Metamath Proof Explorer


Theorem poimirlem23

Description: Lemma for poimir , two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem23.1 φT:1N0..^K
poimirlem23.2 φU:1N1-1 onto1N
poimirlem23.3 φV0N
Assertion poimirlem23 φprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0¬V=NTN=0UN=N

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem23.1 φT:1N0..^K
3 poimirlem23.2 φU:1N1-1 onto1N
4 poimirlem23.3 φV0N
5 ovex T+fU1j×1Uj+1N×0V
6 5 csbex ify<Vyy+1/jT+fU1j×1Uj+1N×0V
7 6 rgenw y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0V
8 eqid y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0
9 fveq1 p=ify<Vyy+1/jT+fU1j×1Uj+1N×0pN=ify<Vyy+1/jT+fU1j×1Uj+1N×0N
10 9 neeq1d p=ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0ify<Vyy+1/jT+fU1j×1Uj+1N×0N0
11 df-ne ify<Vyy+1/jT+fU1j×1Uj+1N×0N0¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
12 10 11 bitrdi p=ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
13 8 12 rexrnmptw y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Vprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0y0N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
14 7 13 ax-mp prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0y0N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
15 rexnal y0N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
16 14 15 bitri prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
17 1 nnzd φN
18 elfzelz V0NV
19 4 18 syl φV
20 zlem1lt NVNVN1<V
21 17 19 20 syl2anc φNVN1<V
22 elfzle2 V0NVN
23 4 22 syl φVN
24 19 zred φV
25 1 nnred φN
26 24 25 letri3d φV=NVNNV
27 26 biimprd φVNNVV=N
28 23 27 mpand φNVV=N
29 21 28 sylbird φN1<VV=N
30 29 necon3ad φVN¬N1<V
31 nnm1nn0 NN10
32 1 31 syl φN10
33 nn0fz0 N10N10N1
34 32 33 sylib φN10N1
35 34 adantr φ¬N1<VN10N1
36 iffalse ¬N1<VifN1<VN1N-1+1=N-1+1
37 1 nncnd φN
38 npcan1 NN-1+1=N
39 37 38 syl φN-1+1=N
40 36 39 sylan9eqr φ¬N1<VifN1<VN1N-1+1=N
41 40 csbeq1d φ¬N1<VifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0=N/jT+fU1j×1Uj+1N×0
42 oveq2 j=N1j=1N
43 42 imaeq2d j=NU1j=U1N
44 43 xpeq1d j=NU1j×1=U1N×1
45 oveq1 j=Nj+1=N+1
46 45 oveq1d j=Nj+1N=N+1N
47 46 imaeq2d j=NUj+1N=UN+1N
48 47 xpeq1d j=NUj+1N×0=UN+1N×0
49 44 48 uneq12d j=NU1j×1Uj+1N×0=U1N×1UN+1N×0
50 f1ofo U:1N1-1 onto1NU:1Nonto1N
51 foima U:1Nonto1NU1N=1N
52 3 50 51 3syl φU1N=1N
53 52 xpeq1d φU1N×1=1N×1
54 25 ltp1d φN<N+1
55 17 peano2zd φN+1
56 fzn N+1NN<N+1N+1N=
57 55 17 56 syl2anc φN<N+1N+1N=
58 54 57 mpbid φN+1N=
59 58 imaeq2d φUN+1N=U
60 59 xpeq1d φUN+1N×0=U×0
61 ima0 U=
62 61 xpeq1i U×0=×0
63 0xp ×0=
64 62 63 eqtri U×0=
65 60 64 eqtrdi φUN+1N×0=
66 53 65 uneq12d φU1N×1UN+1N×0=1N×1
67 un0 1N×1=1N×1
68 66 67 eqtrdi φU1N×1UN+1N×0=1N×1
