Metamath Proof Explorer


Theorem sge0tsms

Description: sum^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0tsms.g G = 𝑠 * 𝑠 0 +∞
sge0tsms.x φ X V
sge0tsms.f φ F : X 0 +∞
Assertion sge0tsms φ sum^ F G tsums F

Proof

Step Hyp Ref Expression
1 sge0tsms.g G = 𝑠 * 𝑠 0 +∞
2 sge0tsms.x φ X V
3 sge0tsms.f φ F : X 0 +∞
4 eqid sup ran x 𝒫 X Fin G F x * < = sup ran x 𝒫 X Fin G F x * <
5 4 a1i φ sup ran x 𝒫 X Fin G F x * < = sup ran x 𝒫 X Fin G F x * <
6 xrltso < Or *
7 6 supex sup ran x 𝒫 X Fin G F x * < V
8 7 a1i φ sup ran x 𝒫 X Fin G F x * < V
9 elsng sup ran x 𝒫 X Fin G F x * < V sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * < = sup ran x 𝒫 X Fin G F x * <
10 8 9 syl φ sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * < = sup ran x 𝒫 X Fin G F x * <
11 5 10 mpbird φ sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * <
12 2 adantr φ +∞ ran F X V
13 3 adantr φ +∞ ran F F : X 0 +∞
14 simpr φ +∞ ran F +∞ ran F
15 12 13 14 sge0pnfval φ +∞ ran F sum^ F = +∞
16 3 ffnd φ F Fn X
17 16 adantr φ +∞ ran F F Fn X
18 fvelrnb F Fn X +∞ ran F y X F y = +∞
19 17 18 syl φ +∞ ran F +∞ ran F y X F y = +∞
20 14 19 mpbid φ +∞ ran F y X F y = +∞
21 iccssxr 0 +∞ *
22 simpr φ x 𝒫 X Fin x 𝒫 X Fin
23 3 adantr φ x 𝒫 X Fin F : X 0 +∞
24 elinel1 x 𝒫 X Fin x 𝒫 X
25 elpwi x 𝒫 X x X
26 24 25 syl x 𝒫 X Fin x X
27 26 adantl φ x 𝒫 X Fin x X
28 fssres F : X 0 +∞ x X F x : x 0 +∞
29 23 27 28 syl2anc φ x 𝒫 X Fin F x : x 0 +∞
30 elinel2 x 𝒫 X Fin x Fin
31 30 adantl φ x 𝒫 X Fin x Fin
32 0red φ x 𝒫 X Fin 0
33 29 31 32 fdmfifsupp φ x 𝒫 X Fin finSupp 0 F x
34 1 22 29 33 gsumge0cl φ x 𝒫 X Fin G F x 0 +∞
35 21 34 sselid φ x 𝒫 X Fin G F x *
36 35 ralrimiva φ x 𝒫 X Fin G F x *
37 36 3ad2ant1 φ y X F y = +∞ x 𝒫 X Fin G F x *
38 eqid x 𝒫 X Fin G F x = x 𝒫 X Fin G F x
39 38 rnmptss x 𝒫 X Fin G F x * ran x 𝒫 X Fin G F x *
40 37 39 syl φ y X F y = +∞ ran x 𝒫 X Fin G F x *
41 snelpwi y X y 𝒫 X
42 snfi y Fin
43 42 a1i y X y Fin
44 41 43 elind y X y 𝒫 X Fin
45 44 3ad2ant2 φ y X F y = +∞ y 𝒫 X Fin
46 3 adantr φ y X F : X 0 +∞
47 snssi y X y X
48 47 adantl φ y X y X
49 46 48 fssresd φ y X F y : y 0 +∞
50 49 feqmptd φ y X F y = x y F y x
51 fvres x y F y x = F x
52 51 mpteq2ia x y F y x = x y F x
53 52 a1i φ y X x y F y x = x y F x
54 50 53 eqtrd φ y X F y = x y F x
