Metamath Proof Explorer


Theorem sge0tsms

Description: sum^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0tsms.g G=𝑠*𝑠0+∞
sge0tsms.x φXV
sge0tsms.f φF:X0+∞
Assertion sge0tsms φsum^FGtsumsF

Proof

Step Hyp Ref Expression
1 sge0tsms.g G=𝑠*𝑠0+∞
2 sge0tsms.x φXV
3 sge0tsms.f φF:X0+∞
4 eqid supranx𝒫XFinGFx*<=supranx𝒫XFinGFx*<
5 4 a1i φsupranx𝒫XFinGFx*<=supranx𝒫XFinGFx*<
6 xrltso <Or*
7 6 supex supranx𝒫XFinGFx*<V
8 7 a1i φsupranx𝒫XFinGFx*<V
9 elsng supranx𝒫XFinGFx*<Vsupranx𝒫XFinGFx*<supranx𝒫XFinGFx*<supranx𝒫XFinGFx*<=supranx𝒫XFinGFx*<
10 8 9 syl φsupranx𝒫XFinGFx*<supranx𝒫XFinGFx*<supranx𝒫XFinGFx*<=supranx𝒫XFinGFx*<
11 5 10 mpbird φsupranx𝒫XFinGFx*<supranx𝒫XFinGFx*<
12 2 adantr φ+∞ranFXV
13 3 adantr φ+∞ranFF:X0+∞
14 simpr φ+∞ranF+∞ranF
15 12 13 14 sge0pnfval φ+∞ranFsum^F=+∞
16 3 ffnd φFFnX
17 16 adantr φ+∞ranFFFnX
18 fvelrnb FFnX+∞ranFyXFy=+∞
19 17 18 syl φ+∞ranF+∞ranFyXFy=+∞
20 14 19 mpbid φ+∞ranFyXFy=+∞
21 iccssxr 0+∞*
22 simpr φx𝒫XFinx𝒫XFin
23 3 adantr φx𝒫XFinF:X0+∞
24 elinel1 x𝒫XFinx𝒫X
25 elpwi x𝒫XxX
26 24 25 syl x𝒫XFinxX
27 26 adantl φx𝒫XFinxX
28 fssres F:X0+∞xXFx:x0+∞
29 23 27 28 syl2anc φx𝒫XFinFx:x0+∞
30 elinel2 x𝒫XFinxFin
31 30 adantl φx𝒫XFinxFin
32 0red φx𝒫XFin0
33 29 31 32 fdmfifsupp φx𝒫XFinfinSupp0Fx
34 1 22 29 33 gsumge0cl φx𝒫XFinGFx0+∞
35 21 34 sselid φx𝒫XFinGFx*
36 35 ralrimiva φx𝒫XFinGFx*
37 36 3ad2ant1 φyXFy=+∞x𝒫XFinGFx*
38 eqid x𝒫XFinGFx=x𝒫XFinGFx
39 38 rnmptss x𝒫XFinGFx*ranx𝒫XFinGFx*
40 37 39 syl φyXFy=+∞ranx𝒫XFinGFx*
41 snelpwi yXy𝒫X
42 snfi yFin
43 42 a1i yXyFin
44 41 43 elind yXy𝒫XFin
45 44 3ad2ant2 φyXFy=+∞y𝒫XFin
46 3 adantr φyXF:X0+∞
47 snssi yXyX
48 47 adantl φyXyX
49 46 48 fssresd φyXFy:y0+∞
50 49 feqmptd φyXFy=xyFyx
51 fvres xyFyx=Fx
52 51 mpteq2ia xyFyx=xyFx
53 52 a1i φyXxyFyx=xyFx
54 50 53 eqtrd φyXFy=xyFx
55 54 oveq2d φyXGFy=GxyFx
56 55 3adant3 φyXFy=+∞GFy=GxyFx
57 xrge0cmn 𝑠*𝑠0+∞CMnd
58 1 57 eqeltri GCMnd
59 cmnmnd GCMndGMnd
60 58 59 ax-mp GMnd
61 60 a1i φyXFy=+∞GMnd
62 simp2 φyXFy=+∞yX
63 3 ffvelcdmda φyXFy0+∞
64 63 3adant3 φyXFy=+∞Fy0+∞
65 df-ss 0+∞*0+∞*=0+∞
66 21 65 mpbi 0+∞*=0+∞
67 66 eqcomi 0+∞=0+∞*
68 ovex 0+∞V
