Metamath Proof Explorer


Theorem brbtwn2

Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion brbtwn2 A𝔼NB𝔼NC𝔼NABtwnBCi1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi

Proof

Step Hyp Ref Expression
1 brbtwn A𝔼NB𝔼NC𝔼NABtwnBCt01k1NAk=1tBk+tCk
2 fveere B𝔼Ni1NBi
3 2 3ad2antl2 A𝔼NB𝔼NC𝔼Ni1NBi
4 fveere C𝔼Ni1NCi
5 4 3ad2antl3 A𝔼NB𝔼NC𝔼Ni1NCi
6 3 5 jca A𝔼NB𝔼NC𝔼Ni1NBiCi
7 resubcl BiCiBiCi
8 7 3adant3 BiCit01BiCi
9 8 recnd BiCit01BiCi
10 9 sqvald BiCit01BiCi2=BiCiBiCi
11 10 oveq2d BiCit01t1tBiCi2=t1tBiCiBiCi
12 elicc01 t01t0tt1
13 12 simp1bi t01t
14 13 recnd t01t
15 14 3ad2ant3 BiCit01t
16 1re 1
17 resubcl 1t1t
18 16 13 17 sylancr t011t
19 18 3ad2ant3 BiCit011t
20 19 recnd BiCit011t
21 20 negcld BiCit011t
22 15 9 21 9 mul4d BiCit01tBiCi1tBiCi=t1tBiCiBiCi
23 recn BiBi
24 23 3ad2ant1 BiCit01Bi
25 recn CiCi
26 25 3ad2ant2 BiCit01Ci
27 15 24 26 subdid BiCit01tBiCi=tBitCi
28 ax-1cn 1
29 subdir 11tBi11tBi=1Bi1tBi
30 28 20 24 29 mp3an2i BiCit0111tBi=1Bi1tBi
31 nncan 1t11t=t
32 28 15 31 sylancr BiCit0111t=t
33 32 oveq1d BiCit0111tBi=tBi
34 24 mullidd BiCit011Bi=Bi
35 34 oveq1d BiCit011Bi1tBi=Bi1tBi
36 30 33 35 3eqtr3d BiCit01tBi=Bi1tBi
37 36 oveq1d BiCit01tBitCi=Bi-1tBi-tCi
38 simp1 BiCit01Bi
39 19 38 remulcld BiCit011tBi
40 39 recnd BiCit011tBi
41 13 3ad2ant3 BiCit01t
42 simp2 BiCit01Ci
43 41 42 remulcld BiCit01tCi
44 43 recnd BiCit01tCi
45 24 40 44 subsub4d BiCit01Bi-1tBi-tCi=Bi1tBi+tCi
46 27 37 45 3eqtrd BiCit01tBiCi=Bi1tBi+tCi
47 20 9 mulneg1d BiCit011tBiCi=1tBiCi
48 20 24 26 subdid BiCit011tBiCi=1tBi1tCi
49 subdir 1tCi1tCi=1CitCi
50 28 15 26 49 mp3an2i BiCit011tCi=1CitCi
51 26 mullidd BiCit011Ci=Ci
52 51 oveq1d BiCit011CitCi=CitCi
53 50 52 eqtrd BiCit011tCi=CitCi
54 53 oveq2d BiCit011tBi1tCi=1tBiCitCi
55 40 26 44 subsub3d BiCit011tBiCitCi=1tBi+tCi-Ci
56 48 54 55 3eqtrd BiCit011tBiCi=1tBi+tCi-Ci
57 56 negeqd BiCit011tBiCi=1tBi+tCi-Ci
58 39 43 readdcld BiCit011tBi+tCi
59 58 recnd BiCit011tBi+tCi
60 59 26 negsubdi2d BiCit011tBi+tCi-Ci=Ci1tBi+tCi
61 47 57 60 3eqtrd BiCit011tBiCi=Ci1tBi+tCi
62 46 61 oveq12d BiCit01tBiCi1tBiCi=Bi1tBi+tCiCi1tBi+tCi
63 11 22 62 3eqtr2rd BiCit01Bi1tBi+tCiCi1tBi+tCi=t1tBiCi2
64 15 20 mulneg2d BiCit01t1t=t1t
65 64 oveq1d BiCit01t1tBiCi2=t1tBiCi2
66 41 19 remulcld BiCit01t1t
67 66 recnd BiCit01t1t
68 8 resqcld BiCit01BiCi2
69 68 recnd BiCit01BiCi2
70 67 69 mulneg1d BiCit01t1tBiCi2=t1tBiCi2
71 65 70 eqtrd BiCit01t1tBiCi2=t1tBiCi2
72 12 simp2bi t010t
73 12 simp3bi t01t1
74 subge0 1t01tt1
75 16 13 74 sylancr t0101tt1
76 73 75 mpbird t0101t
77 13 18 72 76 mulge0d t010t1t
78 77 3ad2ant3 BiCit010t1t
79 8 sqge0d BiCit010BiCi2
80 66 68 78 79 mulge0d BiCit010t1tBiCi2
81 66 68 remulcld BiCit01t1tBiCi2
82 81 le0neg2d BiCit010t1tBiCi2t1tBiCi20
83 80 82 mpbid BiCit01t1tBiCi20
84 71 83 eqbrtrd BiCit01t1tBiCi20
85 63 84 eqbrtrd BiCit01Bi1tBi+tCiCi1tBi+tCi0
86 85 3expa BiCit01Bi1tBi+tCiCi1tBi+tCi0
87 6 86 sylan A𝔼NB𝔼NC𝔼Ni1Nt01Bi1tBi+tCiCi1tBi+tCi0
88 87 an32s A𝔼NB𝔼NC𝔼Nt01i1NBi1tBi+tCiCi1tBi+tCi0
89 88 ralrimiva A𝔼NB𝔼NC𝔼Nt01i1NBi1tBi+tCiCi1tBi+tCi0
90 fveecn B𝔼Ni1NBi
91 fveecn C𝔼Ni1NCi
92 90 91 anim12i B𝔼Ni1NC𝔼Ni1NBiCi
93 92 anandirs B𝔼NC𝔼Ni1NBiCi
94 fveecn B𝔼Nj1NBj
95 fveecn C𝔼Nj1NCj