55 54 oveq2d φ y X G F y = G x y F x
56 55 3adant3 φ y X F y = +∞ G F y = G x y F x
57 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
58 1 57 eqeltri G CMnd
59 cmnmnd G CMnd G Mnd
60 58 59 ax-mp G Mnd
61 60 a1i φ y X F y = +∞ G Mnd
62 simp2 φ y X F y = +∞ y X
63 3 ffvelrnda φ y X F y 0 +∞
64 63 3adant3 φ y X F y = +∞ F y 0 +∞
65 df-ss 0 +∞ * 0 +∞ * = 0 +∞
66 21 65 mpbi 0 +∞ * = 0 +∞
67 66 eqcomi 0 +∞ = 0 +∞ *
68 ovex 0 +∞ V
69 xrsbas * = Base 𝑠 *
70 1 69 ressbas 0 +∞ V 0 +∞ * = Base G
71 68 70 ax-mp 0 +∞ * = Base G
72 67 71 eqtri 0 +∞ = Base G
73 fveq2 x = y F x = F y
74 72 73 gsumsn G Mnd y X F y 0 +∞ G x y F x = F y
75 61 62 64 74 syl3anc φ y X F y = +∞ G x y F x = F y
76 simp3 φ y X F y = +∞ F y = +∞
77 56 75 76 3eqtrrd φ y X F y = +∞ +∞ = G F y
78 reseq2 x = y F x = F y
79 78 oveq2d x = y G F x = G F y
80 79 rspceeqv y 𝒫 X Fin +∞ = G F y x 𝒫 X Fin +∞ = G F x
81 45 77 80 syl2anc φ y X F y = +∞ x 𝒫 X Fin +∞ = G F x
82 pnfxr +∞ *
83 82 a1i φ y X F y = +∞ +∞ *
84 38 elrnmpt +∞ * +∞ ran x 𝒫 X Fin G F x x 𝒫 X Fin +∞ = G F x
85 83 84 syl φ y X F y = +∞ +∞ ran x 𝒫 X Fin G F x x 𝒫 X Fin +∞ = G F x
86 81 85 mpbird φ y X F y = +∞ +∞ ran x 𝒫 X Fin G F x
87 supxrpnf ran x 𝒫 X Fin G F x * +∞ ran x 𝒫 X Fin G F x sup ran x 𝒫 X Fin G F x * < = +∞
88 40 86 87 syl2anc φ y X F y = +∞ sup ran x 𝒫 X Fin G F x * < = +∞
89 88 3exp φ y X F y = +∞ sup ran x 𝒫 X Fin G F x * < = +∞
90 89 adantr φ +∞ ran F y X F y = +∞ sup ran x 𝒫 X Fin G F x * < = +∞
91 90 rexlimdv φ +∞ ran F y X F y = +∞ sup ran x 𝒫 X Fin G F x * < = +∞
92 20 91 mpd φ +∞ ran F sup ran x 𝒫 X Fin G F x * < = +∞
93 15 92 eqtr4d φ +∞ ran F sum^ F = sup ran x 𝒫 X Fin G F x * <
94 2 adantr φ ¬ +∞ ran F X V
95 3 adantr φ ¬ +∞ ran F F : X 0 +∞
96 simpr φ ¬ +∞ ran F ¬ +∞ ran F
97 95 96 fge0iccico φ ¬ +∞ ran F F : X 0 +∞
98 94 97 sge0reval φ ¬ +∞ ran F sum^ F = sup ran x 𝒫 X Fin y x F y * <
99 23 27 feqresmpt φ x 𝒫 X Fin F x = y x F y
100 99 adantlr φ ¬ +∞ ran F x 𝒫 X Fin F x = y x F y
101 100 oveq2d φ ¬ +∞ ran F x 𝒫 X Fin G F x = G y x F y
102 1 fveq2i + G = + 𝑠 * 𝑠 0 +∞
103 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
104 xrsadd + 𝑒 = + 𝑠 *
105 103 104 ressplusg 0 +∞ V + 𝑒 = + 𝑠 * 𝑠 0 +∞
106 68 105 ax-mp + 𝑒 = + 𝑠 * 𝑠 0 +∞
107 106 eqcomi + 𝑠 * 𝑠 0 +∞ = + 𝑒
108 102 107 eqtr2i + 𝑒 = + G
