Metamath Proof Explorer


Theorem leibpi

Description: The Leibniz formula for _pi . This proof depends on three main facts: (1) the series F is convergent, because it is an alternating series ( iseralt ). (2) Using leibpilem2 to rewrite the series as a power series, it is the x = 1 special case of the Taylor series for arctan ( atantayl2 ). (3) Although we cannot directly plug x = 1 into atantayl2 , Abel's theorem ( abelth2 ) says that the limit along any sequence converging to 1 , such as 1 - 1 / n , of the power series converges to the power series extended to 1 , and then since arctan is continuous at 1 ( atancn ) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis leibpi.1 F=n01n2n+1
Assertion leibpi seq0+Fπ4

Proof

Step Hyp Ref Expression
1 leibpi.1 F=n01n2n+1
2 nn0uz 0=0
3 0zd 0
4 eqidd j0k0ifk=02k01k12kj=k0ifk=02k01k12kj
5 0cnd k0k=02k0
6 ioran ¬k=02k¬k=0¬2k
7 neg1rr 1
8 leibpilem1 k0¬k=0¬2kkk120
9 8 simprd k0¬k=0¬2kk120
10 reexpcl 1k1201k12
11 7 9 10 sylancr k0¬k=0¬2k1k12
12 8 simpld k0¬k=0¬2kk
13 11 12 nndivred k0¬k=0¬2k1k12k
14 13 recnd k0¬k=0¬2k1k12k
15 6 14 sylan2b k0¬k=02k1k12k
16 5 15 ifclda k0ifk=02k01k12k
17 16 adantl k0ifk=02k01k12k
18 17 fmpttd k0ifk=02k01k12k:0
19 18 ffvelcdmda j0k0ifk=02k01k12kj
20 2nn0 20
21 20 a1i 20
22 nn0mulcl 20n02n0
23 21 22 sylan n02n0
24 nn0p1nn 2n02n+1
25 23 24 syl n02n+1
26 25 nnrecred n012n+1
27 26 fmpttd n012n+1:0
28 nn0mulcl 20k02k0
29 21 28 sylan k02k0
30 29 nn0red k02k
31 peano2nn0 k0k+10
32 31 adantl k0k+10
33 nn0mulcl 20k+102k+10
34 20 32 33 sylancr k02k+10
35 34 nn0red k02k+1
36 1red k01
37 nn0re k0k
38 37 adantl k0k
39 38 lep1d k0kk+1
40 peano2re kk+1
41 38 40 syl k0k+1
42 2re 2
43 42 a1i k02
44 2pos 0<2
45 44 a1i k00<2
46 lemul2 kk+120<2kk+12k2k+1
47 38 41 43 45 46 syl112anc k0kk+12k2k+1
48 39 47 mpbid k02k2k+1
49 30 35 36 48 leadd1dd k02k+12k+1+1
50 nn0p1nn 2k02k+1
51 29 50 syl k02k+1
52 51 nnred k02k+1
53 51 nngt0d k00<2k+1
54 nn0p1nn 2k+102k+1+1
55 34 54 syl k02k+1+1
56 55 nnred k02k+1+1
57 55 nngt0d k00<2k+1+1
58 lerec 2k+10<2k+12k+1+10<2k+1+12k+12k+1+112k+1+112k+1
59 52 53 56 57 58 syl22anc k02k+12k+1+112k+1+112k+1
60 49 59 mpbid k012k+1+112k+1
61 oveq2 n=k+12n=2k+1
62 61 oveq1d n=k+12n+1=2k+1+1
63 62 oveq2d n=k+112n+1=12k+1+1