69 xrsbas *=Base𝑠*
70 1 69 ressbas 0+∞V0+∞*=BaseG
71 68 70 ax-mp 0+∞*=BaseG
72 67 71 eqtri 0+∞=BaseG
73 fveq2 x=yFx=Fy
74 72 73 gsumsn GMndyXFy0+∞GxyFx=Fy
75 61 62 64 74 syl3anc φyXFy=+∞GxyFx=Fy
76 simp3 φyXFy=+∞Fy=+∞
77 56 75 76 3eqtrrd φyXFy=+∞+∞=GFy
78 reseq2 x=yFx=Fy
79 78 oveq2d x=yGFx=GFy
80 79 rspceeqv y𝒫XFin+∞=GFyx𝒫XFin+∞=GFx
81 45 77 80 syl2anc φyXFy=+∞x𝒫XFin+∞=GFx
82 pnfxr +∞*
83 82 a1i φyXFy=+∞+∞*
84 38 elrnmpt +∞*+∞ranx𝒫XFinGFxx𝒫XFin+∞=GFx
85 83 84 syl φyXFy=+∞+∞ranx𝒫XFinGFxx𝒫XFin+∞=GFx
86 81 85 mpbird φyXFy=+∞+∞ranx𝒫XFinGFx
87 supxrpnf ranx𝒫XFinGFx*+∞ranx𝒫XFinGFxsupranx𝒫XFinGFx*<=+∞
88 40 86 87 syl2anc φyXFy=+∞supranx𝒫XFinGFx*<=+∞
89 88 3exp φyXFy=+∞supranx𝒫XFinGFx*<=+∞
90 89 adantr φ+∞ranFyXFy=+∞supranx𝒫XFinGFx*<=+∞
91 90 rexlimdv φ+∞ranFyXFy=+∞supranx𝒫XFinGFx*<=+∞
92 20 91 mpd φ+∞ranFsupranx𝒫XFinGFx*<=+∞
93 15 92 eqtr4d φ+∞ranFsum^F=supranx𝒫XFinGFx*<
94 2 adantr φ¬+∞ranFXV
95 3 adantr φ¬+∞ranFF:X0+∞
96 simpr φ¬+∞ranF¬+∞ranF
97 95 96 fge0iccico φ¬+∞ranFF:X0+∞
98 94 97 sge0reval φ¬+∞ranFsum^F=supranx𝒫XFinyxFy*<
99 23 27 feqresmpt φx𝒫XFinFx=yxFy
100 99 adantlr φ¬+∞ranFx𝒫XFinFx=yxFy
101 100 oveq2d φ¬+∞ranFx𝒫XFinGFx=GyxFy
102 1 fveq2i +G=+𝑠*𝑠0+∞
103 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
104 xrsadd +𝑒=+𝑠*
105 103 104 ressplusg 0+∞V+𝑒=+𝑠*𝑠0+∞
106 68 105 ax-mp +𝑒=+𝑠*𝑠0+∞
107 106 eqcomi +𝑠*𝑠0+∞=+𝑒
108 102 107 eqtr2i +𝑒=+G
109 1 oveq1i G𝑠0+∞=𝑠*𝑠0+∞𝑠0+∞
110 icossicc 0+∞0+∞
111 68 110 pm3.2i 0+∞V0+∞0+∞
112 ressabs 0+∞V0+∞0+∞𝑠*𝑠0+∞𝑠0+∞=𝑠*𝑠0+∞
113 111 112 ax-mp 𝑠*𝑠0+∞𝑠0+∞=𝑠*𝑠0+∞
114 109 113 eqtr2i 𝑠*𝑠0+∞=G𝑠0+∞
115 58 elexi GV
116 115 a1i φ¬+∞ranFx𝒫XFinGV
117 simpr φ¬+∞ranFx𝒫XFinx𝒫XFin
118 110 a1i φ¬+∞ranFx𝒫XFin0+∞0+∞
119 0xr 0*
120 119 a1i φ¬+∞ranFx𝒫XFinyx0*
121 82 a1i φ¬+∞ranFx𝒫XFinyx+∞*
122 95 ad2antrr φ¬+∞ranFx𝒫XFinyxF:X0+∞
123 26 sselda x𝒫XFinyxyX
124 123 adantll φ¬+∞ranFx𝒫XFinyxyX
125 122 124 ffvelcdmd φ¬+∞ranFx𝒫XFinyxFy0+∞
126 21 125 sselid φ¬+∞ranFx𝒫XFinyxFy*
127 iccgelb 0*+∞*Fy0+∞0Fy
128 120 121 125 127 syl3anc φ¬+∞ranFx𝒫XFinyx0Fy
129 id Fy=+∞Fy=+∞
130 129 eqcomd Fy=+∞+∞=Fy
131 130 adantl φx𝒫XFinyxFy=+∞+∞=Fy
132 3 ffund φFunF