109 1 oveq1i G 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞
110 icossicc 0 +∞ 0 +∞
111 68 110 pm3.2i 0 +∞ V 0 +∞ 0 +∞
112 ressabs 0 +∞ V 0 +∞ 0 +∞ 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
113 111 112 ax-mp 𝑠 * 𝑠 0 +∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
114 109 113 eqtr2i 𝑠 * 𝑠 0 +∞ = G 𝑠 0 +∞
115 58 elexi G V
116 115 a1i φ ¬ +∞ ran F x 𝒫 X Fin G V
117 simpr φ ¬ +∞ ran F x 𝒫 X Fin x 𝒫 X Fin
118 110 a1i φ ¬ +∞ ran F x 𝒫 X Fin 0 +∞ 0 +∞
119 0xr 0 *
120 119 a1i φ ¬ +∞ ran F x 𝒫 X Fin y x 0 *
121 82 a1i φ ¬ +∞ ran F x 𝒫 X Fin y x +∞ *
122 95 ad2antrr φ ¬ +∞ ran F x 𝒫 X Fin y x F : X 0 +∞
123 26 sselda x 𝒫 X Fin y x y X
124 123 adantll φ ¬ +∞ ran F x 𝒫 X Fin y x y X
125 122 124 ffvelrnd φ ¬ +∞ ran F x 𝒫 X Fin y x F y 0 +∞
126 21 125 sselid φ ¬ +∞ ran F x 𝒫 X Fin y x F y *
127 iccgelb 0 * +∞ * F y 0 +∞ 0 F y
128 120 121 125 127 syl3anc φ ¬ +∞ ran F x 𝒫 X Fin y x 0 F y
129 id F y = +∞ F y = +∞
130 129 eqcomd F y = +∞ +∞ = F y
131 130 adantl φ x 𝒫 X Fin y x F y = +∞ +∞ = F y
132 3 ffund φ Fun F
133 132 ad2antrr φ x 𝒫 X Fin y x Fun F
134 22 123 sylan φ x 𝒫 X Fin y x y X
135 3 fdmd φ dom F = X
136 135 eqcomd φ X = dom F
137 136 ad2antrr φ x 𝒫 X Fin y x X = dom F
138 134 137 eleqtrd φ x 𝒫 X Fin y x y dom F
139 fvelrn Fun F y dom F F y ran F
140 133 138 139 syl2anc φ x 𝒫 X Fin y x F y ran F
141 140 adantr φ x 𝒫 X Fin y x F y = +∞ F y ran F
142 131 141 eqeltrd φ x 𝒫 X Fin y x F y = +∞ +∞ ran F
143 142 adantl3r φ ¬ +∞ ran F x 𝒫 X Fin y x F y = +∞ +∞ ran F
144 96 ad3antrrr φ ¬ +∞ ran F x 𝒫 X Fin y x F y = +∞ ¬ +∞ ran F
145 143 144 pm2.65da φ ¬ +∞ ran F x 𝒫 X Fin y x ¬ F y = +∞
146 145 neqned φ ¬ +∞ ran F x 𝒫 X Fin y x F y +∞
147 ge0xrre F y 0 +∞ F y +∞ F y
148 125 146 147 syl2anc φ ¬ +∞ ran F x 𝒫 X Fin y x F y
149 148 ltpnfd φ ¬ +∞ ran F x 𝒫 X Fin y x F y < +∞
150 120 121 126 128 149 elicod φ ¬ +∞ ran F x 𝒫 X Fin y x F y 0 +∞
151 eqid y x F y = y x F y
152 150 151 fmptd φ ¬ +∞ ran F x 𝒫 X Fin y x F y : x 0 +∞
153 0e0icopnf 0 0 +∞
154 153 a1i φ ¬ +∞ ran F x 𝒫 X Fin 0 0 +∞
155 eliccxr y 0 +∞ y *
156 xaddid2 y * 0 + 𝑒 y = y
157 xaddid1 y * y + 𝑒 0 = y
158 156 157 jca y * 0 + 𝑒 y = y y + 𝑒 0 = y
159 155 158 syl y 0 +∞ 0 + 𝑒 y = y y + 𝑒 0 = y
160 159 adantl φ ¬ +∞ ran F x 𝒫 X Fin y 0 +∞ 0 + 𝑒 y = y y + 𝑒 0 = y