69 49 68 sylan9eqr φj=NU1j×1Uj+1N×0=1N×1
70 69 oveq2d φj=NT+fU1j×1Uj+1N×0=T+f1N×1
71 1 70 csbied φN/jT+fU1j×1Uj+1N×0=T+f1N×1
72 71 adantr φ¬N1<VN/jT+fU1j×1Uj+1N×0=T+f1N×1
73 41 72 eqtrd φ¬N1<VifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0=T+f1N×1
74 73 fveq1d φ¬N1<VifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N=T+f1N×1N
75 elfzonn0 j0..^Kj0
76 nn0p1nn j0j+1
77 75 76 syl j0..^Kj+1
78 elsni y1y=1
79 78 oveq2d y1j+y=j+1
80 79 eleq1d y1j+yj+1
81 77 80 syl5ibrcom j0..^Ky1j+y
82 81 imp j0..^Ky1j+y
83 82 adantl φj0..^Ky1j+y
84 1ex 1V
85 84 fconst 1N×1:1N1
86 85 a1i φ1N×1:1N1
87 ovexd φ1NV
88 inidm 1N1N=1N
89 83 2 86 87 87 88 off φT+f1N×1:1N
90 elfz1end NN1N
91 1 90 sylib φN1N
92 89 91 ffvelcdmd φT+f1N×1N
93 92 adantr φ¬N1<VT+f1N×1N
94 74 93 eqeltrd φ¬N1<VifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N
95 94 nnne0d φ¬N1<VifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N0
96 breq1 y=N1y<VN1<V
97 id y=N1y=N1
98 oveq1 y=N1y+1=N-1+1
99 96 97 98 ifbieq12d y=N1ify<Vyy+1=ifN1<VN1N-1+1
100 99 csbeq1d y=N1ify<Vyy+1/jT+fU1j×1Uj+1N×0=ifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0
101 100 fveq1d y=N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=ifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N
102 101 neeq1d y=N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N0ifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N0
103 11 102 bitr3id y=N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0ifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N0
104 103 rspcev N10N1ifN1<VN1N-1+1/jT+fU1j×1Uj+1N×0N0y0N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
105 35 95 104 syl2anc φ¬N1<Vy0N1¬ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
106 105 15 sylib φ¬N1<V¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
107 106 ex φ¬N1<V¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
108 30 107 syld φVN¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
109 108 necon4ad φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0V=N
110 109 pm4.71rd φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0V=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0
111 32 nn0zd φN1
112 uzid N1N1N1
113 peano2uz N1N1N-1+1N1
114 111 112 113 3syl φN-1+1N1
115 39 114 eqeltrrd φNN1
116 fzss2 NN10N10N
117 115 116 syl φ0N10N
118 117 sselda φj0N1j0N
119 91 adantr φj0NN1N
120 2 ffnd φTFn1N
121 120 adantr φj0NTFn1N
122 84 fconst U1j×1:U1j1
123 c0ex 0V
124 123 fconst Uj+1N×0:Uj+1N0
125 122 124 pm3.2i U1j×1:U1j1Uj+1N×0:Uj+1N0
126 dff1o3 U:1N1-1 onto1NU:1Nonto1NFunU-1
127 126 simprbi U:1N1-1 onto1NFunU-1
128 imain FunU-1U1jj+1N=U1jUj+1N
129 3 127 128 3syl φU1jj+1N=U1jUj+1N
130 elfzelz j0Nj