64 eqid n012n+1=n012n+1
65 ovex 12k+1+1V
66 63 64 65 fvmpt k+10n012n+1k+1=12k+1+1
67 32 66 syl k0n012n+1k+1=12k+1+1
68 oveq2 n=k2n=2k
69 68 oveq1d n=k2n+1=2k+1
70 69 oveq2d n=k12n+1=12k+1
71 ovex 12k+1V
72 70 64 71 fvmpt k0n012n+1k=12k+1
73 72 adantl k0n012n+1k=12k+1
74 60 67 73 3brtr4d k0n012n+1k+1n012n+1k
75 nnuz =1
76 1zzd 1
77 ax-1cn 1
78 divcnv 1n1n0
79 77 78 mp1i n1n0
80 nn0ex 0V
81 80 mptex n012n+1V
82 81 a1i n012n+1V
83 oveq2 n=k1n=1k
84 eqid n1n=n1n
85 ovex 1kV
86 83 84 85 fvmpt kn1nk=1k
87 86 adantl kn1nk=1k
88 nnrecre k1k
89 88 adantl k1k
90 87 89 eqeltrd kn1nk
91 nnnn0 kk0
92 91 adantl kk0
93 92 72 syl kn012n+1k=12k+1
94 91 51 sylan2 k2k+1
95 94 nnrecred k12k+1
96 93 95 eqeltrd kn012n+1k
97 nnre kk
98 97 adantl kk
99 20 92 28 sylancr k2k0
100 99 nn0red k2k
101 peano2re 2k2k+1
102 100 101 syl k2k+1
103 nn0addge1 kk0kk+k
104 98 92 103 syl2anc kkk+k
105 98 recnd kk
106 105 2timesd k2k=k+k
107 104 106 breqtrrd kk2k
108 100 lep1d k2k2k+1
109 98 100 102 107 108 letrd kk2k+1
110 nngt0 k0<k
111 110 adantl k0<k
112 94 nnred k2k+1
113 94 nngt0d k0<2k+1
114 lerec k0<k2k+10<2k+1k2k+112k+11k
115 98 111 112 113 114 syl22anc kk2k+112k+11k
116 109 115 mpbid k12k+11k
117 116 93 87 3brtr4d kn012n+1kn1nk
118 94 nnrpd k2k+1+
119 118 rpreccld k12k+1+
120 119 rpge0d k012k+1
121 120 93 breqtrrd k0n012n+1k
122 75 76 79 82 90 96 117 121 climsqz2 n012n+10
123 neg1cn 1
124 123 a1i 1
125 expcl 1k01k
126 124 125 sylan k01k
127 51 nncnd k02k+1
128 51 nnne0d k02k+10
129 126 127 128 divrecd k01k2k+1=1k12k+1
130 oveq2 n=k1n=1k
131 130 69 oveq12d n=k1n2n+1=1k2k+1
132 eqid n01n2n+1=n01n2n+1
133 ovex 1k2k+1V
134 131 132 133 fvmpt k0n01n2n+1k=1k2k+1
135 134 adantl k0n01n2n+1k=1k2k+1
136 73 oveq2d k01kn012n+1k=1k12k+1
137 129 135 136 3eqtr4d k0n01n2n+1k=1kn012n+1k
138 2 3 27 74 122 137 iseralt seq0+n01n2n+1dom
139 climdm seq0+n01n2n+1domseq0+n01n2n+1seq0+n01n2n+1
140 138 139 sylib seq0+n01n2n+1seq0+n01n2n+1
141 eqid k0ifk=02k01k12k=k0ifk=02k01k12k
142 fvex seq0+n01n2n+1V
143 132 141 142 leibpilem2 seq0+n01n2n+1seq0+n01n2n+1seq0+k0ifk=02k01k12kseq0+n01n2n+1
144 140 143 sylib seq0+k0ifk=02k01k12kseq0+n01n2n+1
145 seqex seq0+k0ifk=02k01k12kV
146 145 142 breldm seq0+k0ifk=02k01k12kseq0+n01n2n+1seq0+k0ifk=02k01k12kdom