161 72 108 114 116 117 118 152 154 160 gsumress φ ¬ +∞ ran F x 𝒫 X Fin G y x F y = 𝑠 * 𝑠 0 +∞ y x F y
162 rege0subm 0 +∞ SubMnd fld
163 162 a1i φ ¬ +∞ ran F x 𝒫 X Fin 0 +∞ SubMnd fld
164 eqid fld 𝑠 0 +∞ = fld 𝑠 0 +∞
165 117 163 152 164 gsumsubm φ ¬ +∞ ran F x 𝒫 X Fin fld y x F y = fld 𝑠 0 +∞ y x F y
166 eqidd φ ¬ +∞ ran F x 𝒫 X Fin fld 𝑠 0 +∞ y x F y = fld 𝑠 0 +∞ y x F y
167 vex x V
168 167 mptex y x F y V
169 168 a1i φ ¬ +∞ ran F x 𝒫 X Fin y x F y V
170 ovexd φ ¬ +∞ ran F x 𝒫 X Fin fld 𝑠 0 +∞ V
171 ovexd φ ¬ +∞ ran F x 𝒫 X Fin 𝑠 * 𝑠 0 +∞ V
172 rge0ssre 0 +∞
173 ax-resscn
174 172 173 sstri 0 +∞
175 cnfldbas = Base fld
176 164 175 ressbas2 0 +∞ 0 +∞ = Base fld 𝑠 0 +∞
177 174 176 ax-mp 0 +∞ = Base fld 𝑠 0 +∞
178 177 eqcomi Base fld 𝑠 0 +∞ = 0 +∞
179 110 21 sstri 0 +∞ *
180 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
181 180 69 ressbas2 0 +∞ * 0 +∞ = Base 𝑠 * 𝑠 0 +∞
182 179 181 ax-mp 0 +∞ = Base 𝑠 * 𝑠 0 +∞
183 178 182 eqtri Base fld 𝑠 0 +∞ = Base 𝑠 * 𝑠 0 +∞
184 183 a1i φ ¬ +∞ ran F x 𝒫 X Fin Base fld 𝑠 0 +∞ = Base 𝑠 * 𝑠 0 +∞
185 rge0srg fld 𝑠 0 +∞ SRing
186 185 a1i s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ fld 𝑠 0 +∞ SRing
187 simpl s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s Base fld 𝑠 0 +∞
188 simpr s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞
189 eqid Base fld 𝑠 0 +∞ = Base fld 𝑠 0 +∞
190 eqid + fld 𝑠 0 +∞ = + fld 𝑠 0 +∞
191 189 190 srgacl fld 𝑠 0 +∞ SRing s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s + fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞
192 186 187 188 191 syl3anc s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s + fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞
193 192 adantl φ ¬ +∞ ran F x 𝒫 X Fin s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s + fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞
194 172 a1i s Base fld 𝑠 0 +∞ 0 +∞
195 id s Base fld 𝑠 0 +∞ s Base fld 𝑠 0 +∞
196 195 178 eleqtrdi s Base fld 𝑠 0 +∞ s 0 +∞
197 194 196 sseldd s Base fld 𝑠 0 +∞ s
198 197 adantr s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s
199 172 a1i t Base fld 𝑠 0 +∞ 0 +∞
200 id t Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞
201 200 178 eleqtrdi t Base fld 𝑠 0 +∞ t 0 +∞
202 199 201 sseldd t Base fld 𝑠 0 +∞ t