131 130 zred j0Nj
132 131 ltp1d j0Nj<j+1
133 fzdisj j<j+11jj+1N=
134 132 133 syl j0N1jj+1N=
135 134 imaeq2d j0NU1jj+1N=U
136 135 61 eqtrdi j0NU1jj+1N=
137 129 136 sylan9req φj0NU1jUj+1N=
138 fun U1j×1:U1j1Uj+1N×0:Uj+1N0U1jUj+1N=U1j×1Uj+1N×0:U1jUj+1N10
139 125 137 138 sylancr φj0NU1j×1Uj+1N×0:U1jUj+1N10
140 elfznn0 j0Nj0
141 140 76 syl j0Nj+1
142 nnuz =1
143 141 142 eleqtrdi j0Nj+11
144 elfzuz3 j0NNj
145 fzsplit2 j+11Nj1N=1jj+1N
146 143 144 145 syl2anc j0N1N=1jj+1N
147 146 imaeq2d j0NU1N=U1jj+1N
148 imaundi U1jj+1N=U1jUj+1N
149 147 148 eqtr2di j0NU1jUj+1N=U1N
150 149 52 sylan9eqr φj0NU1jUj+1N=1N
151 150 feq2d φj0NU1j×1Uj+1N×0:U1jUj+1N10U1j×1Uj+1N×0:1N10
152 139 151 mpbid φj0NU1j×1Uj+1N×0:1N10
153 152 ffnd φj0NU1j×1Uj+1N×0Fn1N
154 ovexd φj0N1NV
155 eqidd φj0NN1NTN=TN
156 eqidd φj0NN1NU1j×1Uj+1N×0N=U1j×1Uj+1N×0N
157 121 153 154 154 88 155 156 ofval φj0NN1NT+fU1j×1Uj+1N×0N=TN+U1j×1Uj+1N×0N
158 119 157 mpdan φj0NT+fU1j×1Uj+1N×0N=TN+U1j×1Uj+1N×0N
159 158 eqeq1d φj0NT+fU1j×1Uj+1N×0N=0TN+U1j×1Uj+1N×0N=0
160 2 91 ffvelcdmd φTN0..^K
161 elfzonn0 TN0..^KTN0
162 160 161 syl φTN0
163 162 nn0red φTN
164 163 adantr φj0NTN
165 162 nn0ge0d φ0TN
166 165 adantr φj0N0TN
167 1re 1
168 snssi 11
169 167 168 ax-mp 1
170 0re 0
171 snssi 00
172 170 171 ax-mp 0
173 169 172 unssi 10
174 152 119 ffvelcdmd φj0NU1j×1Uj+1N×0N10
175 173 174 sselid φj0NU1j×1Uj+1N×0N
176 elun U1j×1Uj+1N×0N10U1j×1Uj+1N×0N1U1j×1Uj+1N×0N0
177 0le1 01
178 elsni U1j×1Uj+1N×0N1U1j×1Uj+1N×0N=1
179 177 178 breqtrrid U1j×1Uj+1N×0N10U1j×1Uj+1N×0N
180 0le0 00
181 elsni U1j×1Uj+1N×0N0U1j×1Uj+1N×0N=0
182 180 181 breqtrrid U1j×1Uj+1N×0N00U1j×1Uj+1N×0N
183 179 182 jaoi U1j×1Uj+1N×0N1U1j×1Uj+1N×0N00U1j×1Uj+1N×0N
184 176 183 sylbi U1j×1Uj+1N×0N100U1j×1Uj+1N×0N
185 174 184 syl φj0N0U1j×1Uj+1N×0N
186 add20 TN0TNU1j×1Uj+1N×0N0U1j×1Uj+1N×0NTN+U1j×1Uj+1N×0N=0TN=0U1j×1Uj+1N×0N=0
187 164 166 175 185 186 syl22anc φj0NTN+U1j×1Uj+1N×0N=0TN=0U1j×1Uj+1N×0N=0
188 159 187 bitrd φj0NT+fU1j×1Uj+1N×0N=0TN=0U1j×1Uj+1N×0N=0
189 118 188 syldan φj0N1T+fU1j×1Uj+1N×0N=0TN=0U1j×1Uj+1N×0N=0
190 189 ralbidva φj0N1T+fU1j×1Uj+1N×0N=0j0N1TN=0U1j×1Uj+1N×0N=0
191 190 adantr φV=Nj0N1T+fU1j×1Uj+1N×0N=0j0N1TN=0U1j×1Uj+1N×0N=0
192 breq2 V=Ny<Vy<N
193 192 ifbid V=Nify<Vyy+1=ify<Nyy+1
194 elfzelz y0N1y
195 194 zred y0N1y
196 195 adantl φy0N1y
197 32 nn0red φN1
198 197 adantr φy0N1N1
199 25 adantr φy0N1N
200 elfzle2 y0N1yN1
201 200 adantl φy0N1yN1
202 25 ltm1d φN1<N
203 202 adantr φy0N1N1<N
204 196 198 199 201 203 lelttrd φy0N1y<N
205 204 iftrued φy0N1ify<Nyy+1=y
206 193 205 sylan9eqr φy0N1V=Nify<Vyy+1=y
207 206 an32s φV=Ny0N1ify<Vyy+1=y
208 207 csbeq1d φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0=y/jT+fU1j×1Uj+1N×0