147 144 146 syl seq0+k0ifk=02k01k12kdom
148 2 3 4 19 147 isumclim2 seq0+k0ifk=02k01k12kj0k0ifk=02k01k12kj
149 eqid x01j0k0ifk=02k01k12kjxj=x01j0k0ifk=02k01k12kjxj
150 18 147 149 abelth2 x01j0k0ifk=02k01k12kjxj:01cn
151 nnrp nn+
152 151 adantl nn+
153 152 rpreccld n1n+
154 153 rpred n1n
155 153 rpge0d n01n
156 nnge1 n1n
157 156 adantl n1n
158 nnre nn
159 158 adantl nn
160 159 recnd nn
161 160 mulridd nn1=n
162 157 161 breqtrrd n1n1
163 1red n1
164 nngt0 n0<n
165 164 adantl n0<n
166 ledivmul 11n0<n1n11n1
167 163 163 159 165 166 syl112anc n1n11n1
168 162 167 mpbird n1n1
169 elicc01 1n011n01n1n1
170 154 155 168 169 syl3anbrc n1n01
171 iirev 1n0111n01
172 170 171 syl n11n01
173 172 fmpttd n11n:01
174 1cnd 1
175 nnex V
176 175 mptex n11nV
177 176 a1i n11nV
178 90 recnd kn1nk
179 83 oveq2d n=k11n=11k
180 eqid n11n=n11n
181 ovex 11kV
182 179 180 181 fvmpt kn11nk=11k
183 86 oveq2d k1n1nk=11k
184 182 183 eqtr4d kn11nk=1n1nk
185 184 adantl kn11nk=1n1nk
186 75 76 79 174 177 178 185 climsubc2 n11n10
187 1m0e1 10=1
188 186 187 breqtrdi n11n1
189 1elunit 101
190 189 a1i 101
191 75 76 150 173 188 190 climcncf x01j0k0ifk=02k01k12kjxjn11nx01j0k0ifk=02k01k12kjxj1
192 eqidd n11n=n11n
193 eqidd x01j0k0ifk=02k01k12kjxj=x01j0k0ifk=02k01k12kjxj
194 oveq1 x=11nxj=11nj
195 194 oveq2d x=11nk0ifk=02k01k12kjxj=k0ifk=02k01k12kj11nj
196 195 sumeq2sdv x=11nj0k0ifk=02k01k12kjxj=j0k0ifk=02k01k12kj11nj
197 172 192 193 196 fmptco x01j0k0ifk=02k01k12kjxjn11n=nj0k0ifk=02k01k12kj11nj
198 0zd n0
199 9 adantll k0¬k=0¬2kk120
200 7 199 10 sylancr k0¬k=0¬2k1k12
201 200 recnd k0¬k=0¬2k1k12
202 201 adantllr nk0¬k=0¬2k1k12
203 1re 1
204 resubcl 11n11n
205 203 154 204 sylancr n11n
206 205 ad2antrr nk0¬k=0¬2k11n
207 simplr nk0¬k=0¬2kk0
208 206 207 reexpcld nk0¬k=0¬2k11nk
209 208 recnd nk0¬k=0¬2k11nk
210 nn0cn k0k
211 210 ad2antlr nk0¬k=0¬2kk
212 12 adantll nk0¬k=0¬2kk
213 212 nnne0d nk0¬k=0¬2kk0
214 202 209 211 213 div12d nk0¬k=0¬2k1k1211nkk=11nk1k12k
215 14 adantll nk0¬k=0¬2k1k12k
216 209 215 mulcomd nk0¬k=0¬2k11nk1k12k=1k12k11nk
217 214 216 eqtrd nk0¬k=0¬2k1k1211nkk=1k12k11nk
218 6 217 sylan2b nk0¬k=02k1k1211nkk=1k12k11nk
219 218 ifeq2da nk0ifk=02k01k1211nkk=ifk=02k01k12k11nk
220 205 recnd n11n
221 expcl 11nk011nk