96 94 95 anim12i B𝔼Nj1NC𝔼Nj1NBjCj
97 96 anandirs B𝔼NC𝔼Nj1NBjCj
98 93 97 anim12dan B𝔼NC𝔼Ni1Nj1NBiCiBjCj
99 98 3adantl1 A𝔼NB𝔼NC𝔼Ni1Nj1NBiCiBjCj
100 subcl BiCiBiCi
101 100 3ad2ant1 BiCiBjCjtBiCi
102 subcl CjBjCjBj
103 102 ancoms BjCjCjBj
104 103 3ad2ant2 BiCiBjCjtCjBj
105 101 104 mulcomd BiCiBjCjtBiCiCjBj=CjBjBiCi
106 simp2r BiCiBjCjtCj
107 simp2l BiCiBjCjtBj
108 simp1l BiCiBjCjtBi
109 simp1r BiCiBjCjtCi
110 mulsub2 CjBjBiCiCjBjBiCi=BjCjCiBi
111 106 107 108 109 110 syl22anc BiCiBjCjtCjBjBiCi=BjCjCiBi
112 105 111 eqtrd BiCiBjCjtBiCiCjBj=BjCjCiBi
113 112 oveq2d BiCiBjCjtt1tBiCiCjBj=t1tBjCjCiBi
114 simp3 BiCiBjCjtt
115 subcl 1t1t
116 28 115 mpan t1t
117 116 3ad2ant3 BiCiBjCjt1t
118 114 117 101 104 mul4d BiCiBjCjtt1tBiCiCjBj=tBiCi1tCjBj
119 114 108 109 subdid BiCiBjCjttBiCi=tBitCi
120 28 117 108 29 mp3an2i BiCiBjCjt11tBi=1Bi1tBi
121 28 31 mpan t11t=t
122 121 3ad2ant3 BiCiBjCjt11t=t
123 122 oveq1d BiCiBjCjt11tBi=tBi
124 108 mullidd BiCiBjCjt1Bi=Bi
125 124 oveq1d BiCiBjCjt1Bi1tBi=Bi1tBi
126 120 123 125 3eqtr3d BiCiBjCjttBi=Bi1tBi
127 126 oveq1d BiCiBjCjttBitCi=Bi-1tBi-tCi
128 117 108 mulcld BiCiBjCjt1tBi
129 114 109 mulcld BiCiBjCjttCi
130 108 128 129 subsub4d BiCiBjCjtBi-1tBi-tCi=Bi1tBi+tCi
131 119 127 130 3eqtrd BiCiBjCjttBiCi=Bi1tBi+tCi
132 117 106 107 subdid BiCiBjCjt1tCjBj=1tCj1tBj
133 subdir 1tCj1tCj=1CjtCj
134 28 114 106 133 mp3an2i BiCiBjCjt1tCj=1CjtCj
135 106 mullidd BiCiBjCjt1Cj=Cj
136 135 oveq1d BiCiBjCjt1CjtCj=CjtCj
137 134 136 eqtrd BiCiBjCjt1tCj=CjtCj
138 137 oveq1d BiCiBjCjt1tCj1tBj=Cj-tCj-1tBj
139 132 138 eqtrd BiCiBjCjt1tCjBj=Cj-tCj-1tBj
140 114 106 mulcld BiCiBjCjttCj
141 117 107 mulcld BiCiBjCjt1tBj
142 106 140 141 sub32d BiCiBjCjtCj-tCj-1tBj=Cj-1tBj-tCj
143 106 141 140 subsub4d BiCiBjCjtCj-1tBj-tCj=Cj1tBj+tCj
144 139 142 143 3eqtrd BiCiBjCjt1tCjBj=Cj1tBj+tCj
145 131 144 oveq12d BiCiBjCjttBiCi1tCjBj=Bi1tBi+tCiCj1tBj+tCj
146 118 145 eqtrd BiCiBjCjtt1tBiCiCjBj=Bi1tBi+tCiCj1tBj+tCj
147 subcl BjCjBjCj
148 147 3ad2ant2 BiCiBjCjtBjCj
149 subcl CiBiCiBi
150 149 ancoms BiCiCiBi
151 150 3ad2ant1 BiCiBjCjtCiBi
152 114 117 148 151 mul4d BiCiBjCjtt1tBjCjCiBi=tBjCj1tCiBi
153 114 107 106 subdid BiCiBjCjttBjCj=tBjtCj
154 subdir 11tBj11tBj=1Bj1tBj
155 28 117 107 154 mp3an2i BiCiBjCjt11tBj=1Bj1tBj
156 122 oveq1d BiCiBjCjt11tBj=tBj
157 107 mullidd BiCiBjCjt1Bj=Bj
158 157 oveq1d BiCiBjCjt1Bj1tBj=Bj1tBj
159 155 156 158 3eqtr3rd BiCiBjCjtBj1tBj=tBj
160 159 oveq1d BiCiBjCjtBj-1tBj-tCj=tBjtCj
161 107 141 140 subsub4d BiCiBjCjtBj-1tBj-tCj=Bj1tBj+tCj
162 153 160 161 3eqtr2d BiCiBjCjttBjCj=Bj1tBj+tCj
163 117 109 108 subdid BiCiBjCjt1tCiBi=1tCi1tBi
164 28 114 109 49 mp3an2i BiCiBjCjt1tCi=1CitCi
165 109 mullidd BiCiBjCjt1Ci=Ci
166 165 oveq1d BiCiBjCjt1CitCi=CitCi
167 164 166 eqtrd BiCiBjCjt1tCi=CitCi
168 167 oveq1d BiCiBjCjt1tCi1tBi=Ci-tCi-1tBi
169 109 129 128 sub32d BiCiBjCjtCi-tCi-1tBi=Ci-1tBi-tCi
170 109 128 129 subsub4d BiCiBjCjtCi-1tBi-tCi=Ci1tBi+tCi
171 169 170 eqtrd BiCiBjCjtCi-tCi-1tBi=Ci1tBi+tCi
172 163 168 171 3eqtrd BiCiBjCjt1tCiBi=Ci1tBi+tCi
173 162 172 oveq12d BiCiBjCjttBjCj1tCiBi=Bj1tBj+tCjCi1tBi+tCi
174 152 173 eqtrd BiCiBjCjtt1tBjCjCiBi=Bj1tBj+tCjCi1tBi+tCi