209 208 fveq1d φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=y/jT+fU1j×1Uj+1N×0N
210 209 eqeq1d φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0y/jT+fU1j×1Uj+1N×0N=0
211 210 ralbidva φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0y0N1y/jT+fU1j×1Uj+1N×0N=0
212 nfv yT+fU1j×1Uj+1N×0N=0
213 nfcsb1v _jy/jT+fU1j×1Uj+1N×0
214 nfcv _jN
215 213 214 nffv _jy/jT+fU1j×1Uj+1N×0N
216 215 nfeq1 jy/jT+fU1j×1Uj+1N×0N=0
217 csbeq1a j=yT+fU1j×1Uj+1N×0=y/jT+fU1j×1Uj+1N×0
218 217 fveq1d j=yT+fU1j×1Uj+1N×0N=y/jT+fU1j×1Uj+1N×0N
219 218 eqeq1d j=yT+fU1j×1Uj+1N×0N=0y/jT+fU1j×1Uj+1N×0N=0
220 212 216 219 cbvralw j0N1T+fU1j×1Uj+1N×0N=0y0N1y/jT+fU1j×1Uj+1N×0N=0
221 211 220 bitr4di φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0j0N1T+fU1j×1Uj+1N×0N=0
222 ne0i N10N10N1
223 r19.3rzv 0N1TN=0j0N1TN=0
224 34 222 223 3syl φTN=0j0N1TN=0
225 elfzelz j0N1j
226 225 zred j0N1j
227 226 ltp1d j0N1j<j+1
228 227 133 syl j0N11jj+1N=
229 228 imaeq2d j0N1U1jj+1N=U
230 229 61 eqtrdi j0N1U1jj+1N=
231 129 230 sylan9req φj0N1U1jUj+1N=
232 231 adantlr φUN=Nj0N1U1jUj+1N=
233 simplr φUN=Nj0N1UN=N
234 f1ofn U:1N1-1 onto1NUFn1N
235 3 234 syl φUFn1N
236 235 adantr φj0N1UFn1N
237 elfznn0 j0N1j0
238 237 76 syl j0N1j+1
239 238 142 eleqtrdi j0N1j+11
240 fzss1 j+11j+1N1N
241 239 240 syl j0N1j+1N1N
242 241 adantl φj0N1j+1N1N
243 39 adantr φj0N1N-1+1=N
244 elfzuz3 j0N1N1j
245 eluzp1p1 N1jN-1+1j+1
246 244 245 syl j0N1N-1+1j+1
247 246 adantl φj0N1N-1+1j+1
248 243 247 eqeltrrd φj0N1Nj+1
249 eluzfz2 Nj+1Nj+1N
250 248 249 syl φj0N1Nj+1N
251 fnfvima UFn1Nj+1N1NNj+1NUNUj+1N
252 236 242 250 251 syl3anc φj0N1UNUj+1N
253 252 adantlr φUN=Nj0N1UNUj+1N
254 233 253 eqeltrrd φUN=Nj0N1NUj+1N
255 fnconstg 1VU1j×1FnU1j
256 84 255 ax-mp U1j×1FnU1j
257 fnconstg 0VUj+1N×0FnUj+1N
258 123 257 ax-mp Uj+1N×0FnUj+1N
259 fvun2 U1j×1FnU1jUj+1N×0FnUj+1NU1jUj+1N=NUj+1NU1j×1Uj+1N×0N=Uj+1N×0N
260 256 258 259 mp3an12 U1jUj+1N=NUj+1NU1j×1Uj+1N×0N=Uj+1N×0N
261 232 254 260 syl2anc φUN=Nj0N1U1j×1Uj+1N×0N=Uj+1N×0N
262 123 fvconst2 NUj+1NUj+1N×0N=0
263 254 262 syl φUN=Nj0N1Uj+1N×0N=0
264 261 263 eqtrd φUN=Nj0N1U1j×1Uj+1N×0N=0
265 264 ralrimiva φUN=Nj0N1U1j×1Uj+1N×0N=0
266 265 ex φUN=Nj0N1U1j×1Uj+1N×0N=0
267 34 adantr φUNNN10N1
268 ax-1ne0 10
269 imain FunU-1U1N1N-1+1N=U1N1UN-1+1N
270 3 127 269 3syl φU1N1N-1+1N=U1N1UN-1+1N
271 202 39 breqtrrd φN1<N-1+1
272 fzdisj N1<N-1+11N1N-1+1N=
273 271 272 syl φ1N1N-1+1N=
274 273 imaeq2d φU1N1N-1+1N=U
275 274 61 eqtrdi φU1N1N-1+1N=
276 270 275 eqtr3d φU1N1UN-1+1N=
277 276 adantr φUNNU1N1UN-1+1N=
278 91 adantr φUNNN1N
279 elimasni NUNNUN
280 fnbrfvb UFn1NN1NUN=NNUN
281 235 91 280 syl2anc φUN=NNUN
282 279 281 imbitrrid φNUNUN=N
283 282 necon3ad φUNN¬NUN