222 220 221 sylan nk011nk
223 222 mul02d nk0011nk=0
224 223 ifeq1d nk0ifk=02k011nk1k12k11nk=ifk=02k01k12k11nk
225 219 224 eqtr4d nk0ifk=02k01k1211nkk=ifk=02k011nk1k12k11nk
226 ovif ifk=02k01k12k11nk=ifk=02k011nk1k12k11nk
227 225 226 eqtr4di nk0ifk=02k01k1211nkk=ifk=02k01k12k11nk
228 simpr nk0k0
229 c0ex 0V
230 ovex 1k1211nkkV
231 229 230 ifex ifk=02k01k1211nkkV
232 eqid k0ifk=02k01k1211nkk=k0ifk=02k01k1211nkk
233 232 fvmpt2 k0ifk=02k01k1211nkkVk0ifk=02k01k1211nkkk=ifk=02k01k1211nkk
234 228 231 233 sylancl nk0k0ifk=02k01k1211nkkk=ifk=02k01k1211nkk
235 ovex 1k12kV
236 229 235 ifex ifk=02k01k12kV
237 141 fvmpt2 k0ifk=02k01k12kVk0ifk=02k01k12kk=ifk=02k01k12k
238 228 236 237 sylancl nk0k0ifk=02k01k12kk=ifk=02k01k12k
239 238 oveq1d nk0k0ifk=02k01k12kk11nk=ifk=02k01k12k11nk
240 227 234 239 3eqtr4d nk0k0ifk=02k01k1211nkkk=k0ifk=02k01k12kk11nk
241 240 ralrimiva nk0k0ifk=02k01k1211nkkk=k0ifk=02k01k12kk11nk
242 nfv jk0ifk=02k01k1211nkkk=k0ifk=02k01k12kk11nk
243 nffvmpt1 _kk0ifk=02k01k1211nkkj
244 nffvmpt1 _kk0ifk=02k01k12kj
245 nfcv _k×
246 nfcv _k11nj
247 244 245 246 nfov _kk0ifk=02k01k12kj11nj
248 243 247 nfeq kk0ifk=02k01k1211nkkj=k0ifk=02k01k12kj11nj
249 fveq2 k=jk0ifk=02k01k1211nkkk=k0ifk=02k01k1211nkkj
250 fveq2 k=jk0ifk=02k01k12kk=k0ifk=02k01k12kj
251 oveq2 k=j11nk=11nj
252 250 251 oveq12d k=jk0ifk=02k01k12kk11nk=k0ifk=02k01k12kj11nj
253 249 252 eqeq12d k=jk0ifk=02k01k1211nkkk=k0ifk=02k01k12kk11nkk0ifk=02k01k1211nkkj=k0ifk=02k01k12kj11nj
254 242 248 253 cbvralw k0k0ifk=02k01k1211nkkk=k0ifk=02k01k12kk11nkj0k0ifk=02k01k1211nkkj=k0ifk=02k01k12kj11nj
255 241 254 sylib nj0k0ifk=02k01k1211nkkj=k0ifk=02k01k12kj11nj
256 255 r19.21bi nj0k0ifk=02k01k1211nkkj=k0ifk=02k01k12kj11nj
257 0cnd nk0k=02k0
258 208 212 nndivred nk0¬k=0¬2k11nkk
259 258 recnd nk0¬k=0¬2k11nkk
260 202 259 mulcld nk0¬k=0¬2k1k1211nkk
261 6 260 sylan2b nk0¬k=02k1k1211nkk
262 257 261 ifclda nk0ifk=02k01k1211nkk
263 262 fmpttd nk0ifk=02k01k1211nkk:0
264 263 ffvelcdmda nj0k0ifk=02k01k1211nkkj
265 256 264 eqeltrrd nj0k0ifk=02k01k12kj11nj
266 0nn0 00
267 266 a1i n00
268 0p1e1 0+1=1
269 seqeq1 0+1=1seq0+1+k0ifk=02k01k1211nkk=seq1+k0ifk=02k01k1211nkk
270 268 269 ax-mp seq0+1+k0ifk=02k01k1211nkk=seq1+k0ifk=02k01k1211nkk
271 1zzd n1
272 elnnuz jj1