175 113 146 174 3eqtr3d BiCiBjCjtBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
176 175 3expa BiCiBjCjtBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
177 99 14 176 syl2an A𝔼NB𝔼NC𝔼Ni1Nj1Nt01Bi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
178 177 an32s A𝔼NB𝔼NC𝔼Nt01i1Nj1NBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
179 178 ralrimivva A𝔼NB𝔼NC𝔼Nt01i1Nj1NBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
180 fveq2 k=iAk=Ai
181 fveq2 k=iBk=Bi
182 181 oveq2d k=i1tBk=1tBi
183 fveq2 k=iCk=Ci
184 183 oveq2d k=itCk=tCi
185 182 184 oveq12d k=i1tBk+tCk=1tBi+tCi
186 180 185 eqeq12d k=iAk=1tBk+tCkAi=1tBi+tCi
187 186 rspccva k1NAk=1tBk+tCki1NAi=1tBi+tCi
188 oveq2 Ai=1tBi+tCiBiAi=Bi1tBi+tCi
189 oveq2 Ai=1tBi+tCiCiAi=Ci1tBi+tCi
190 188 189 oveq12d Ai=1tBi+tCiBiAiCiAi=Bi1tBi+tCiCi1tBi+tCi
191 190 breq1d Ai=1tBi+tCiBiAiCiAi0Bi1tBi+tCiCi1tBi+tCi0
192 187 191 syl k1NAk=1tBk+tCki1NBiAiCiAi0Bi1tBi+tCiCi1tBi+tCi0
193 192 ralbidva k1NAk=1tBk+tCki1NBiAiCiAi0i1NBi1tBi+tCiCi1tBi+tCi0
194 fveq2 k=jAk=Aj
195 fveq2 k=jBk=Bj
196 195 oveq2d k=j1tBk=1tBj
197 fveq2 k=jCk=Cj
198 197 oveq2d k=jtCk=tCj
199 196 198 oveq12d k=j1tBk+tCk=1tBj+tCj
200 194 199 eqeq12d k=jAk=1tBk+tCkAj=1tBj+tCj
201 200 rspccva k1NAk=1tBk+tCkj1NAj=1tBj+tCj
202 oveq2 Aj=1tBj+tCjCjAj=Cj1tBj+tCj
203 188 202 oveqan12d Ai=1tBi+tCiAj=1tBj+tCjBiAiCjAj=Bi1tBi+tCiCj1tBj+tCj
204 oveq2 Aj=1tBj+tCjBjAj=Bj1tBj+tCj
205 204 189 oveqan12rd Ai=1tBi+tCiAj=1tBj+tCjBjAjCiAi=Bj1tBj+tCjCi1tBi+tCi
206 203 205 eqeq12d Ai=1tBi+tCiAj=1tBj+tCjBiAiCjAj=BjAjCiAiBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
207 187 201 206 syl2an k1NAk=1tBk+tCki1Nk1NAk=1tBk+tCkj1NBiAiCjAj=BjAjCiAiBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
208 207 anandis k1NAk=1tBk+tCki1Nj1NBiAiCjAj=BjAjCiAiBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
209 208 2ralbidva k1NAk=1tBk+tCki1Nj1NBiAiCjAj=BjAjCiAii1Nj1NBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
210 193 209 anbi12d k1NAk=1tBk+tCki1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NBi1tBi+tCiCi1tBi+tCi0i1Nj1NBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCi
211 210 biimprcd i1NBi1tBi+tCiCi1tBi+tCi0i1Nj1NBi1tBi+tCiCj1tBj+tCj=Bj1tBj+tCjCi1tBi+tCik1NAk=1tBk+tCki1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi
212 89 179 211 syl2anc A𝔼NB𝔼NC𝔼Nt01k1NAk=1tBk+tCki1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi
213 212 rexlimdva A𝔼NB𝔼NC𝔼Nt01k1NAk=1tBk+tCki1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi
214 fveere A𝔼Ni1NAi
215 214 3ad2antl1 A𝔼NB𝔼NC𝔼Ni1NAi
216 mulsuble0b BiAiCiBiAiCiAi0BiAiAiCiCiAiAiBi
217 3 215 5 216 syl3anc A𝔼NB𝔼NC𝔼Ni1NBiAiCiAi0BiAiAiCiCiAiAiBi
218 217 ralbidva A𝔼NB𝔼NC𝔼Ni1NBiAiCiAi0i1NBiAiAiCiCiAiAiBi
219 218 anbi1d A𝔼NB𝔼NC𝔼Ni1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAi
220 simpl2 A𝔼NB𝔼NC𝔼NB=CB𝔼N
221 simpl1 A𝔼NB𝔼NC𝔼NB=CA𝔼N
222 eqeefv B𝔼NA𝔼NB=Ai1NBi=Ai
223 220 221 222 syl2anc A𝔼NB𝔼NC𝔼NB=CB=Ai1NBi=Ai
224 3 adantlr A𝔼NB𝔼NC𝔼NB=Ci1NBi
225 215 adantlr A𝔼NB𝔼NC𝔼NB=Ci1NAi
226 224 225 letri3d A𝔼NB𝔼NC𝔼NB=Ci1NBi=AiBiAiAiBi
227 pm4.25 BiAiAiBiBiAiAiBiBiAiAiBi
228 fveq1 B=CBi=Ci
229 228 breq2d B=CAiBiAiCi
230 229 anbi2d B=CBiAiAiBiBiAiAiCi