203 202 adantl s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ t
204 rexadd s t s + 𝑒 t = s + t
205 204 eqcomd s t s + t = s + 𝑒 t
206 162 elexi 0 +∞ V
207 cnfldadd + = + fld
208 164 207 ressplusg 0 +∞ V + = + fld 𝑠 0 +∞
209 206 208 ax-mp + = + fld 𝑠 0 +∞
210 209 207 eqtr3i + fld 𝑠 0 +∞ = + fld
211 210 207 eqtr4i + fld 𝑠 0 +∞ = +
212 211 oveqi s + fld 𝑠 0 +∞ t = s + t
213 212 a1i s t s + fld 𝑠 0 +∞ t = s + t
214 180 104 ressplusg 0 +∞ V + 𝑒 = + 𝑠 * 𝑠 0 +∞
215 206 214 ax-mp + 𝑒 = + 𝑠 * 𝑠 0 +∞
216 215 eqcomi + 𝑠 * 𝑠 0 +∞ = + 𝑒
217 216 oveqi s + 𝑠 * 𝑠 0 +∞ t = s + 𝑒 t
218 217 a1i s t s + 𝑠 * 𝑠 0 +∞ t = s + 𝑒 t
219 205 213 218 3eqtr4d s t s + fld 𝑠 0 +∞ t = s + 𝑠 * 𝑠 0 +∞ t
220 198 203 219 syl2anc s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s + fld 𝑠 0 +∞ t = s + 𝑠 * 𝑠 0 +∞ t
221 220 adantl φ ¬ +∞ ran F x 𝒫 X Fin s Base fld 𝑠 0 +∞ t Base fld 𝑠 0 +∞ s + fld 𝑠 0 +∞ t = s + 𝑠 * 𝑠 0 +∞ t
222 funmpt Fun y x F y
223 222 a1i φ ¬ +∞ ran F x 𝒫 X Fin Fun y x F y
224 150 177 eleqtrdi φ ¬ +∞ ran F x 𝒫 X Fin y x F y Base fld 𝑠 0 +∞
225 224 ralrimiva φ ¬ +∞ ran F x 𝒫 X Fin y x F y Base fld 𝑠 0 +∞
226 151 rnmptss y x F y Base fld 𝑠 0 +∞ ran y x F y Base fld 𝑠 0 +∞
227 225 226 syl φ ¬ +∞ ran F x 𝒫 X Fin ran y x F y Base fld 𝑠 0 +∞
228 169 170 171 184 193 221 223 227 gsumpropd2 φ ¬ +∞ ran F x 𝒫 X Fin fld 𝑠 0 +∞ y x F y = 𝑠 * 𝑠 0 +∞ y x F y
229 165 166 228 3eqtrd φ ¬ +∞ ran F x 𝒫 X Fin fld y x F y = 𝑠 * 𝑠 0 +∞ y x F y
230 30 adantl φ ¬ +∞ ran F x 𝒫 X Fin x Fin
231 148 recnd φ ¬ +∞ ran F x 𝒫 X Fin y x F y
232 230 231 gsumfsum φ ¬ +∞ ran F x 𝒫 X Fin fld y x F y = y x F y
233 229 232 eqtr3d φ ¬ +∞ ran F x 𝒫 X Fin 𝑠 * 𝑠 0 +∞ y x F y = y x F y
234 101 161 233 3eqtrrd φ ¬ +∞ ran F x 𝒫 X Fin y x F y = G F x
235 234 mpteq2dva φ ¬ +∞ ran F x 𝒫 X Fin y x F y = x 𝒫 X Fin G F x
236 235 rneqd φ ¬ +∞ ran F ran x 𝒫 X Fin y x F y = ran x 𝒫 X Fin G F x
237 236 supeq1d φ ¬ +∞ ran F sup ran x 𝒫 X Fin y x F y * < = sup ran x 𝒫 X Fin G F x * <
238 98 237 eqtrd φ ¬ +∞ ran F sum^ F = sup ran x 𝒫 X Fin G F x * <
239 93 238 pm2.61dan φ sum^ F = sup ran x 𝒫 X Fin G F x * <
240 1 2 3 4 xrge0tsms φ G tsums F = sup ran x 𝒫 X Fin G F x * <
241 239 240 eleq12d φ sum^ F G tsums F sup ran x 𝒫 X Fin G F x * < sup ran x 𝒫 X Fin G F x * <
242 11 241 mpbird φ sum^ F G tsums F