273 nnne0 kk0
274 273 neneqd k¬k=0
275 biorf ¬k=02kk=02k
276 274 275 syl k2kk=02k
277 276 bicomd kk=02k2k
278 277 ifbid kifk=02k01k1211nkk=if2k01k1211nkk
279 91 231 233 sylancl kk0ifk=02k01k1211nkkk=ifk=02k01k1211nkk
280 229 230 ifex if2k01k1211nkkV
281 eqid kif2k01k1211nkk=kif2k01k1211nkk
282 281 fvmpt2 kif2k01k1211nkkVkif2k01k1211nkkk=if2k01k1211nkk
283 280 282 mpan2 kkif2k01k1211nkkk=if2k01k1211nkk
284 278 279 283 3eqtr4d kk0ifk=02k01k1211nkkk=kif2k01k1211nkkk
285 284 rgen kk0ifk=02k01k1211nkkk=kif2k01k1211nkkk
286 285 a1i nkk0ifk=02k01k1211nkkk=kif2k01k1211nkkk
287 nfv jk0ifk=02k01k1211nkkk=kif2k01k1211nkkk
288 nffvmpt1 _kkif2k01k1211nkkj
289 243 288 nfeq kk0ifk=02k01k1211nkkj=kif2k01k1211nkkj
290 fveq2 k=jkif2k01k1211nkkk=kif2k01k1211nkkj
291 249 290 eqeq12d k=jk0ifk=02k01k1211nkkk=kif2k01k1211nkkkk0ifk=02k01k1211nkkj=kif2k01k1211nkkj
292 287 289 291 cbvralw kk0ifk=02k01k1211nkkk=kif2k01k1211nkkkjk0ifk=02k01k1211nkkj=kif2k01k1211nkkj
293 286 292 sylib njk0ifk=02k01k1211nkkj=kif2k01k1211nkkj
294 293 r19.21bi njk0ifk=02k01k1211nkkj=kif2k01k1211nkkj
295 272 294 sylan2br nj1k0ifk=02k01k1211nkkj=kif2k01k1211nkkj
296 271 295 seqfeq nseq1+k0ifk=02k01k1211nkk=seq1+kif2k01k1211nkk
297 154 163 168 abssubge0d n11n=11n
298 ltsubrp 11n+11n<1
299 203 153 298 sylancr n11n<1
300 297 299 eqbrtrd n11n<1
301 281 atantayl2 11n11n<1seq1+kif2k01k1211nkkarctan11n
302 220 300 301 syl2anc nseq1+kif2k01k1211nkkarctan11n
303 296 302 eqbrtrd nseq1+k0ifk=02k01k1211nkkarctan11n
304 270 303 eqbrtrid nseq0+1+k0ifk=02k01k1211nkkarctan11n
305 2 267 264 304 clim2ser2 nseq0+k0ifk=02k01k1211nkkarctan11n+seq0+k0ifk=02k01k1211nkk0
306 0z 0
307 seq1 0seq0+k0ifk=02k01k1211nkk0=k0ifk=02k01k1211nkk0
308 306 307 ax-mp seq0+k0ifk=02k01k1211nkk0=k0ifk=02k01k1211nkk0
309 iftrue k=02kifk=02k01k1211nkk=0
310 309 orcs k=0ifk=02k01k1211nkk=0
311 310 232 229 fvmpt 00k0ifk=02k01k1211nkk0=0
312 266 311 ax-mp k0ifk=02k01k1211nkk0=0
313 308 312 eqtri seq0+k0ifk=02k01k1211nkk0=0
314 313 oveq2i arctan11n+seq0+k0ifk=02k01k1211nkk0=arctan11n+0
315 atanrecl 11narctan11n
316 205 315 syl narctan11n
317 316 recnd narctan11n
318 317 addridd narctan11n+0=arctan11n
319 314 318 eqtrid narctan11n+seq0+k0ifk=02k01k1211nkk0=arctan11n