231 228 breq1d B=CBiAiCiAi
232 231 anbi1d B=CBiAiAiBiCiAiAiBi
233 230 232 orbi12d B=CBiAiAiBiBiAiAiBiBiAiAiCiCiAiAiBi
234 233 ad2antlr A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiBiBiAiAiBiBiAiAiCiCiAiAiBi
235 227 234 bitrid A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiBiBiAiAiCiCiAiAiBi
236 226 235 bitrd A𝔼NB𝔼NC𝔼NB=Ci1NBi=AiBiAiAiCiCiAiAiBi
237 236 ralbidva A𝔼NB𝔼NC𝔼NB=Ci1NBi=Aii1NBiAiAiCiCiAiAiBi
238 223 237 bitrd A𝔼NB𝔼NC𝔼NB=CB=Ai1NBiAiAiCiCiAiAiBi
239 238 biimprd A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiCiCiAiAiBiB=A
240 239 adantrd A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAiB=A
241 240 ex A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAiB=A
242 0elunit 001
243 fveecn A𝔼Nk1NAk
244 243 3ad2antl1 A𝔼NB𝔼NC𝔼Nk1NAk
245 fveecn B𝔼Nk1NBk
246 245 3ad2antl2 A𝔼NB𝔼NC𝔼Nk1NBk
247 fveecn C𝔼Nk1NCk
248 247 3ad2antl3 A𝔼NB𝔼NC𝔼Nk1NCk
249 244 246 248 3jca A𝔼NB𝔼NC𝔼Nk1NAkBkCk
250 mullid Bk1Bk=Bk
251 mul02 Ck0Ck=0
252 250 251 oveqan12d BkCk1Bk+0Ck=Bk+0
253 addrid BkBk+0=Bk
254 253 adantr BkCkBk+0=Bk
255 252 254 eqtrd BkCk1Bk+0Ck=Bk
256 255 3adant1 AkBkCk1Bk+0Ck=Bk
257 256 adantr AkBkCkB=CB=A1Bk+0Ck=Bk
258 fveq1 B=ABk=Ak
259 258 ad2antll AkBkCkB=CB=ABk=Ak
260 257 259 eqtr2d AkBkCkB=CB=AAk=1Bk+0Ck
261 249 260 sylan A𝔼NB𝔼NC𝔼Nk1NB=CB=AAk=1Bk+0Ck
262 261 an32s A𝔼NB𝔼NC𝔼NB=CB=Ak1NAk=1Bk+0Ck
263 262 ralrimiva A𝔼NB𝔼NC𝔼NB=CB=Ak1NAk=1Bk+0Ck
264 oveq2 t=01t=10
265 1m0e1 10=1
266 264 265 eqtrdi t=01t=1
267 266 oveq1d t=01tBk=1Bk
268 oveq1 t=0tCk=0Ck
269 267 268 oveq12d t=01tBk+tCk=1Bk+0Ck
270 269 eqeq2d t=0Ak=1tBk+tCkAk=1Bk+0Ck
271 270 ralbidv t=0k1NAk=1tBk+tCkk1NAk=1Bk+0Ck
272 271 rspcev 001k1NAk=1Bk+0Ckt01k1NAk=1tBk+tCk
273 242 263 272 sylancr A𝔼NB𝔼NC𝔼NB=CB=At01k1NAk=1tBk+tCk
274 273 exp32 A𝔼NB𝔼NC𝔼NB=CB=At01k1NAk=1tBk+tCk
275 241 274 syldd A𝔼NB𝔼NC𝔼NB=Ci1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
276 eqeefv B𝔼NC𝔼NB=Cp1NBp=Cp
277 276 3adant1 A𝔼NB𝔼NC𝔼NB=Cp1NBp=Cp
278 277 necon3abid A𝔼NB𝔼NC𝔼NBC¬p1NBp=Cp
279 df-ne BpCp¬Bp=Cp
280 279 rexbii p1NBpCpp1N¬Bp=Cp
281 rexnal p1N¬Bp=Cp¬p1NBp=Cp
282 280 281 bitri p1NBpCp¬p1NBp=Cp
283 278 282 bitr4di A𝔼NB𝔼NC𝔼NBCp1NBpCp
284 fveq2 i=pBi=Bp
285 fveq2 i=pAi=Ap
286 284 285 breq12d i=pBiAiBpAp
287 fveq2 i=pCi=Cp
288 285 287 breq12d i=pAiCiApCp
289 286 288 anbi12d i=pBiAiAiCiBpApApCp
290 287 285 breq12d i=pCiAiCpAp
291 285 284 breq12d i=pAiBiApBp
292 290 291 anbi12d i=pCiAiAiBiCpApApBp
293 289 292 orbi12d i=pBiAiAiCiCiAiAiBiBpApApCpCpApApBp
294 293 rspcv p1Ni1NBiAiAiCiCiAiAiBiBpApApCpCpApApBp
295 294 ad2antrl A𝔼NB𝔼NC𝔼Np1NBpCpi1NBiAiAiCiCiAiAiBiBpApApCpCpApApBp
296 simprr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApCp
297 simp1 A𝔼NB𝔼NC𝔼NA𝔼N
298 simpl p1NBpCpp1N
299 fveere A𝔼Np1NAp
300 297 298 299 syl2an A𝔼NB𝔼NC𝔼Np1NBpCpAp
301 simp3 A𝔼NB𝔼NC𝔼NC𝔼N
302 fveere C𝔼Np1NCp
303 301 298 302 syl2an A𝔼NB𝔼NC𝔼Np1NBpCpCp
304 simpl2 A𝔼NB𝔼NC𝔼Np1NBpCpB𝔼N
305 simprl A𝔼NB𝔼NC𝔼Np1NBpCpp1N
306 fveere B𝔼Np1NBp
307 304 305 306 syl2anc A𝔼NB𝔼NC𝔼Np1NBpCpBp
308 300 303 307 lesub1d A𝔼NB𝔼NC𝔼Np1NBpCpApCpApBpCpBp
309 308 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApCpApBpCpBp
310 296 309 mpbid A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApBpCpBp
311 300 307 resubcld A𝔼NB𝔼NC𝔼Np1NBpCpApBp
312 311 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApBp
313 simprl A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBpAp
314 300 307 subge0d A𝔼NB𝔼NC𝔼Np1NBpCp0ApBpBpAp
315 314 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCp0ApBpBpAp
316 313 315 mpbird A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCp0ApBp
317 303 307 resubcld A𝔼NB𝔼NC𝔼Np1NBpCpCpBp
318 317 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpCpBp
319 letr BpApCpBpApApCpBpCp
320 307 300 303 319 syl3anc A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBpCp
321 320 imp A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBpCp
322 simplrr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBpCp
323 322 necomd A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpCpBp
324 307 303 ltlend A𝔼NB𝔼NC𝔼Np1NBpCpBp<CpBpCpCpBp
325 324 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBp<CpBpCpCpBp
326 321 323 325 mpbir2and A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBp<Cp
327 307 303 posdifd A𝔼NB𝔼NC𝔼Np1NBpCpBp<Cp0<CpBp
328 327 adantr A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpBp<Cp0<CpBp
329 326 328 mpbid A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCp0<CpBp
330 divelunit ApBp0ApBpCpBp0<CpBpApBpCpBp01ApBpCpBp
331 312 316 318 329 330 syl22anc A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApBpCpBp01ApBpCpBp
332 310 331 mpbird A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpApBpCpBp01
333 300 recnd A𝔼NB𝔼NC𝔼Np1NBpCpAp
334 307 recnd A𝔼NB𝔼NC𝔼Np1NBpCpBp
335 303 recnd A𝔼NB𝔼NC𝔼Np1NBpCpCp
336 simprr A𝔼NB𝔼NC𝔼Np1NBpCpBpCp
337 336 necomd A𝔼NB𝔼NC𝔼Np1NBpCpCpBp
338 333 334 335 334 337 div2subd A𝔼NB𝔼NC𝔼Np1NBpCpApBpCpBp=BpApBpCp
339 338 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpApBpCpBp=BpApBpCp
340 simprl A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCpAp
341 303 300 307 lesub2d A𝔼NB𝔼NC𝔼Np1NBpCpCpApBpApBpCp
342 341 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCpApBpApBpCp
343 340 342 mpbid A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpApBpCp
344 307 300 resubcld A𝔼NB𝔼NC𝔼Np1NBpCpBpAp
345 344 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpAp
346 simprr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpApBp
347 307 300 subge0d A𝔼NB𝔼NC𝔼Np1NBpCp0BpApApBp
348 347 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBp0BpApApBp
349 346 348 mpbird A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBp0BpAp
350 307 303 resubcld A𝔼NB𝔼NC𝔼Np1NBpCpBpCp
351 350 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpCp
352 letr CpApBpCpApApBpCpBp
353 303 300 307 352 syl3anc A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCpBp
354 353 imp A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCpBp
355 simplrr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpCp
356 303 307 ltlend A𝔼NB𝔼NC𝔼Np1NBpCpCp<BpCpBpBpCp
357 356 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCp<BpCpBpBpCp
358 354 355 357 mpbir2and A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCp<Bp
359 303 307 posdifd A𝔼NB𝔼NC𝔼Np1NBpCpCp<Bp0<BpCp
360 359 adantr A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpCp<Bp0<BpCp