133 132 ad2antrr φx𝒫XFinyxFunF
134 22 123 sylan φx𝒫XFinyxyX
135 3 fdmd φdomF=X
136 135 eqcomd φX=domF
137 136 ad2antrr φx𝒫XFinyxX=domF
138 134 137 eleqtrd φx𝒫XFinyxydomF
139 fvelrn FunFydomFFyranF
140 133 138 139 syl2anc φx𝒫XFinyxFyranF
141 140 adantr φx𝒫XFinyxFy=+∞FyranF
142 131 141 eqeltrd φx𝒫XFinyxFy=+∞+∞ranF
143 142 adantl3r φ¬+∞ranFx𝒫XFinyxFy=+∞+∞ranF
144 96 ad3antrrr φ¬+∞ranFx𝒫XFinyxFy=+∞¬+∞ranF
145 143 144 pm2.65da φ¬+∞ranFx𝒫XFinyx¬Fy=+∞
146 145 neqned φ¬+∞ranFx𝒫XFinyxFy+∞
147 ge0xrre Fy0+∞Fy+∞Fy
148 125 146 147 syl2anc φ¬+∞ranFx𝒫XFinyxFy
149 148 ltpnfd φ¬+∞ranFx𝒫XFinyxFy<+∞
150 120 121 126 128 149 elicod φ¬+∞ranFx𝒫XFinyxFy0+∞
151 eqid yxFy=yxFy
152 150 151 fmptd φ¬+∞ranFx𝒫XFinyxFy:x0+∞
153 0e0icopnf 00+∞
154 153 a1i φ¬+∞ranFx𝒫XFin00+∞
155 eliccxr y0+∞y*
156 xaddlid y*0+𝑒y=y
157 xaddrid y*y+𝑒0=y
158 156 157 jca y*0+𝑒y=yy+𝑒0=y
159 155 158 syl y0+∞0+𝑒y=yy+𝑒0=y
160 159 adantl φ¬+∞ranFx𝒫XFiny0+∞0+𝑒y=yy+𝑒0=y
161 72 108 114 116 117 118 152 154 160 gsumress φ¬+∞ranFx𝒫XFinGyxFy=𝑠*𝑠0+∞yxFy
162 rege0subm 0+∞SubMndfld
163 162 a1i φ¬+∞ranFx𝒫XFin0+∞SubMndfld
164 eqid fld𝑠0+∞=fld𝑠0+∞
165 117 163 152 164 gsumsubm φ¬+∞ranFx𝒫XFinfldyxFy=fld𝑠0+∞yxFy
166 eqidd φ¬+∞ranFx𝒫XFinfld𝑠0+∞yxFy=fld𝑠0+∞yxFy
167 vex xV
168 167 mptex yxFyV
169 168 a1i φ¬+∞ranFx𝒫XFinyxFyV
170 ovexd φ¬+∞ranFx𝒫XFinfld𝑠0+∞V
171 ovexd φ¬+∞ranFx𝒫XFin𝑠*𝑠0+∞V
172 rge0ssre 0+∞
173 ax-resscn
174 172 173 sstri 0+∞
175 cnfldbas =Basefld
176 164 175 ressbas2 0+∞0+∞=Basefld𝑠0+∞
177 174 176 ax-mp 0+∞=Basefld𝑠0+∞
178 177 eqcomi Basefld𝑠0+∞=0+∞
179 110 21 sstri 0+∞*
180 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
181 180 69 ressbas2 0+∞*0+∞=Base𝑠*𝑠0+∞
182 179 181 ax-mp 0+∞=Base𝑠*𝑠0+∞
183 178 182 eqtri Basefld𝑠0+∞=Base𝑠*𝑠0+∞
184 183 a1i φ¬+∞ranFx𝒫XFinBasefld𝑠0+∞=Base𝑠*𝑠0+∞
185 rge0srg fld𝑠0+∞SRing
186 185 a1i sBasefld𝑠0+∞tBasefld𝑠0+∞fld𝑠0+∞SRing
187 simpl sBasefld𝑠0+∞tBasefld𝑠0+∞sBasefld𝑠0+∞
188 simpr sBasefld𝑠0+∞tBasefld𝑠0+∞tBasefld𝑠0+∞
189 eqid Basefld𝑠0+∞=Basefld𝑠0+∞
190 eqid +fld𝑠0+∞=+fld𝑠0+∞
191 189 190 srgacl fld𝑠0+∞SRingsBasefld𝑠0+∞tBasefld𝑠0+∞s+fld𝑠0+∞tBasefld𝑠0+∞
