 0 1 k 1 2 k
239 238 oveq1d n k 0 k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k = if k = 0 2 k 0 1 k 1 2 k 1 1 n k
240 227 234 239 3eqtr4d n k 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k
241 240 ralrimiva n k 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k
242 nfv j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k
243 nffvmpt1 _ k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j
244 nffvmpt1 _ k k 0 if k = 0 2 k 0 1 k 1 2 k j
245 nfcv _ k ×
246 nfcv _ k 1 1 n j
247 244 245 246 nfov _ k k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
248 243 247 nfeq k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
249 fveq2 k = j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j
250 fveq2 k = j k 0 if k = 0 2 k 0 1 k 1 2 k k = k 0 if k = 0 2 k 0 1 k 1 2 k j
251 oveq2 k = j 1 1 n k = 1 1 n j
252 250 251 oveq12d k = j k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
253 249 252 eqeq12d k = j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
254 242 248 253 cbvralw k 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k 0 if k = 0 2 k 0 1 k 1 2 k k 1 1 n k j 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
255 241 254 sylib n j 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
256 255 r19.21bi n j 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
257 0cnd n k 0 k = 0 2 k 0
258 208 212 nndivred n k 0 ¬ k = 0 ¬ 2 k 1 1 n k k
259 258 recnd n k 0 ¬ k = 0 ¬ 2 k 1 1 n k k
260 202 259 mulcld n k 0 ¬ k = 0 ¬ 2 k 1 k 1 2 1 1 n k k
261 6 260 sylan2b n k 0 ¬ k = 0 2 k 1 k 1 2 1 1 n k k
262 257 261 ifclda n k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k
263 262 fmpttd n k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k : 0
264 263 ffvelrnda n j 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j
265 256 264 eqeltrrd n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j
266 0nn0 0 0
267 266 a1i n 0 0
268 0p1e1 0 + 1 = 1
269 seqeq1 0 + 1 = 1 seq 0 + 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = seq 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k
270 268 269 ax-mp seq 0 + 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = seq 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k
271 1zzd n 1
272 elnnuz j j 1
273 nnne0 k k 0
274 273 neneqd k ¬ k = 0
275 biorf ¬ k = 0 2 k k = 0 2 k
276 274 275 syl k 2 k k = 0 2 k
277 276 bicomd k k = 0 2 k 2 k
278 277 ifbid k if k = 0 2 k 0 1 k 1 2 1 1 n k k = if 2 k 0 1 k 1 2 1 1 n k k
279 91 231 233 sylancl k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = if k = 0 2 k 0 1 k 1 2 1 1 n k k
280 229 230 ifex if 2 k 0 1 k 1 2 1 1 n k k V
281 eqid k if 2 k 0 1 k 1 2 1 1 n k k = k if 2 k 0 1 k 1 2 1 1 n k k
282 281 fvmpt2 k if 2 k 0 1 k 1 2 1 1 n k k V k if 2 k 0 1 k 1 2 1 1 n k k k = if 2 k 0 1 k 1 2 1 1 n k k
283 280 282 mpan2 k k if 2 k 0 1 k 1 2 1 1 n k k k = if 2 k 0 1 k 1 2 1 1 n k k
284 278 279 283 3eqtr4d k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k
285 284 rgen k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k
286 285 a1i n k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k
287 nfv j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k
288 nffvmpt1 _ k k if 2 k 0 1 k 1 2 1 1 n k k j
289 243 288 nfeq k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
290 fveq2 k = j k if 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k j
291 249 290 eqeq12d k = j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
292 287 289 291 cbvralw k k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k k = k if 2 k 0 1 k 1 2 1 1 n k k k j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
293 286 292 sylib n j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
294 293 r19.21bi n j k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
295 272 294 sylan2br n j 1 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k j = k if 2 k 0 1 k 1 2 1 1 n k k j
296 271 295 seqfeq n seq 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = seq 1 + k if 2 k 0 1 k 1 2 1 1 n k k
297 154 163 168 abssubge0d n 1 1 n = 1 1 n
298 ltsubrp 1 1 n + 1 1 n < 1
299 203 153 298 sylancr n 1 1 n < 1
300 297 299 eqbrtrd n 1 1 n < 1
301 281 atantayl2 1 1 n 1 1 n < 1 seq 1 + k if 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n
302 220 300 301 syl2anc n seq 1 + k if 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n
303 296 302 eqbrtrd n seq 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n
304 270 303 eqbrtrid n seq 0 + 1 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n
305 2 267 264 304 clim2ser2 n seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n + seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0