361 358 360 mpbid A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBp0<BpCp
362 divelunit BpAp0BpApBpCp0<BpCpBpApBpCp01BpApBpCp
363 345 349 351 361 362 syl22anc A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpApBpCp01BpApBpCp
364 343 363 mpbird A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpBpApBpCp01
365 339 364 eqeltrd A𝔼NB𝔼NC𝔼Np1NBpCpCpApApBpApBpCpBp01
366 332 365 jaodan A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpCpApApBpApBpCpBp01
367 366 ex A𝔼NB𝔼NC𝔼Np1NBpCpBpApApCpCpApApBpApBpCpBp01
368 295 367 syld A𝔼NB𝔼NC𝔼Np1NBpCpi1NBiAiAiCiCiAiAiBiApBpCpBp01
369 simp2l A𝔼NB𝔼NC𝔼Np1NBpCpk1Np1N
370 simp3 A𝔼NB𝔼NC𝔼Np1NBpCpk1Nk1N
371 284 285 oveq12d i=pBiAi=BpAp
372 371 oveq1d i=pBiAiCjAj=BpApCjAj
373 287 285 oveq12d i=pCiAi=CpAp
374 373 oveq2d i=pBjAjCiAi=BjAjCpAp
375 372 374 eqeq12d i=pBiAiCjAj=BjAjCiAiBpApCjAj=BjAjCpAp
376 fveq2 j=kCj=Ck
377 fveq2 j=kAj=Ak
378 376 377 oveq12d j=kCjAj=CkAk
379 378 oveq2d j=kBpApCjAj=BpApCkAk
380 fveq2 j=kBj=Bk
381 380 377 oveq12d j=kBjAj=BkAk
382 381 oveq1d j=kBjAjCpAp=BkAkCpAp
383 379 382 eqeq12d j=kBpApCjAj=BjAjCpApBpApCkAk=BkAkCpAp
384 375 383 rspc2v p1Nk1Ni1Nj1NBiAiCjAj=BjAjCiAiBpApCkAk=BkAkCpAp
385 369 370 384 syl2anc A𝔼NB𝔼NC𝔼Np1NBpCpk1Ni1Nj1NBiAiCjAj=BjAjCiAiBpApCkAk=BkAkCpAp
386 simp11 A𝔼NB𝔼NC𝔼Np1NBpCpk1NA𝔼N
387 386 370 243 syl2anc A𝔼NB𝔼NC𝔼Np1NBpCpk1NAk
388 simp12 A𝔼NB𝔼NC𝔼Np1NBpCpk1NB𝔼N
389 388 370 245 syl2anc A𝔼NB𝔼NC𝔼Np1NBpCpk1NBk
390 simp13 A𝔼NB𝔼NC𝔼Np1NBpCpk1NC𝔼N
391 390 370 247 syl2anc A𝔼NB𝔼NC𝔼Np1NBpCpk1NCk
392 333 3adant3 A𝔼NB𝔼NC𝔼Np1NBpCpk1NAp
393 334 3adant3 A𝔼NB𝔼NC𝔼Np1NBpCpk1NBp
394 335 3adant3 A𝔼NB𝔼NC𝔼Np1NBpCpk1NCp
395 simp2r A𝔼NB𝔼NC𝔼Np1NBpCpk1NBpCp
396 395 necomd A𝔼NB𝔼NC𝔼Np1NBpCpk1NCpBp
397 simpl23 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp
398 simpl21 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApAp
399 397 398 subcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpAp
400 simpl12 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBk
401 399 400 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk
402 simpl22 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBp
403 398 402 subcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApApBp
404 simpl13 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCk
405 403 404 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApApBpCk
406 397 402 subcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBp
407 simpl3 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBp
408 397 402 407 subne0d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBp0
409 401 405 406 408 divdird AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk+ApBpCkCpBp=CpApBkCpBp+ApBpCkCpBp
410 npncan2 BpApBpAp+Ap-Bp=0
411 402 398 410 syl2anc AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpAp+Ap-Bp=0
412 411 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpAp+Ap-BpCk=0Ck
413 402 398 subcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpAp
414 413 403 404 adddird AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpAp+Ap-BpCk=BpApCk+ApBpCk
415 404 mul02d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpAp0Ck=0