320 305 319 breqtrd nseq0+k0ifk=02k01k1211nkkarctan11n
321 2 198 256 265 320 isumclim nj0k0ifk=02k01k12kj11nj=arctan11n
322 321 mpteq2dva nj0k0ifk=02k01k12kj11nj=narctan11n
323 197 322 eqtrd x01j0k0ifk=02k01k12kjxjn11n=narctan11n
324 oveq1 x=1xj=1j
325 nn0z j0j
326 1exp j1j=1
327 325 326 syl j01j=1
328 324 327 sylan9eq x=1j0xj=1
329 328 oveq2d x=1j0k0ifk=02k01k12kjxj=k0ifk=02k01k12kj1
330 18 mptru k0ifk=02k01k12k:0
331 330 ffvelcdmi j0k0ifk=02k01k12kj
332 331 mulridd j0k0ifk=02k01k12kj1=k0ifk=02k01k12kj
333 332 adantl x=1j0k0ifk=02k01k12kj1=k0ifk=02k01k12kj
334 329 333 eqtrd x=1j0k0ifk=02k01k12kjxj=k0ifk=02k01k12kj
335 334 sumeq2dv x=1j0k0ifk=02k01k12kjxj=j0k0ifk=02k01k12kj
336 sumex j0k0ifk=02k01k12kjV
337 335 149 336 fvmpt 101x01j0k0ifk=02k01k12kjxj1=j0k0ifk=02k01k12kj
338 189 337 mp1i x01j0k0ifk=02k01k12kjxj1=j0k0ifk=02k01k12kj
339 191 323 338 3brtr3d narctan11nj0k0ifk=02k01k12kj
340 eqid −∞0=−∞0
341 eqid x|1+x2−∞0=x|1+x2−∞0
342 340 341 atancn arctanx|1+x2−∞0:x|1+x2−∞0cn
343 342 a1i arctanx|1+x2−∞0:x|1+x2−∞0cn
344 unitssre 01
345 340 341 ressatans x|1+x2−∞0
346 344 345 sstri 01x|1+x2−∞0
347 fss n11n:0101x|1+x2−∞0n11n:x|1+x2−∞0
348 173 346 347 sylancl n11n:x|1+x2−∞0
349 345 203 sselii 1x|1+x2−∞0
350 349 a1i 1x|1+x2−∞0
351 75 76 343 348 188 350 climcncf arctanx|1+x2−∞0n11narctanx|1+x2−∞01
352 346 172 sselid n11nx|1+x2−∞0
353 cncff arctanx|1+x2−∞0:x|1+x2−∞0cnarctanx|1+x2−∞0:x|1+x2−∞0
354 342 353 mp1i arctanx|1+x2−∞0:x|1+x2−∞0
355 354 feqmptd arctanx|1+x2−∞0=kx|1+x2−∞0arctanx|1+x2−∞0k
356 fvres kx|1+x2−∞0arctanx|1+x2−∞0k=arctank
357 356 mpteq2ia kx|1+x2−∞0arctanx|1+x2−∞0k=kx|1+x2−∞0arctank
358 355 357 eqtrdi arctanx|1+x2−∞0=kx|1+x2−∞0arctank
359 fveq2 k=11narctank=arctan11n
360 352 192 358 359 fmptco arctanx|1+x2−∞0n11n=narctan11n
361 fvres 1x|1+x2−∞0arctanx|1+x2−∞01=arctan1
362 349 361 mp1i arctanx|1+x2−∞01=arctan1
363 atan1 arctan1=π4
364 362 363 eqtrdi arctanx|1+x2−∞01=π4
365 351 360 364 3brtr3d narctan11nπ4
366 climuni narctan11nj0k0ifk=02k01k12kjnarctan11nπ4j0k0ifk=02k01k12kj=π4
367 339 365 366 syl2anc j0k0ifk=02k01k12kj=π4
368 148 367 breqtrd seq0+k0ifk=02k01k12kπ4
369 368 mptru seq0+k0ifk=02k01k12kπ4
370 ovex π4V
371 1 141 370 leibpilem2 seq0+Fπ4seq0+k0ifk=02k01k12kπ4
372 369 371 mpbir seq0+Fπ4