306 0z 0
307 seq1 0 seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0
308 306 307 ax-mp seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0
309 iftrue k = 0 2 k if k = 0 2 k 0 1 k 1 2 1 1 n k k = 0
310 309 orcs k = 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k = 0
311 310 232 229 fvmpt 0 0 k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = 0
312 266 311 ax-mp k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = 0
313 308 312 eqtri seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = 0
314 313 oveq2i arctan 1 1 n + seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = arctan 1 1 n + 0
315 atanrecl 1 1 n arctan 1 1 n
316 205 315 syl n arctan 1 1 n
317 316 recnd n arctan 1 1 n
318 317 addid1d n arctan 1 1 n + 0 = arctan 1 1 n
319 314 318 syl5eq n arctan 1 1 n + seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k 0 = arctan 1 1 n
320 305 319 breqtrd n seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 1 1 n k k arctan 1 1 n
321 2 198 256 265 320 isumclim n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j = arctan 1 1 n
322 321 mpteq2dva n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 1 n j = n arctan 1 1 n
323 197 322 eqtrd x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j n 1 1 n = n arctan 1 1 n
324 oveq1 x = 1 x j = 1 j
325 nn0z j 0 j
326 1exp j 1 j = 1
327 325 326 syl j 0 1 j = 1
328 324 327 sylan9eq x = 1 j 0 x j = 1
329 328 oveq2d x = 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = k 0 if k = 0 2 k 0 1 k 1 2 k j 1
330 18 mptru k 0 if k = 0 2 k 0 1 k 1 2 k : 0
331 330 ffvelrni j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
332 331 mulid1d j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 = k 0 if k = 0 2 k 0 1 k 1 2 k j
333 332 adantl x = 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j 1 = k 0 if k = 0 2 k 0 1 k 1 2 k j
334 329 333 eqtrd x = 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = k 0 if k = 0 2 k 0 1 k 1 2 k j
335 334 sumeq2dv x = 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j = j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
336 sumex j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j V
337 335 149 336 fvmpt 1 0 1 x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j 1 = j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
338 189 337 mp1i x 0 1 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j x j 1 = j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
339 191 323 338 3brtr3d n arctan 1 1 n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j
340 eqid −∞ 0 = −∞ 0
341 eqid x | 1 + x 2 −∞ 0 = x | 1 + x 2 −∞ 0
342 340 341 atancn arctan x | 1 + x 2 −∞ 0 : x | 1 + x 2 −∞ 0 cn
343 342 a1i arctan x | 1 + x 2 −∞ 0 : x | 1 + x 2 −∞ 0 cn
344 unitssre 0 1
345 340 341 ressatans x | 1 + x 2 −∞ 0
346 344 345 sstri 0 1 x | 1 + x 2 −∞ 0
347 fss n 1 1 n : 0 1 0 1 x | 1 + x 2 −∞ 0 n 1 1 n : x | 1 + x 2 −∞ 0
348 173 346 347 sylancl n 1 1 n : x | 1 + x 2 −∞ 0
349 345 203 sselii 1 x | 1 + x 2 −∞ 0
350 349 a1i 1 x | 1 + x 2 −∞ 0
351 75 76 343 348 188 350 climcncf arctan x | 1 + x 2 −∞ 0 n 1 1 n arctan x | 1 + x 2 −∞ 0 1
352 346 172 sseldi n 1 1 n x | 1 + x 2 −∞ 0
353 cncff arctan x | 1 + x 2 −∞ 0 : x | 1 + x 2 −∞ 0 cn arctan x | 1 + x 2 −∞ 0 : x | 1 + x 2 −∞ 0
354 342 353 mp1i arctan x | 1 + x 2 −∞ 0 : x | 1 + x 2 −∞ 0
355 354 feqmptd arctan x | 1 + x 2 −∞ 0 = k x | 1 + x 2 −∞ 0 arctan x | 1 + x 2 −∞ 0 k
356 fvres k x | 1 + x 2 −∞ 0 arctan x | 1 + x 2 −∞ 0 k = arctan k
357 356 mpteq2ia k x | 1 + x 2 −∞ 0 arctan x | 1 + x 2 −∞ 0 k = k x | 1 + x 2 −∞ 0 arctan k
358 355 357 syl6eq arctan x | 1 + x 2 −∞ 0 = k x | 1 + x 2 −∞ 0 arctan k
359 fveq2 k = 1 1 n arctan k = arctan 1 1 n
360 352 192 358 359 fmptco arctan x | 1 + x 2 −∞ 0 n 1 1 n = n arctan 1 1 n
361 fvres 1 x | 1 + x 2 −∞ 0 arctan x | 1 + x 2 −∞ 0 1 = arctan 1
362 349 361 mp1i arctan x | 1 + x 2 −∞ 0 1 = arctan 1
363 atan1 arctan 1 = π 4
364 362 363 syl6eq arctan x | 1 + x 2 −∞ 0 1 = π 4
365 351 360 364 3brtr3d n arctan 1 1 n π 4
366 climuni n arctan 1 1 n j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j n arctan 1 1 n π 4 j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j = π 4
367 339 365 366 syl2anc j 0 k 0 if k = 0 2 k 0 1 k 1 2 k j = π 4
368 148 367 breqtrd seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k π 4
369 368 mptru seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k π 4
370 ovex π 4 V
371 1 141 370 leibpilem2 seq 0 + F π 4 seq 0 + k 0 if k = 0 2 k 0 1 k 1 2 k π 4
372 369 371 mpbir seq 0 + F π 4