416 412 414 415 3eqtr3d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+ApBpCk=0
417 416 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+ApBpCk+CpBpAk=0+CpBpAk
418 413 404 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk
419 simpl11 AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApAk
420 406 419 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpAk
421 418 405 420 add32d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+ApBpCk+CpBpAk=BpApCk+CpBpAk+ApBpCk
422 420 addlidd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpAp0+CpBpAk=CpBpAk
423 417 421 422 3eqtr3rd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpAk=BpApCk+CpBpAk+ApBpCk
424 399 419 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApAk
425 413 419 mulcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApAk
426 418 424 425 addsubd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpApAk-BpApAk=BpApCk-BpApAk+CpApAk
427 397 402 398 nnncan2d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Ap-BpAp=CpBp
428 427 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Ap-BpApAk=CpBpAk
429 399 413 419 subdird AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Ap-BpApAk=CpApAkBpApAk
430 428 429 eqtr3d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpAk=CpApAkBpApAk
431 430 oveq2d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpBpAk=BpApCk+CpApAk-BpApAk
432 418 424 425 addsubassd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpApAk-BpApAk=BpApCk+CpApAk-BpApAk
433 431 432 eqtr4d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpBpAk=BpApCk+CpApAk-BpApAk
434 413 404 419 subdid AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCkAk=BpApCkBpApAk
435 434 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCkAk+CpApAk=BpApCk-BpApAk+CpApAk
436 426 433 435 3eqtr4d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpBpAk=BpApCkAk+CpApAk
437 436 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCk+CpBpAk+ApBpCk=BpApCkAk+CpApAk+ApBpCk
438 423 437 eqtrd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpAk=BpApCkAk+CpApAk+ApBpCk
439 simpr AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCkAk=BkAkCpAp
440 439 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCkAk+CpApAk=BkAkCpAp+CpApAk
441 440 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBpApCkAk+CpApAk+ApBpCk=BkAkCpAp+CpApAk+ApBpCk
442 400 419 subcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBkAk
443 442 399 mulcomd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBkAkCpAp=CpApBkAk
444 443 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBkAkCpAp+CpApAk=CpApBkAk+CpApAk
445 399 442 419 adddid AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk-Ak+Ak=CpApBkAk+CpApAk
446 400 419 npcand AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBk-Ak+Ak=Bk
447 446 oveq2d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk-Ak+Ak=CpApBk
448 444 445 447 3eqtr2d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBkAkCpAp+CpApAk=CpApBk
449 448 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApBkAkCpAp+CpApAk+ApBpCk=CpApBk+ApBpCk
450 438 441 449 3eqtrd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpAk=CpApBk+ApBpCk