284 283 imp φUNN¬NUN
285 278 284 eldifd φUNNN1NUN
286 imadif FunU-1U1NN=U1NUN
287 3 127 286 3syl φU1NN=U1NUN
288 difun2 1N1NN=1N1N
289 elun j1N1Nj1N1jN
290 velsn jNj=N
291 290 orbi2i j1N1jNj1N1j=N
292 289 291 bitri j1N1Nj1N1j=N
293 1 142 eleqtrdi φN1
294 fzm1 N1j1Nj1N1j=N
295 293 294 syl φj1Nj1N1j=N
296 292 295 bitr4id φj1N1Nj1N
297 296 eqrdv φ1N1N=1N
298 297 difeq1d φ1N1NN=1NN
299 197 25 ltnled φN1<N¬NN1
300 202 299 mpbid φ¬NN1
301 elfzle2 N1N1NN1
302 300 301 nsyl φ¬N1N1
303 difsn ¬N1N11N1N=1N1
304 302 303 syl φ1N1N=1N1
305 288 298 304 3eqtr3a φ1NN=1N1
306 305 imaeq2d φU1NN=U1N1
307 52 difeq1d φU1NUN=1NUN
308 287 306 307 3eqtr3rd φ1NUN=U1N1
309 308 adantr φUNN1NUN=U1N1
310 285 309 eleqtrd φUNNNU1N1
311 fnconstg 1VU1N1×1FnU1N1
312 84 311 ax-mp U1N1×1FnU1N1
313 fnconstg 0VUN-1+1N×0FnUN-1+1N
314 123 313 ax-mp UN-1+1N×0FnUN-1+1N
315 fvun1 U1N1×1FnU1N1UN-1+1N×0FnUN-1+1NU1N1UN-1+1N=NU1N1U1N1×1UN-1+1N×0N=U1N1×1N
316 312 314 315 mp3an12 U1N1UN-1+1N=NU1N1U1N1×1UN-1+1N×0N=U1N1×1N
317 277 310 316 syl2anc φUNNU1N1×1UN-1+1N×0N=U1N1×1N
318 84 fvconst2 NU1N1U1N1×1N=1
319 310 318 syl φUNNU1N1×1N=1
320 317 319 eqtrd φUNNU1N1×1UN-1+1N×0N=1
321 320 neeq1d φUNNU1N1×1UN-1+1N×0N010
322 268 321 mpbiri φUNNU1N1×1UN-1+1N×0N0
323 df-ne U1j×1Uj+1N×0N0¬U1j×1Uj+1N×0N=0
324 oveq2 j=N11j=1N1
325 324 imaeq2d j=N1U1j=U1N1
326 325 xpeq1d j=N1U1j×1=U1N1×1
327 oveq1 j=N1j+1=N-1+1
328 327 oveq1d j=N1j+1N=N-1+1N
329 328 imaeq2d j=N1Uj+1N=UN-1+1N
330 329 xpeq1d j=N1Uj+1N×0=UN-1+1N×0
331 326 330 uneq12d j=N1U1j×1Uj+1N×0=U1N1×1UN-1+1N×0
332 331 fveq1d j=N1U1j×1Uj+1N×0N=U1N1×1UN-1+1N×0N
333 332 neeq1d j=N1U1j×1Uj+1N×0N0U1N1×1UN-1+1N×0N0
334 323 333 bitr3id j=N1¬U1j×1Uj+1N×0N=0U1N1×1UN-1+1N×0N0
335 334 rspcev N10N1U1N1×1UN-1+1N×0N0j0N1¬U1j×1Uj+1N×0N=0
336 267 322 335 syl2anc φUNNj0N1¬U1j×1Uj+1N×0N=0
337 336 ex φUNNj0N1¬U1j×1Uj+1N×0N=0
338 rexnal j0N1¬U1j×1Uj+1N×0N=0¬j0N1U1j×1Uj+1N×0N=0
339 337 338 imbitrdi φUNN¬j0N1U1j×1Uj+1N×0N=0
340 339 necon4ad φj0N1U1j×1Uj+1N×0N=0UN=N
341 266 340 impbid φUN=Nj0N1U1j×1Uj+1N×0N=0
342 224 341 anbi12d φTN=0UN=Nj0N1TN=0j0N1U1j×1Uj+1N×0N=0
343 r19.26 j0N1TN=0U1j×1Uj+1N×0N=0j0N1TN=0j0N1U1j×1Uj+1N×0N=0
344 342 343 bitr4di φTN=0UN=Nj0N1TN=0U1j×1Uj+1N×0N=0
345 344 adantr φV=NTN=0UN=Nj0N1TN=0U1j×1Uj+1N×0N=0
346 191 221 345 3bitr4d φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0TN=0UN=N
347 346 pm5.32da φV=Ny0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0V=NTN=0UN=N
348 110 347 bitrd φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0V=NTN=0UN=N
349 348 notbid φ¬y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0N=0¬V=NTN=0UN=N
350 16 349 bitrid φprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0¬V=NTN=0UN=N