192 186 187 188 191 syl3anc sBasefld𝑠0+∞tBasefld𝑠0+∞s+fld𝑠0+∞tBasefld𝑠0+∞
193 192 adantl φ¬+∞ranFx𝒫XFinsBasefld𝑠0+∞tBasefld𝑠0+∞s+fld𝑠0+∞tBasefld𝑠0+∞
194 172 a1i sBasefld𝑠0+∞0+∞
195 id sBasefld𝑠0+∞sBasefld𝑠0+∞
196 195 178 eleqtrdi sBasefld𝑠0+∞s0+∞
197 194 196 sseldd sBasefld𝑠0+∞s
198 197 adantr sBasefld𝑠0+∞tBasefld𝑠0+∞s
199 172 a1i tBasefld𝑠0+∞0+∞
200 id tBasefld𝑠0+∞tBasefld𝑠0+∞
201 200 178 eleqtrdi tBasefld𝑠0+∞t0+∞
202 199 201 sseldd tBasefld𝑠0+∞t
203 202 adantl sBasefld𝑠0+∞tBasefld𝑠0+∞t
204 rexadd sts+𝑒t=s+t
205 204 eqcomd sts+t=s+𝑒t
206 162 elexi 0+∞V
207 cnfldadd +=+fld
208 164 207 ressplusg 0+∞V+=+fld𝑠0+∞
209 206 208 ax-mp +=+fld𝑠0+∞
210 209 207 eqtr3i +fld𝑠0+∞=+fld
211 210 207 eqtr4i +fld𝑠0+∞=+
212 211 oveqi s+fld𝑠0+∞t=s+t
213 212 a1i sts+fld𝑠0+∞t=s+t
214 180 104 ressplusg 0+∞V+𝑒=+𝑠*𝑠0+∞
215 206 214 ax-mp +𝑒=+𝑠*𝑠0+∞
216 215 eqcomi +𝑠*𝑠0+∞=+𝑒
217 216 oveqi s+𝑠*𝑠0+∞t=s+𝑒t
218 217 a1i sts+𝑠*𝑠0+∞t=s+𝑒t
219 205 213 218 3eqtr4d sts+fld𝑠0+∞t=s+𝑠*𝑠0+∞t
220 198 203 219 syl2anc sBasefld𝑠0+∞tBasefld𝑠0+∞s+fld𝑠0+∞t=s+𝑠*𝑠0+∞t
221 220 adantl φ¬+∞ranFx𝒫XFinsBasefld𝑠0+∞tBasefld𝑠0+∞s+fld𝑠0+∞t=s+𝑠*𝑠0+∞t
222 funmpt FunyxFy
223 222 a1i φ¬+∞ranFx𝒫XFinFunyxFy
224 150 177 eleqtrdi φ¬+∞ranFx𝒫XFinyxFyBasefld𝑠0+∞
225 224 ralrimiva φ¬+∞ranFx𝒫XFinyxFyBasefld𝑠0+∞
226 151 rnmptss yxFyBasefld𝑠0+∞ranyxFyBasefld𝑠0+∞
227 225 226 syl φ¬+∞ranFx𝒫XFinranyxFyBasefld𝑠0+∞
228 169 170 171 184 193 221 223 227 gsumpropd2 φ¬+∞ranFx𝒫XFinfld𝑠0+∞yxFy=𝑠*𝑠0+∞yxFy
229 165 166 228 3eqtrd φ¬+∞ranFx𝒫XFinfldyxFy=𝑠*𝑠0+∞yxFy
230 30 adantl φ¬+∞ranFx𝒫XFinxFin
231 148 recnd φ¬+∞ranFx𝒫XFinyxFy
232 230 231 gsumfsum φ¬+∞ranFx𝒫XFinfldyxFy=yxFy
233 229 232 eqtr3d φ¬+∞ranFx𝒫XFin𝑠*𝑠0+∞yxFy=yxFy
234 101 161 233 3eqtrrd φ¬+∞ranFx𝒫XFinyxFy=GFx
235 234 mpteq2dva φ¬+∞ranFx𝒫XFinyxFy=x𝒫XFinGFx
236 235 rneqd φ¬+∞ranFranx𝒫XFinyxFy=ranx𝒫XFinGFx
237 236 supeq1d φ¬+∞ranFsupranx𝒫XFinyxFy*<=supranx𝒫XFinGFx*<
238 98 237 eqtrd φ¬+∞ranFsum^F=supranx𝒫XFinGFx*<
239 93 238 pm2.61dan φsum^F=supranx𝒫XFinGFx*<
240 1 2 3 4 xrge0tsms φGtsumsF=supranx𝒫XFinGFx*<
241 239 240 eleq12d φsum^FGtsumsFsupranx𝒫XFinGFx*<supranx𝒫XFinGFx*<
242 11 241 mpbird φsum^FGtsumsF