451 401 405 addcld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk+ApBpCk
452 451 406 419 408 divmuld AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk+ApBpCkCpBp=AkCpBpAk=CpApBk+ApBpCk
453 450 452 mpbird AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBk+ApBpCkCpBp=Ak
454 399 400 406 408 div23d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBkCpBp=CpApCpBpBk
455 406 403 406 408 divsubdird AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Bp-ApBpCpBp=CpBpCpBpApBpCpBp
456 397 398 402 nnncan2d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Bp-ApBp=CpAp
457 456 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCp-Bp-ApBpCpBp=CpApCpBp
458 406 408 dividd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpCpBp=1
459 458 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpBpCpBpApBpCpBp=1ApBpCpBp
460 455 457 459 3eqtr3d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApCpBp=1ApBpCpBp
461 460 oveq1d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApCpBpBk=1ApBpCpBpBk
462 454 461 eqtrd AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBkCpBp=1ApBpCpBpBk
463 403 404 406 408 div23d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApApBpCkCpBp=ApBpCpBpCk
464 462 463 oveq12d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApCpApBkCpBp+ApBpCkCpBp=1ApBpCpBpBk+ApBpCpBpCk
465 409 453 464 3eqtr3d AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApAk=1ApBpCpBpBk+ApBpCpBpCk
466 465 ex AkBkCkApBpCpCpBpBpApCkAk=BkAkCpApAk=1ApBpCpBpBk+ApBpCpBpCk
467 387 389 391 392 393 394 396 466 syl331anc A𝔼NB𝔼NC𝔼Np1NBpCpk1NBpApCkAk=BkAkCpApAk=1ApBpCpBpBk+ApBpCpBpCk
468 385 467 syld A𝔼NB𝔼NC𝔼Np1NBpCpk1Ni1Nj1NBiAiCjAj=BjAjCiAiAk=1ApBpCpBpBk+ApBpCpBpCk
469 468 3expia A𝔼NB𝔼NC𝔼Np1NBpCpk1Ni1Nj1NBiAiCjAj=BjAjCiAiAk=1ApBpCpBpBk+ApBpCpBpCk
470 469 com23 A𝔼NB𝔼NC𝔼Np1NBpCpi1Nj1NBiAiCjAj=BjAjCiAik1NAk=1ApBpCpBpBk+ApBpCpBpCk
471 470 ralrimdv A𝔼NB𝔼NC𝔼Np1NBpCpi1Nj1NBiAiCjAj=BjAjCiAik1NAk=1ApBpCpBpBk+ApBpCpBpCk
472 368 471 anim12d A𝔼NB𝔼NC𝔼Np1NBpCpi1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAiApBpCpBp01k1NAk=1ApBpCpBpBk+ApBpCpBpCk
473 oveq2 t=ApBpCpBp1t=1ApBpCpBp
474 473 oveq1d t=ApBpCpBp1tBk=1ApBpCpBpBk
475 oveq1 t=ApBpCpBptCk=ApBpCpBpCk
476 474 475 oveq12d t=ApBpCpBp1tBk+tCk=1ApBpCpBpBk+ApBpCpBpCk
477 476 eqeq2d t=ApBpCpBpAk=1tBk+tCkAk=1ApBpCpBpBk+ApBpCpBpCk
478 477 ralbidv t=ApBpCpBpk1NAk=1tBk+tCkk1NAk=1ApBpCpBpBk+ApBpCpBpCk
479 478 rspcev ApBpCpBp01k1NAk=1ApBpCpBpBk+ApBpCpBpCkt01k1NAk=1tBk+tCk
480 472 479 syl6 A𝔼NB𝔼NC𝔼Np1NBpCpi1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
481 480 rexlimdvaa A𝔼NB𝔼NC𝔼Np1NBpCpi1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
482 283 481 sylbid A𝔼NB𝔼NC𝔼NBCi1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
483 275 482 pm2.61dne A𝔼NB𝔼NC𝔼Ni1NBiAiAiCiCiAiAiBii1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
484 219 483 sylbid A𝔼NB𝔼NC𝔼Ni1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAit01k1NAk=1tBk+tCk
485 213 484 impbid A𝔼NB𝔼NC𝔼Nt01k1NAk=1tBk+tCki1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi
486 1 485 bitrd A𝔼NB𝔼NC𝔼NABtwnBCi1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi